Manipulation of Mitophagy by "All-in-One" nanosensitizer augments sonodynamic glioma therapy

Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTM...

Full description

Saved in:
Bibliographic Details
Published in:Autophagy Vol. 16; no. 8; pp. 1413 - 1435
Main Authors: Qu, Fei, Wang, Pan, Zhang, Kun, Shi, Yin, Li, Yixiang, Li, Chengren, Lu, Junhan, Liu, Quanhong, Wang, Xiaobing
Format: Journal Article
Language:English
Published: United States Taylor & Francis 02.08.2020
Subjects:
ISSN:1554-8627, 1554-8635, 1554-8635
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart "all-in-one" nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors. ACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction.
AbstractList Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart "all-in-one" nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors.Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart "all-in-one" nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors.ACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction.ABBREVIATIONSACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction.
Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart "all-in-one" nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors. ACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction.
Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart “all-in-one” nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors. Abbreviations ACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction.
Author Shi, Yin
Li, Chengren
Lu, Junhan
Wang, Pan
Wang, Xiaobing
Li, Yixiang
Qu, Fei
Zhang, Kun
Liu, Quanhong
Author_xml – sequence: 1
  givenname: Fei
  surname: Qu
  fullname: Qu, Fei
  organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
– sequence: 2
  givenname: Pan
  surname: Wang
  fullname: Wang, Pan
  organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
– sequence: 3
  givenname: Kun
  surname: Zhang
  fullname: Zhang, Kun
  organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
– sequence: 4
  givenname: Yin
  surname: Shi
  fullname: Shi, Yin
  organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
– sequence: 5
  givenname: Yixiang
  surname: Li
  fullname: Li, Yixiang
  organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
– sequence: 6
  givenname: Chengren
  surname: Li
  fullname: Li, Chengren
  organization: Army Medical University, Chongqing, China
– sequence: 7
  givenname: Junhan
  surname: Lu
  fullname: Lu, Junhan
  organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
– sequence: 8
  givenname: Quanhong
  surname: Liu
  fullname: Liu, Quanhong
  email: lshaof@snnu.edu.cn
  organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
– sequence: 9
  givenname: Xiaobing
  surname: Wang
  fullname: Wang, Xiaobing
  email: wangxiaobing@snnu.edu.cn
  organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31674265$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gJ4Cinrhk8diO4xUSoqr4klr1Ajcka-I4u0aOHewEFH49WXa3Ag5wGms87_uM5j0nJyEGS8hToCugir6AqhJKsnrFKKxXIFXNgD4gZ7t-qSSvTu7frD4l5zl_oZRLtWaPyCkHWQsmqzPy-RaDGyaPo4uhiF1x68Y4bHEzF81cXF55X7pQ3gV7WQQMMduQ3eh-2FTgtOltGHORY4jtHLB3pth4F3ssxq1NOMyPycMOfbZPDvWCfHr75uP1-_Lm7t2H66ub0lRcjGXNqlYyqQwwWDNEqNa25tByBGq4sFSYxkCjOtsy1XDVADMN7TouZAd1y_kFebX3Haamt61Z1kro9ZBcj2nWEZ3-8ye4rd7Eb7oWiioQi8Hzg0GKXyebR927bKz3GGycsmYcQFaKiR3r2e-se8jxpMvAy_2ASTHnZDtt3PjrvAvaeQ1U7wLUxwD1LkB9CHBRV3-pj4D_6V7vdS50MfX4PSbf6hFnH1OXMBiXlxX_afETYZKzQg
CitedBy_id crossref_primary_10_1155_2021_6831770
crossref_primary_10_1002_cam4_6987
crossref_primary_10_1016_j_isci_2021_103558
crossref_primary_10_1007_s13258_023_01413_6
crossref_primary_10_1016_j_biopha_2023_114933
crossref_primary_10_3389_fphar_2022_961725
crossref_primary_10_1002_adfm_202302579
crossref_primary_10_3389_fphys_2023_1217954
crossref_primary_10_1002_ange_202514516
crossref_primary_10_1016_j_jconrel_2025_02_019
crossref_primary_10_3389_fgene_2022_852049
crossref_primary_10_1016_j_neurot_2024_e00328
crossref_primary_10_1016_j_pdpdt_2025_104593
crossref_primary_10_1039_D2RA03786F
crossref_primary_10_1515_ntrev_2024_0074
crossref_primary_10_1016_j_ijbiomac_2025_144360
crossref_primary_10_1016_j_ijpharm_2022_121805
crossref_primary_10_1227_ons_0000000000001175
crossref_primary_10_1002_cbic_202500440
crossref_primary_10_1016_j_ultsonch_2023_106346
crossref_primary_10_1007_s12274_022_5340_0
crossref_primary_10_34133_bmr_0111
crossref_primary_10_3892_ijmm_2023_5302
crossref_primary_10_1002_smll_202311228
crossref_primary_10_1016_j_ultsonch_2023_106747
crossref_primary_10_1016_j_apsb_2021_06_007
crossref_primary_10_1016_j_ijbiomac_2024_138587
crossref_primary_10_3389_fimmu_2023_1241791
crossref_primary_10_1038_s41467_025_55905_y
crossref_primary_10_1080_10717544_2023_2219429
crossref_primary_10_1016_j_nantod_2023_101798
crossref_primary_10_1016_j_cej_2024_157406
crossref_primary_10_1002_tcr_202400185
crossref_primary_10_1016_j_arr_2023_102026
crossref_primary_10_1007_s12032_024_02596_y
crossref_primary_10_1002_adhm_202502183
crossref_primary_10_3390_pharmaceutics12111085
crossref_primary_10_1208_s12249_021_02144_1
crossref_primary_10_3389_fphar_2024_1394816
crossref_primary_10_3389_fnagi_2024_1503246
crossref_primary_10_1002_adhm_202402697
crossref_primary_10_2147_IJN_S504363
crossref_primary_10_1002_EXP_20240112
crossref_primary_10_3390_pharmaceutics12111125
crossref_primary_10_1016_j_canlet_2024_216621
crossref_primary_10_1002_wnan_1838
crossref_primary_10_1080_10717544_2021_2021322
crossref_primary_10_3390_pharmaceutics14112275
crossref_primary_10_1016_j_addr_2022_114362
crossref_primary_10_1016_j_phrs_2022_106218
crossref_primary_10_1016_j_intimp_2024_113024
crossref_primary_10_1016_j_ccr_2023_215531
crossref_primary_10_1016_j_bioorg_2024_107293
crossref_primary_10_1016_j_actbio_2025_07_059
crossref_primary_10_1002_advs_202503828
crossref_primary_10_1038_s41531_022_00402_y
crossref_primary_10_2147_IJN_S344940
crossref_primary_10_1002_bmm2_12079
crossref_primary_10_1016_j_bcp_2024_116277
crossref_primary_10_1186_s40779_022_00386_z
crossref_primary_10_3389_fphar_2023_1094020
crossref_primary_10_1016_j_cclet_2025_111771
crossref_primary_10_1016_j_ejps_2023_106574
crossref_primary_10_3390_cancers14194920
crossref_primary_10_3389_fimmu_2023_1259797
crossref_primary_10_1039_D4RA01026D
crossref_primary_10_1080_10717544_2022_2126027
crossref_primary_10_1038_s41419_024_06691_w
crossref_primary_10_1039_D4BM00613E
crossref_primary_10_33549_physiolres_934925
crossref_primary_10_3390_cells12030395
crossref_primary_10_1007_s11060_023_04292_9
crossref_primary_10_3389_fonc_2023_1228426
crossref_primary_10_1096_fj_202200427RR
crossref_primary_10_3389_fonc_2021_779202
crossref_primary_10_3390_brainsci12081012
crossref_primary_10_1038_s41598_025_10076_0
crossref_primary_10_1002_advs_202004381
crossref_primary_10_3390_molecules26010175
crossref_primary_10_1002_adma_202308286
crossref_primary_10_3389_fneur_2023_1162394
crossref_primary_10_3892_ijmm_2025_5577
crossref_primary_10_3389_fphar_2023_1211719
crossref_primary_10_1016_j_lfs_2023_122215
crossref_primary_10_1016_j_pharmthera_2023_108485
crossref_primary_10_1038_s41419_023_06262_5
crossref_primary_10_1016_j_bbrc_2021_10_006
crossref_primary_10_1002_anie_202514516
crossref_primary_10_1016_j_canlet_2022_215592
crossref_primary_10_1002_1878_0261_13730
crossref_primary_10_1016_j_biomaterials_2022_121947
crossref_primary_10_1016_j_biomaterials_2024_122913
crossref_primary_10_3390_pharmaceutics16050603
crossref_primary_10_1016_j_ijpharm_2023_122708
crossref_primary_10_1039_D1NH00182E
crossref_primary_10_1002_advs_202105451
crossref_primary_10_1016_j_cej_2024_157031
crossref_primary_10_1016_j_ultsonch_2025_107527
crossref_primary_10_1016_j_ijpharm_2021_121412
crossref_primary_10_1021_acsami_5c09829
crossref_primary_10_1002_adhm_202102042
crossref_primary_10_1007_s12013_025_01717_2
crossref_primary_10_1016_j_cej_2025_159735
crossref_primary_10_1016_j_actbio_2024_10_051
crossref_primary_10_1021_acsami_4c21924
crossref_primary_10_1177_08853282241258555
crossref_primary_10_12998_wjcc_v11_i22_5187
crossref_primary_10_1002_adfm_202209219
crossref_primary_10_1007_s40820_025_01666_8
crossref_primary_10_1186_s40364_025_00731_z
crossref_primary_10_1002_smll_202502323
crossref_primary_10_1002_agt2_568
crossref_primary_10_1002_adma_202110364
crossref_primary_10_1111_bph_17385
crossref_primary_10_1002_adtp_202400309
crossref_primary_10_1002_ijc_35218
crossref_primary_10_1002_adfm_202105786
crossref_primary_10_1002_advs_202404230
crossref_primary_10_1016_j_mtbio_2025_101661
crossref_primary_10_1002_adma_202303180
crossref_primary_10_1016_j_ijpharm_2023_123105
crossref_primary_10_1111_cns_70121
crossref_primary_10_2147_IJN_S400495
crossref_primary_10_3390_molecules29153513
crossref_primary_10_1002_advs_202309542
crossref_primary_10_1007_s11060_024_04772_6
crossref_primary_10_3390_polym14040712
crossref_primary_10_1080_10715762_2025_2548479
crossref_primary_10_12998_wjcc_v11_i22_5193
Cites_doi 10.1016/j.tiv.2012.12.023
10.1038/nature13611
10.1016/j.jconrel.2010.11.014
10.1016/j.canlet.2016.11.018
10.1038/s41556-018-0176-2
10.1039/C2CS35249D
10.1021/acsnano.6b04268
10.18632/oncotarget.16400
10.1021/acs.nanolett.8b01818
10.1016/j.jconrel.2018.07.048
10.1007/s10571-015-0166-x
10.3892/ol.2014.2419
10.1158/2159-8290.CD-14-0049
10.1016/j.ultrasmedbio.2010.06.022
10.1159/000493629
10.1016/j.biopha.2019.01.034
10.1074/jbc.M117.787739
10.1038/s41467-018-04529-6
10.1007/s10103-015-1770-1
10.1080/09205063.2017.1348739
10.1038/cddis.2017.133
10.1021/nn202155y
10.7150/thno.26025
10.1016/j.ccr.2006.12.013
10.1117/1.JBO.21.7.078002
10.1186/s13287-018-1029-4
10.1021/acsnano.8b00999
10.1038/ncomms4546
10.1016/j.jconrel.2017.11.026
10.1038/d41586-017-05479-7
10.1248/bpb.b15-00994
10.1038/ncomms5712
10.1089/ars.2014.6204
10.1038/nrd1632
10.1038/s41467-018-04070-6
10.4161/auto.6.7.12113
10.18632/oncotarget.23527
10.1158/0008-5472.CAN-07-0562
10.1038/bjc.2013.306
10.1016/j.canlet.2016.08.019
10.1016/j.ultsonch.2016.01.038
10.1016/j.ultsonch.2017.05.013
10.4161/auto.21211
10.1166/jnn.2013.7525
10.1038/nnano.2017.54
10.1016/j.ccell.2016.05.002
10.1016/j.bbamem.2007.07.002
10.1038/onc.2015.455
10.1016/j.ultrasmedbio.2015.09.004
10.1080/15548627.2016.1162930
10.1080/15548627.2015.1056970
10.1016/j.ultras.2010.12.001
10.1089/ars.2010.3768
10.4149/gpb_2014003
10.1038/nrc.2017.53
10.1007/s12274-017-1719-8
10.1039/C8CS00805A
10.1158/1078-0432.CCR-13-3227
10.1039/C8BM01187G
10.3389/fcell.2016.00069
10.1016/j.tibs.2010.07.007
10.1158/0008-5472.CAN-05-0510
10.1016/j.cell.2011.06.023
10.1016/S0140-6736(18)30990-5
10.1038/cddis.2017.463
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1080/15548627.2019.1687210
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate F. QU ET AL
EISSN 1554-8635
EndPage 1435
ExternalDocumentID PMC7480814
31674265
10_1080_15548627_2019_1687210
1687210
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0BK
0R~
23N
30N
4.4
53G
5GY
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
ADHGD
AEISY
AENEX
AEYOC
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AQTUD
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EMOBN
F5P
GTTXZ
H13
HYE
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RPM
RTWRZ
SNACF
TASJS
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
AAYXX
CITATION
AAGME
ABFMO
ACDHJ
ACZPZ
ADOPC
ADYSH
AURDB
BFWEY
C1A
CGR
CUY
CVF
CWRZV
ECM
EIF
EJD
NPM
PCLFJ
SV3
7X8
5PM
ID FETCH-LOGICAL-c534t-725d6268c12192aa159e731d3a10c34e04cbc1b8fed28b38b12cb0ff346f17d33
IEDL.DBID TFW
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495311700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1554-8627
1554-8635
IngestDate Tue Nov 04 02:00:38 EST 2025
Tue Oct 21 14:12:28 EDT 2025
Wed Feb 19 02:23:39 EST 2025
Sat Nov 29 04:05:35 EST 2025
Tue Nov 18 22:23:21 EST 2025
Mon Oct 20 23:49:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords nanosonosensitizer
sonodynamic therapy
mitophagy manipulation
Blood brain barrier
orthotopic glioma
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-725d6268c12192aa159e731d3a10c34e04cbc1b8fed28b38b12cb0ff346f17d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/15548627.2019.1687210?needAccess=true
PMID 31674265
PQID 2311658243
PQPubID 23479
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7480814
proquest_miscellaneous_2311658243
crossref_citationtrail_10_1080_15548627_2019_1687210
informaworld_taylorfrancis_310_1080_15548627_2019_1687210
pubmed_primary_31674265
crossref_primary_10_1080_15548627_2019_1687210
PublicationCentury 2000
PublicationDate 2020-08-02
PublicationDateYYYYMMDD 2020-08-02
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Autophagy
PublicationTitleAlternate Autophagy
PublicationYear 2020
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0033
cit0034
cit0031
cit0032
cit0030
cit0039
cit0037
cit0038
cit0036
cit0022
Sun X (cit0035) 2012; 33
cit0066
cit0023
cit0067
cit0020
cit0064
cit0021
cit0065
cit0062
cit0063
cit0060
cit0061
Lima S (cit0043) 2018; 14
cit0028
cit0029
cit0026
cit0027
cit0024
cit0068
cit0025
cit0011
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
cit0019
cit0017
cit0018
cit0015
cit0059
cit0016
cit0013
cit0057
cit0014
cit0058
cit0044
cit0001
cit0045
cit0042
cit0040
cit0041
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
34101540 - Autophagy. 2022 Feb;18(2):470
References_xml – ident: cit0020
  doi: 10.1016/j.tiv.2012.12.023
– ident: cit0028
  doi: 10.1038/nature13611
– ident: cit0034
  doi: 10.1016/j.jconrel.2010.11.014
– ident: cit0061
  doi: 10.1016/j.canlet.2016.11.018
– ident: cit0025
  doi: 10.1038/s41556-018-0176-2
– ident: cit0050
  doi: 10.1039/C2CS35249D
– ident: cit0004
  doi: 10.1021/acsnano.6b04268
– ident: cit0049
  doi: 10.18632/oncotarget.16400
– ident: cit0007
  doi: 10.1021/acs.nanolett.8b01818
– ident: cit0053
  doi: 10.1016/j.jconrel.2018.07.048
– ident: cit0063
  doi: 10.1007/s10571-015-0166-x
– ident: cit0015
  doi: 10.3892/ol.2014.2419
– ident: cit0046
  doi: 10.1158/2159-8290.CD-14-0049
– ident: cit0019
  doi: 10.1016/j.ultrasmedbio.2010.06.022
– ident: cit0031
  doi: 10.1159/000493629
– ident: cit0055
  doi: 10.1016/j.biopha.2019.01.034
– ident: cit0026
  doi: 10.1074/jbc.M117.787739
– ident: cit0008
  doi: 10.1038/s41467-018-04529-6
– ident: cit0059
  doi: 10.1007/s10103-015-1770-1
– ident: cit0037
  doi: 10.1080/09205063.2017.1348739
– ident: cit0060
  doi: 10.1038/cddis.2017.133
– ident: cit0047
  doi: 10.1021/nn202155y
– ident: cit0009
  doi: 10.7150/thno.26025
– ident: cit0044
  doi: 10.1016/j.ccr.2006.12.013
– ident: cit0012
  doi: 10.1117/1.JBO.21.7.078002
– ident: cit0065
  doi: 10.1186/s13287-018-1029-4
– ident: cit0017
  doi: 10.1021/acsnano.8b00999
– ident: cit0038
  doi: 10.1038/ncomms4546
– ident: cit0002
  doi: 10.1016/j.jconrel.2017.11.026
– ident: cit0010
  doi: 10.1038/d41586-017-05479-7
– ident: cit0036
  doi: 10.1248/bpb.b15-00994
– ident: cit0033
  doi: 10.1038/ncomms5712
– ident: cit0067
  doi: 10.1089/ars.2014.6204
– ident: cit0040
  doi: 10.1038/nrd1632
– ident: cit0066
  doi: 10.1038/s41467-018-04070-6
– ident: cit0022
  doi: 10.4161/auto.6.7.12113
– ident: cit0048
  doi: 10.18632/oncotarget.23527
– ident: cit0005
  doi: 10.1158/0008-5472.CAN-07-0562
– ident: cit0052
  doi: 10.1038/bjc.2013.306
– ident: cit0068
  doi: 10.1016/j.canlet.2016.08.019
– ident: cit0039
  doi: 10.1016/j.ultsonch.2016.01.038
– ident: cit0016
  doi: 10.1016/j.ultsonch.2017.05.013
– ident: cit0057
  doi: 10.4161/auto.21211
– ident: cit0041
  doi: 10.1166/jnn.2013.7525
– ident: cit0003
  doi: 10.1038/nnano.2017.54
– ident: cit0006
  doi: 10.1016/j.ccell.2016.05.002
– ident: cit0023
  doi: 10.1016/j.bbamem.2007.07.002
– ident: cit0030
  doi: 10.1038/onc.2015.455
– ident: cit0011
  doi: 10.1016/j.ultrasmedbio.2015.09.004
– ident: cit0042
  doi: 10.1080/15548627.2016.1162930
– ident: cit0062
  doi: 10.1080/15548627.2015.1056970
– ident: cit0014
  doi: 10.1016/j.ultras.2010.12.001
– ident: cit0056
  doi: 10.1089/ars.2010.3768
– ident: cit0054
  doi: 10.4149/gpb_2014003
– ident: cit0021
  doi: 10.1038/nrc.2017.53
– volume: 14
  start-page: 942
  year: 2018
  ident: cit0043
  publication-title: Autophagy.
– ident: cit0013
  doi: 10.1007/s12274-017-1719-8
– ident: cit0051
  doi: 10.1039/C8CS00805A
– ident: cit0032
  doi: 10.1158/1078-0432.CCR-13-3227
– ident: cit0018
  doi: 10.1039/C8BM01187G
– ident: cit0058
  doi: 10.3389/fcell.2016.00069
– ident: cit0064
  doi: 10.1016/j.tibs.2010.07.007
– ident: cit0024
  doi: 10.1158/0008-5472.CAN-05-0510
– ident: cit0045
  doi: 10.1016/j.cell.2011.06.023
– ident: cit0001
  doi: 10.1016/S0140-6736(18)30990-5
– ident: cit0027
  doi: 10.4161/auto.21211
– ident: cit0029
  doi: 10.1038/cddis.2017.463
– volume: 33
  start-page: 916
  year: 2012
  ident: cit0035
  publication-title: Biomaterials.
– reference: 34101540 - Autophagy. 2022 Feb;18(2):470
SSID ssj0036892
Score 2.6299326
Snippet Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1413
SubjectTerms Animals
Blood brain barrier
Brain Neoplasms - pathology
Brain Neoplasms - therapy
Cell Death - drug effects
Cell Line, Tumor
Cell Survival - drug effects
Chlorophyllides
Drug Delivery Systems
Endocytosis - drug effects
Female
Glioma - pathology
Glioma - therapy
Low Density Lipoprotein Receptor-Related Protein-1 - metabolism
Mice
Mice, Inbred C57BL
Microbubbles
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondria - ultrastructure
Mitophagy - drug effects
mitophagy manipulation
Nanoparticles - chemistry
nanosonosensitizer
NIH 3T3 Cells
orthotopic glioma
p38 Mitogen-Activated Protein Kinases - metabolism
Particle Size
Peptides, Cyclic - metabolism
Porphyrins - pharmacology
Protein Kinases - metabolism
Reactive Oxygen Species - metabolism
Research Paper
Signal Transduction - drug effects
Somatostatin - analogs & derivatives
Somatostatin - metabolism
sonodynamic therapy
Tissue Distribution - drug effects
Ubiquitin-Protein Ligases - metabolism
Ultrasonic Therapy
Title Manipulation of Mitophagy by "All-in-One" nanosensitizer augments sonodynamic glioma therapy
URI https://www.tandfonline.com/doi/abs/10.1080/15548627.2019.1687210
https://www.ncbi.nlm.nih.gov/pubmed/31674265
https://www.proquest.com/docview/2311658243
https://pubmed.ncbi.nlm.nih.gov/PMC7480814
Volume 16
WOSCitedRecordID wos000495311700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1554-8635
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036892
  issn: 1554-8627
  databaseCode: TFW
  dateStart: 20050428
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAolLedPlUZmKq0scO7FzrKquuLRwKGIPSJGfS6StgzbZSumvx5PHqotAPcA5nsiPseebZPx9CH0ohFYm1wmJ0UgR7pkhhTCcGGBHS6Q1PFe92IS4uJCLRfFlrCZsxrJKyKH9QBTRn9WwuZVupoq4jxACIxAXUJhVHNNcxiwGsvYY-mFrXs6_TWcxy2UviwwWBEymOzx_e8tOdNrhLv0TAv29kPJWZJo__g9jeoL2R1iKTwY_eoruufAMPRyEKrvn6Pu5CtWk9IVrj88rICRQyw7rDh-drFakCuRzcEc4qFA3UBXfVjdujdVm2V-iwxHX17YL6qoyeLmq6iuFh7tf3Qv0dX52efqJjLoMxGSMt0SkmY15kDQ0HnepUhEROcGoZYomhnGXcKMN1dI7m0rNpKap0Yn3jOeeCsvYS7QX6uAOEPZ5ITNnVcGc5TE7KmLznBrpc5t6l2UzxKf1KM1IWg7aGauSjtym08SVMHHlOHEzdLw1-zmwdtxlUNxe7LLtP5f4QdukZHfYvp88o4x7E364qODqTVNG7Ewjwks5m6FXg6dsuwMMBBEdxRGKHR_aNgDe790nofrR838LDnIp_PU_9PkNepTChwOofUnfor12vXHv0ANz3VbN-hDdFwt52O-kX1h7GR8
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQC4ILb-iWl6m4uo1jJ3aOFWJVRHe5LKIHJMtx7CXS1ql2s0jpr68nj9UuAvUA53gix6_5xpn5PoQ-ZCLXJs0jEryRJtwxQzJhODHAjhbJwvBUt2ITYjqVFxfZdi0MpFVCDO06ooj2rIbNDZfRQ0rcCfjAgMQFZGZlxzSVIYwJYft-Enwt8OfPxt-H05ilshVGBhMCNkMVz99es-OfdthL_4RBf0-l3PJN40f_46seo4c9MsWn3VJ6gu5Y_xTd67Qqm2fox0T7chD7wpXDkxI4CfS8wXmDj04XC1J68tXbI-y1r1aQGF-X13aJ9Xre1tHhAO2rovH6sjR4viirS4278q_mOfo2_jT7eEZ6aQZiEsZrIuKkCKGQNDSceLHWARRZwWjBNI0M4zbiJjc0l84WscyZzGls8sg5xlNHRcHYC7TnK28PEHZpJhNb6IzZgocAKQvNU2qkS4vY2SQZIT5MiDI9bznIZywU7elNh4FTMHCqH7gROt6YXXXEHbcZZNuzrer2xsR18iaK3WL7flgaKmxP-Oeiva3WKxXgMw0gL-ZshF52S2XTHSAhCAApfKHYWUSbBkD9vfvElz9bCnDBQTGFH_5Dn9-h-2ezybk6_zz98go9iOEeAVJh4tdor16u7Rt01_yqy9XybbuhbgB19xxh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQWcSl7HRYTcXVbRw7sXOsgBEIOvRQRA9IluNliDR1qpkMUvj1-GUZdRCoBzjHL_Ly7Pe95Pn7EHpdiFKbvExIjEaacM8MKYThxAA7WiKt4bnuxCbEbCbPzoqToZpwNZRVQg7te6KI7qyGzX1h_VgRdwghMAJxAYVZxQHNZcxiYtZ-PULnHJz8dPp1PIxZLjtdZDAhYDNe4vnba7bC0xZ56Z8g6O-VlJdC0_TOfxjUXbQ74FJ81DvSPXTNhfvoZq9U2T5A3451qEapL1x7fFwBI4Get7hs8f7RYkGqQD4Ht4-DDvUKyuKb6qdbYr2ed7focAT2tW2DPq8Mni-q-lzj_vJX-xB9mb47ffOeDMIMxGSMN0SkmY2JkDQ0nnep1hESOcGoZZomhnGXcFMaWkrvbCpLJkuamjLxnvHcU2EZe4R2Qh3cHsI-L2TmrC6YszymR0VsnlMjfW5T77Jsgvi4HsoMrOUgnrFQdCA3HSdOwcSpYeIm6GBjdtHTdlxlUFxebNV030t8L26i2BW2r0bPUHFzwh8XHVy9XqkInmmEeClnE_S495RNd4CCIMKjOEKx5UObBkD8vf0kVN87AnDBQS-FP_mHPr9Et07eTtWnD7OPT9HtFD4iQB1M-gztNMu1e45umB9NtVq-6LbTLwRCGxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulation+of+Mitophagy+by+%22All-in-One%22+nanosensitizer+augments+sonodynamic+glioma+therapy&rft.jtitle=Autophagy&rft.au=Qu%2C+Fei&rft.au=Wang%2C+Pan&rft.au=Zhang%2C+Kun&rft.au=Shi%2C+Yin&rft.date=2020-08-02&rft.pub=Taylor+%26+Francis&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=16&rft.issue=8&rft.spage=1413&rft.epage=1435&rft_id=info:doi/10.1080%2F15548627.2019.1687210&rft.externalDocID=1687210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon