Manipulation of Mitophagy by "All-in-One" nanosensitizer augments sonodynamic glioma therapy
Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTM...
Uloženo v:
| Vydáno v: | Autophagy Ročník 16; číslo 8; s. 1413 - 1435 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Taylor & Francis
02.08.2020
|
| Témata: | |
| ISSN: | 1554-8627, 1554-8635, 1554-8635 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart "all-in-one" nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors.
ACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction. |
|---|---|
| AbstractList | Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart "all-in-one" nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors.Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart "all-in-one" nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors.ACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction.ABBREVIATIONSACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction. Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart "all-in-one" nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors. ACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction. Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to macroautophagy/autophagy, result in high tumor recurrence and extremely limited survival of glioma patients. Ultrasound-targeted microbubble destruction (UTMD) is a technique of transient and reversible BBB disruption, which greatly facilitates intracerebral drug delivery. In addition, sonodynamic therapy (SDT) based on ultrasound stimulation and a sonosensitizer, can be a safe and noninvasive strategy for treating glioma. We innovatively designed a smart “all-in-one” nanosensitizer platform by incorporating the sonoactive chlorin e6 (Ce6) and an autophagy inhibitor-hydroxychloroquine (HCQ) into angiopep-2 peptide-modified liposomes (designated as ACHL), which integrates multiple diagnostic and therapeutic functions. ACHL selectively accumulated in the brain tumors during the optimal time-window of transient UTMD-mediated BBB opening. The nanosensitizer then responded to a second ultrasonic stimulation, and simultaneously unloaded HCQ and generated ROS in the glioma cells. The sonotherapy triggered apoptosis as well as MAPK/p38-PINK1-PRKN-dependent mitophagy, in which the antioxidant relieved the sonotoxicity and MAPK/p38 activation, while the inhibition of MAPK/p38 attenuated the progression toward mitophagy by compromising redistribution of PRKN. Moreover, HCQ blocking autophagosome degradation, augmented intracellular ROS production and resulted in an oxidative-damage regenerative loop. ACHL-SDT treatment using this construct significantly inhibited the xenograft-tumor growth and prolonged the survival time of tumor-bearing mice, exhibiting an improved therapeutic efficiency. All together, we demonstrated a precision sonotherapy with simultaneous apoptosis induction and mitophagy inhibition, which served as an intelligently strategic sense of working alongside, providing new insights into the theranostics of brain tumors. Abbreviations ACHL: Angiopep-2-modified liposomes loaded with Ce6 and hydroxychloroquine; ACL: Angiopep-2-modified liposomes loaded with Ce6; BBB: blood brain barrier; Ce6: chlorin e6; CHL: liposomes loaded with Ce6 and hydroxychloroquine; CL: liposomes loaded with Ce6; CNS: central nervous system; DDS: drug delivery system; EB: Evans blue; FUS: focused ultrasound; HCQ: hydroxychloroquine; LRP1: low density lipoprotein receptor-related protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MBs: microbubbles; MTG: MitoTracker Green; MTR: MitoTracker Red; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PBS: phosphate-buffered saline; PDI: polydispersity index; PINK1: PTEN induced kinase 1; PRKN/parkin: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SDT: sonodynamic therapy; SQSTM1: sequestome 1; TA: terephthalic acid; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling; US: ultrasound; UTMD: ultrasound-targeted microbubble destruction. |
| Author | Shi, Yin Li, Chengren Lu, Junhan Wang, Pan Wang, Xiaobing Li, Yixiang Qu, Fei Zhang, Kun Liu, Quanhong |
| Author_xml | – sequence: 1 givenname: Fei surname: Qu fullname: Qu, Fei organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China – sequence: 2 givenname: Pan surname: Wang fullname: Wang, Pan organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China – sequence: 3 givenname: Kun surname: Zhang fullname: Zhang, Kun organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China – sequence: 4 givenname: Yin surname: Shi fullname: Shi, Yin organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China – sequence: 5 givenname: Yixiang surname: Li fullname: Li, Yixiang organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China – sequence: 6 givenname: Chengren surname: Li fullname: Li, Chengren organization: Army Medical University, Chongqing, China – sequence: 7 givenname: Junhan surname: Lu fullname: Lu, Junhan organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China – sequence: 8 givenname: Quanhong surname: Liu fullname: Liu, Quanhong email: lshaof@snnu.edu.cn organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China – sequence: 9 givenname: Xiaobing surname: Wang fullname: Wang, Xiaobing email: wangxiaobing@snnu.edu.cn organization: National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education; College of Life Sciences, Shaanxi Normal University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31674265$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1URD_gJ4Cinrhk8diO4xUSoqr4klr1Ajcka-I4u0aOHewEFH49WXa3Ag5wGms87_uM5j0nJyEGS8hToCugir6AqhJKsnrFKKxXIFXNgD4gZ7t-qSSvTu7frD4l5zl_oZRLtWaPyCkHWQsmqzPy-RaDGyaPo4uhiF1x68Y4bHEzF81cXF55X7pQ3gV7WQQMMduQ3eh-2FTgtOltGHORY4jtHLB3pth4F3ssxq1NOMyPycMOfbZPDvWCfHr75uP1-_Lm7t2H66ub0lRcjGXNqlYyqQwwWDNEqNa25tByBGq4sFSYxkCjOtsy1XDVADMN7TouZAd1y_kFebX3Haamt61Z1kro9ZBcj2nWEZ3-8ye4rd7Eb7oWiioQi8Hzg0GKXyebR927bKz3GGycsmYcQFaKiR3r2e-se8jxpMvAy_2ASTHnZDtt3PjrvAvaeQ1U7wLUxwD1LkB9CHBRV3-pj4D_6V7vdS50MfX4PSbf6hFnH1OXMBiXlxX_afETYZKzQg |
| CitedBy_id | crossref_primary_10_1155_2021_6831770 crossref_primary_10_1002_cam4_6987 crossref_primary_10_1016_j_isci_2021_103558 crossref_primary_10_1007_s13258_023_01413_6 crossref_primary_10_1016_j_biopha_2023_114933 crossref_primary_10_3389_fphar_2022_961725 crossref_primary_10_1002_adfm_202302579 crossref_primary_10_3389_fphys_2023_1217954 crossref_primary_10_1002_ange_202514516 crossref_primary_10_1016_j_jconrel_2025_02_019 crossref_primary_10_3389_fgene_2022_852049 crossref_primary_10_1016_j_neurot_2024_e00328 crossref_primary_10_1016_j_pdpdt_2025_104593 crossref_primary_10_1039_D2RA03786F crossref_primary_10_1515_ntrev_2024_0074 crossref_primary_10_1016_j_ijbiomac_2025_144360 crossref_primary_10_1016_j_ijpharm_2022_121805 crossref_primary_10_1227_ons_0000000000001175 crossref_primary_10_1002_cbic_202500440 crossref_primary_10_1016_j_ultsonch_2023_106346 crossref_primary_10_1007_s12274_022_5340_0 crossref_primary_10_34133_bmr_0111 crossref_primary_10_3892_ijmm_2023_5302 crossref_primary_10_1002_smll_202311228 crossref_primary_10_1016_j_ultsonch_2023_106747 crossref_primary_10_1016_j_apsb_2021_06_007 crossref_primary_10_1016_j_ijbiomac_2024_138587 crossref_primary_10_3389_fimmu_2023_1241791 crossref_primary_10_1038_s41467_025_55905_y crossref_primary_10_1080_10717544_2023_2219429 crossref_primary_10_1016_j_nantod_2023_101798 crossref_primary_10_1016_j_cej_2024_157406 crossref_primary_10_1002_tcr_202400185 crossref_primary_10_1016_j_arr_2023_102026 crossref_primary_10_1007_s12032_024_02596_y crossref_primary_10_1002_adhm_202502183 crossref_primary_10_3390_pharmaceutics12111085 crossref_primary_10_1208_s12249_021_02144_1 crossref_primary_10_3389_fphar_2024_1394816 crossref_primary_10_3389_fnagi_2024_1503246 crossref_primary_10_1002_adhm_202402697 crossref_primary_10_2147_IJN_S504363 crossref_primary_10_1002_EXP_20240112 crossref_primary_10_3390_pharmaceutics12111125 crossref_primary_10_1016_j_canlet_2024_216621 crossref_primary_10_1002_wnan_1838 crossref_primary_10_1080_10717544_2021_2021322 crossref_primary_10_3390_pharmaceutics14112275 crossref_primary_10_1016_j_addr_2022_114362 crossref_primary_10_1016_j_phrs_2022_106218 crossref_primary_10_1016_j_intimp_2024_113024 crossref_primary_10_1016_j_ccr_2023_215531 crossref_primary_10_1016_j_bioorg_2024_107293 crossref_primary_10_1016_j_actbio_2025_07_059 crossref_primary_10_1002_advs_202503828 crossref_primary_10_1038_s41531_022_00402_y crossref_primary_10_2147_IJN_S344940 crossref_primary_10_1002_bmm2_12079 crossref_primary_10_1016_j_bcp_2024_116277 crossref_primary_10_1186_s40779_022_00386_z crossref_primary_10_3389_fphar_2023_1094020 crossref_primary_10_1016_j_cclet_2025_111771 crossref_primary_10_1016_j_ejps_2023_106574 crossref_primary_10_3390_cancers14194920 crossref_primary_10_3389_fimmu_2023_1259797 crossref_primary_10_1039_D4RA01026D crossref_primary_10_1080_10717544_2022_2126027 crossref_primary_10_1038_s41419_024_06691_w crossref_primary_10_1039_D4BM00613E crossref_primary_10_33549_physiolres_934925 crossref_primary_10_3390_cells12030395 crossref_primary_10_1007_s11060_023_04292_9 crossref_primary_10_3389_fonc_2023_1228426 crossref_primary_10_1096_fj_202200427RR crossref_primary_10_3389_fonc_2021_779202 crossref_primary_10_3390_brainsci12081012 crossref_primary_10_1038_s41598_025_10076_0 crossref_primary_10_1002_advs_202004381 crossref_primary_10_3390_molecules26010175 crossref_primary_10_1002_adma_202308286 crossref_primary_10_3389_fneur_2023_1162394 crossref_primary_10_3892_ijmm_2025_5577 crossref_primary_10_3389_fphar_2023_1211719 crossref_primary_10_1016_j_lfs_2023_122215 crossref_primary_10_1016_j_pharmthera_2023_108485 crossref_primary_10_1038_s41419_023_06262_5 crossref_primary_10_1016_j_bbrc_2021_10_006 crossref_primary_10_1002_anie_202514516 crossref_primary_10_1016_j_canlet_2022_215592 crossref_primary_10_1002_1878_0261_13730 crossref_primary_10_1016_j_biomaterials_2022_121947 crossref_primary_10_1016_j_biomaterials_2024_122913 crossref_primary_10_3390_pharmaceutics16050603 crossref_primary_10_1016_j_ijpharm_2023_122708 crossref_primary_10_1039_D1NH00182E crossref_primary_10_1002_advs_202105451 crossref_primary_10_1016_j_cej_2024_157031 crossref_primary_10_1016_j_ultsonch_2025_107527 crossref_primary_10_1016_j_ijpharm_2021_121412 crossref_primary_10_1021_acsami_5c09829 crossref_primary_10_1002_adhm_202102042 crossref_primary_10_1007_s12013_025_01717_2 crossref_primary_10_1016_j_cej_2025_159735 crossref_primary_10_1016_j_actbio_2024_10_051 crossref_primary_10_1021_acsami_4c21924 crossref_primary_10_1177_08853282241258555 crossref_primary_10_12998_wjcc_v11_i22_5187 crossref_primary_10_1002_adfm_202209219 crossref_primary_10_1007_s40820_025_01666_8 crossref_primary_10_1186_s40364_025_00731_z crossref_primary_10_1002_smll_202502323 crossref_primary_10_1002_agt2_568 crossref_primary_10_1002_adma_202110364 crossref_primary_10_1111_bph_17385 crossref_primary_10_1002_adtp_202400309 crossref_primary_10_1002_ijc_35218 crossref_primary_10_1002_adfm_202105786 crossref_primary_10_1002_advs_202404230 crossref_primary_10_1016_j_mtbio_2025_101661 crossref_primary_10_1002_adma_202303180 crossref_primary_10_1016_j_ijpharm_2023_123105 crossref_primary_10_1111_cns_70121 crossref_primary_10_2147_IJN_S400495 crossref_primary_10_3390_molecules29153513 crossref_primary_10_1002_advs_202309542 crossref_primary_10_1007_s11060_024_04772_6 crossref_primary_10_3390_polym14040712 crossref_primary_10_1080_10715762_2025_2548479 crossref_primary_10_12998_wjcc_v11_i22_5193 |
| Cites_doi | 10.1016/j.tiv.2012.12.023 10.1038/nature13611 10.1016/j.jconrel.2010.11.014 10.1016/j.canlet.2016.11.018 10.1038/s41556-018-0176-2 10.1039/C2CS35249D 10.1021/acsnano.6b04268 10.18632/oncotarget.16400 10.1021/acs.nanolett.8b01818 10.1016/j.jconrel.2018.07.048 10.1007/s10571-015-0166-x 10.3892/ol.2014.2419 10.1158/2159-8290.CD-14-0049 10.1016/j.ultrasmedbio.2010.06.022 10.1159/000493629 10.1016/j.biopha.2019.01.034 10.1074/jbc.M117.787739 10.1038/s41467-018-04529-6 10.1007/s10103-015-1770-1 10.1080/09205063.2017.1348739 10.1038/cddis.2017.133 10.1021/nn202155y 10.7150/thno.26025 10.1016/j.ccr.2006.12.013 10.1117/1.JBO.21.7.078002 10.1186/s13287-018-1029-4 10.1021/acsnano.8b00999 10.1038/ncomms4546 10.1016/j.jconrel.2017.11.026 10.1038/d41586-017-05479-7 10.1248/bpb.b15-00994 10.1038/ncomms5712 10.1089/ars.2014.6204 10.1038/nrd1632 10.1038/s41467-018-04070-6 10.4161/auto.6.7.12113 10.18632/oncotarget.23527 10.1158/0008-5472.CAN-07-0562 10.1038/bjc.2013.306 10.1016/j.canlet.2016.08.019 10.1016/j.ultsonch.2016.01.038 10.1016/j.ultsonch.2017.05.013 10.4161/auto.21211 10.1166/jnn.2013.7525 10.1038/nnano.2017.54 10.1016/j.ccell.2016.05.002 10.1016/j.bbamem.2007.07.002 10.1038/onc.2015.455 10.1016/j.ultrasmedbio.2015.09.004 10.1080/15548627.2016.1162930 10.1080/15548627.2015.1056970 10.1016/j.ultras.2010.12.001 10.1089/ars.2010.3768 10.4149/gpb_2014003 10.1038/nrc.2017.53 10.1007/s12274-017-1719-8 10.1039/C8CS00805A 10.1158/1078-0432.CCR-13-3227 10.1039/C8BM01187G 10.3389/fcell.2016.00069 10.1016/j.tibs.2010.07.007 10.1158/0008-5472.CAN-05-0510 10.1016/j.cell.2011.06.023 10.1016/S0140-6736(18)30990-5 10.1038/cddis.2017.463 |
| ContentType | Journal Article |
| Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1080/15548627.2019.1687210 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | F. QU ET AL |
| EISSN | 1554-8635 |
| EndPage | 1435 |
| ExternalDocumentID | PMC7480814 31674265 10_1080_15548627_2019_1687210 1687210 |
| Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 0BK 0R~ 23N 30N 4.4 53G 5GY AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB ADHGD AEISY AENEX AEYOC AFRVT AGDLA AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AQTUD AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EMOBN F5P GTTXZ H13 HYE IPNFZ KYCEM LJTGL M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SNACF TASJS TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAYXX CITATION AAGME ABFMO ACDHJ ACZPZ ADOPC ADYSH AURDB BFWEY C1A CGR CUY CVF CWRZV ECM EIF EJD NPM PCLFJ SV3 7X8 5PM |
| ID | FETCH-LOGICAL-c534t-725d6268c12192aa159e731d3a10c34e04cbc1b8fed28b38b12cb0ff346f17d33 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 159 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495311700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1554-8627 1554-8635 |
| IngestDate | Tue Nov 04 02:00:38 EST 2025 Tue Oct 21 14:12:28 EDT 2025 Wed Feb 19 02:23:39 EST 2025 Sat Nov 29 04:05:35 EST 2025 Tue Nov 18 22:23:21 EST 2025 Mon Oct 20 23:49:13 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | nanosonosensitizer sonodynamic therapy mitophagy manipulation Blood brain barrier orthotopic glioma |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c534t-725d6268c12192aa159e731d3a10c34e04cbc1b8fed28b38b12cb0ff346f17d33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/15548627.2019.1687210?needAccess=true |
| PMID | 31674265 |
| PQID | 2311658243 |
| PQPubID | 23479 |
| PageCount | 23 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7480814 proquest_miscellaneous_2311658243 crossref_citationtrail_10_1080_15548627_2019_1687210 informaworld_taylorfrancis_310_1080_15548627_2019_1687210 pubmed_primary_31674265 crossref_primary_10_1080_15548627_2019_1687210 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-02 |
| PublicationDateYYYYMMDD | 2020-08-02 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Autophagy |
| PublicationTitleAlternate | Autophagy |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | cit0033 cit0034 cit0031 cit0032 cit0030 cit0039 cit0037 cit0038 cit0036 cit0022 Sun X (cit0035) 2012; 33 cit0066 cit0023 cit0067 cit0020 cit0064 cit0021 cit0065 cit0062 cit0063 cit0060 cit0061 Lima S (cit0043) 2018; 14 cit0028 cit0029 cit0026 cit0027 cit0024 cit0068 cit0025 cit0011 cit0055 cit0012 cit0056 cit0053 cit0010 cit0054 cit0051 cit0052 cit0050 cit0019 cit0017 cit0018 cit0015 cit0059 cit0016 cit0013 cit0057 cit0014 cit0058 cit0044 cit0001 cit0045 cit0042 cit0040 cit0041 cit0008 cit0009 cit0006 cit0007 cit0004 cit0048 cit0005 cit0049 cit0002 cit0046 cit0003 cit0047 34101540 - Autophagy. 2022 Feb;18(2):470 |
| References_xml | – ident: cit0020 doi: 10.1016/j.tiv.2012.12.023 – ident: cit0028 doi: 10.1038/nature13611 – ident: cit0034 doi: 10.1016/j.jconrel.2010.11.014 – ident: cit0061 doi: 10.1016/j.canlet.2016.11.018 – ident: cit0025 doi: 10.1038/s41556-018-0176-2 – ident: cit0050 doi: 10.1039/C2CS35249D – ident: cit0004 doi: 10.1021/acsnano.6b04268 – ident: cit0049 doi: 10.18632/oncotarget.16400 – ident: cit0007 doi: 10.1021/acs.nanolett.8b01818 – ident: cit0053 doi: 10.1016/j.jconrel.2018.07.048 – ident: cit0063 doi: 10.1007/s10571-015-0166-x – ident: cit0015 doi: 10.3892/ol.2014.2419 – ident: cit0046 doi: 10.1158/2159-8290.CD-14-0049 – ident: cit0019 doi: 10.1016/j.ultrasmedbio.2010.06.022 – ident: cit0031 doi: 10.1159/000493629 – ident: cit0055 doi: 10.1016/j.biopha.2019.01.034 – ident: cit0026 doi: 10.1074/jbc.M117.787739 – ident: cit0008 doi: 10.1038/s41467-018-04529-6 – ident: cit0059 doi: 10.1007/s10103-015-1770-1 – ident: cit0037 doi: 10.1080/09205063.2017.1348739 – ident: cit0060 doi: 10.1038/cddis.2017.133 – ident: cit0047 doi: 10.1021/nn202155y – ident: cit0009 doi: 10.7150/thno.26025 – ident: cit0044 doi: 10.1016/j.ccr.2006.12.013 – ident: cit0012 doi: 10.1117/1.JBO.21.7.078002 – ident: cit0065 doi: 10.1186/s13287-018-1029-4 – ident: cit0017 doi: 10.1021/acsnano.8b00999 – ident: cit0038 doi: 10.1038/ncomms4546 – ident: cit0002 doi: 10.1016/j.jconrel.2017.11.026 – ident: cit0010 doi: 10.1038/d41586-017-05479-7 – ident: cit0036 doi: 10.1248/bpb.b15-00994 – ident: cit0033 doi: 10.1038/ncomms5712 – ident: cit0067 doi: 10.1089/ars.2014.6204 – ident: cit0040 doi: 10.1038/nrd1632 – ident: cit0066 doi: 10.1038/s41467-018-04070-6 – ident: cit0022 doi: 10.4161/auto.6.7.12113 – ident: cit0048 doi: 10.18632/oncotarget.23527 – ident: cit0005 doi: 10.1158/0008-5472.CAN-07-0562 – ident: cit0052 doi: 10.1038/bjc.2013.306 – ident: cit0068 doi: 10.1016/j.canlet.2016.08.019 – ident: cit0039 doi: 10.1016/j.ultsonch.2016.01.038 – ident: cit0016 doi: 10.1016/j.ultsonch.2017.05.013 – ident: cit0057 doi: 10.4161/auto.21211 – ident: cit0041 doi: 10.1166/jnn.2013.7525 – ident: cit0003 doi: 10.1038/nnano.2017.54 – ident: cit0006 doi: 10.1016/j.ccell.2016.05.002 – ident: cit0023 doi: 10.1016/j.bbamem.2007.07.002 – ident: cit0030 doi: 10.1038/onc.2015.455 – ident: cit0011 doi: 10.1016/j.ultrasmedbio.2015.09.004 – ident: cit0042 doi: 10.1080/15548627.2016.1162930 – ident: cit0062 doi: 10.1080/15548627.2015.1056970 – ident: cit0014 doi: 10.1016/j.ultras.2010.12.001 – ident: cit0056 doi: 10.1089/ars.2010.3768 – ident: cit0054 doi: 10.4149/gpb_2014003 – ident: cit0021 doi: 10.1038/nrc.2017.53 – volume: 14 start-page: 942 year: 2018 ident: cit0043 publication-title: Autophagy. – ident: cit0013 doi: 10.1007/s12274-017-1719-8 – ident: cit0051 doi: 10.1039/C8CS00805A – ident: cit0032 doi: 10.1158/1078-0432.CCR-13-3227 – ident: cit0018 doi: 10.1039/C8BM01187G – ident: cit0058 doi: 10.3389/fcell.2016.00069 – ident: cit0064 doi: 10.1016/j.tibs.2010.07.007 – ident: cit0024 doi: 10.1158/0008-5472.CAN-05-0510 – ident: cit0045 doi: 10.1016/j.cell.2011.06.023 – ident: cit0001 doi: 10.1016/S0140-6736(18)30990-5 – ident: cit0027 doi: 10.4161/auto.21211 – ident: cit0029 doi: 10.1038/cddis.2017.463 – volume: 33 start-page: 916 year: 2012 ident: cit0035 publication-title: Biomaterials. – reference: 34101540 - Autophagy. 2022 Feb;18(2):470 |
| SSID | ssj0036892 |
| Score | 2.629881 |
| Snippet | Limited penetration of chemotherapeutic drugs through the blood brain barrier (BBB), and the increased chemo-resistance of glioma cells due to... |
| SourceID | pubmedcentral proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1413 |
| SubjectTerms | Animals Blood brain barrier Brain Neoplasms - pathology Brain Neoplasms - therapy Cell Death - drug effects Cell Line, Tumor Cell Survival - drug effects Chlorophyllides Drug Delivery Systems Endocytosis - drug effects Female Glioma - pathology Glioma - therapy Low Density Lipoprotein Receptor-Related Protein-1 - metabolism Mice Mice, Inbred C57BL Microbubbles Mitochondria - drug effects Mitochondria - metabolism Mitochondria - ultrastructure Mitophagy - drug effects mitophagy manipulation Nanoparticles - chemistry nanosonosensitizer NIH 3T3 Cells orthotopic glioma p38 Mitogen-Activated Protein Kinases - metabolism Particle Size Peptides, Cyclic - metabolism Porphyrins - pharmacology Protein Kinases - metabolism Reactive Oxygen Species - metabolism Research Paper Signal Transduction - drug effects Somatostatin - analogs & derivatives Somatostatin - metabolism sonodynamic therapy Tissue Distribution - drug effects Ubiquitin-Protein Ligases - metabolism Ultrasonic Therapy |
| Title | Manipulation of Mitophagy by "All-in-One" nanosensitizer augments sonodynamic glioma therapy |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15548627.2019.1687210 https://www.ncbi.nlm.nih.gov/pubmed/31674265 https://www.proquest.com/docview/2311658243 https://pubmed.ncbi.nlm.nih.gov/PMC7480814 |
| Volume | 16 |
| WOSCitedRecordID | wos000495311700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 1554-8635 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036892 issn: 1554-8627 databaseCode: TFW dateStart: 20050428 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BBRIXKO-FUpmKq8s69sbOsaq64kALhyL2gBTZjr2NtHXQJosUfj2ePFZdBOoBzslEjj3j-cae-QbgXbTl6Jaco14bQYVLGdUSb-GVFTMXnZJ3XaHwR3lxoRaL7POQTVgPaZUYQ_ueKKLbq9G4tanHjLj36AIjEJeYmJUds1TFKAaj9uj60TQv51_HvZinqmuLjBIURcYanr99Zcc77XCX_gmB_p5IecMzzR_9h3_ah4cDLCUnvR49hjsuPIH7faPK9il8O9ehHDt9kcqT8xIJCfSyJaYlRyerFS0D_RTcEQk6VDVmxTflT7cmerPsiuhIxPVV0QZ9XVqyXJXVtSZ97Vf7DL7Mzy5PP9ChLwO1My4aKpNZEeMgZVnc7hKtIyJykrOCaza1XLipsMYyo7wrEmW4MiyxZuo9F6lnsuD8OeyFKriXQIy0QhXMThWy5BQ2s6mNca1z0mZcezkBMa5HbgfScuydscrZwG06TlyOE5cPEzeB463Y95614zaB7OZi5013XOL73iY5v0X27agZebRNvHDRwVWbOo_YmUWElwg-gRe9pmyHgwwEER3NJiB3dGj7AvJ-7z4J5VXH_y0FtksRr_5hzK_hQYIHB5j7khzAXrPeuDdwz_5oynp9CHflQh12lvQLxesZ5Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELemAYIXxtegbICZePVWx07sPE6IahNteSliD0iW49hdpM5BbYoU_np8-ahaxLQHeE4ucuw73-_su98h9CHYcnBL1hKnM064TSjRAm7hpeGxDU7J2aZQeCymU3l1lW7XwkBaJcTQriWKaPZqMG44jO5T4s7ABwYkLiAzKz2liQxhTAjb78XB1wJ__mz0rd-NWSKbxsggQkCmr-K57TM7_mmHvfRvGPTPVMot3zQ6-B9_9QQ97pApPm9V6Snas_4ZetD2qqyfo-8T7Yu-2RcuHZ4UwEmg5zXOanxyvliQwpMv3p5gr325gsT4qvhll1iv500dHQ7Qvsxrr28Kg-eLorzRuC3_ql-gr6NPs48XpGvNQEzMeEVEFOchFJKGhh0v0jqAIisYzZmmQ8O4HXKTGZpJZ_NIZkxmNDLZ0DnGE0dFztgh2velt68QzoThMqdmKIEoJzepSUwIba0VJmXaiQHi_YIo0_GWQ_uMhaIdvWk_cQomTnUTN0CnG7EfLXHHXQLp9mqrqjkxcW17E8XukH3fq4YK5gl3Ltrbcr1SAT7TAPIizgboZasqm-EACUEASPEAiR0l2rwA1N-7T3xx3VCACw4dU_jrfxjzO_TwYjYZq_Hl9PMRehTBOQKkwkTHaL9aru0bdN_8rIrV8m1jUL8B6bsdJw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6h8lAvvKHL01RcXdaxN3aOFbAC0S49FNEDkuU49hJp61S7WaTw6_HkseoiUA9wTiZy7BnPN_bMNwCvoy1Ht-Qc9SYXVLiUUSPxFl5ZMXHRKXnXFgofydlMnZ1lJ3024apPq8QY2ndEEe1ejcZ9UfghI-4NusAIxCUmZmUHLFUxiolR-_UInVNU8tPp12Ez5qlq-yKjCEWZoYjnb5_Zck9b5KV_gqC_Z1Jeck3TO__hp-7C7R6XksNOke7BNRfuw82uU2XzAL4dm1AOrb5I5clxiYwEZt6QvCH7h4sFLQP9HNw-CSZUK0yLr8ufbknMet5W0ZEI7KuiCea8tGS-KKtzQ7rir-YhfJm-P337gfaNGaidcFFTmUyKGAgpy-J-lxgTIZGTnBXcsLHlwo2FzS3LlXdFonKucpbYfOw9F6lnsuD8EeyEKrg9ILm0QhXMjhXS5BQ2s6mNga1z0mbceDkCMayHtj1rOTbPWGjWk5sOE6dx4nQ_cSM42IhddLQdVwlklxdb1-15ie-am2h-heyrQTN0NE68cTHBVeuVjuCZRYiXCD6Cx52mbIaDFAQRHk1GILd0aPMCEn9vPwnl95YAXArslyKe_MOYX8Ktk3dTffRx9ukp7CZ4iIB5MMkz2KmXa_ccbtgfdblavmjN6Rd2IBvZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manipulation+of+Mitophagy+by+%22All-in-One%22+nanosensitizer+augments+sonodynamic+glioma+therapy&rft.jtitle=Autophagy&rft.au=Qu%2C+Fei&rft.au=Wang%2C+Pan&rft.au=Zhang%2C+Kun&rft.au=Shi%2C+Yin&rft.date=2020-08-02&rft.eissn=1554-8635&rft.volume=16&rft.issue=8&rft.spage=1413&rft_id=info:doi/10.1080%2F15548627.2019.1687210&rft_id=info%3Apmid%2F31674265&rft.externalDocID=31674265 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon |