Resource portfolio planning of make-to-stock products using a constraint programming-based genetic algorithm

The investment on facilities for manufacturing high-tech products requires a large amount of capital. Even though the demands of such products change dramatically, a company is forced to implement some make-to-stock policies apart from a regular make-to-order production, so that the capacity of expe...

Full description

Saved in:
Bibliographic Details
Published in:Omega (Oxford) Vol. 35; no. 2; pp. 237 - 246
Main Authors: Wang, S.M., Chen, J.C., Wang, K.-J.
Format: Journal Article
Language:English
Published: Exeter Elsevier Ltd 01.04.2007
Elsevier
Elsevier Science Publishers
Pergamon Press Inc
Series:Omega
Subjects:
ISSN:0305-0483, 1873-5274
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The investment on facilities for manufacturing high-tech products requires a large amount of capital. Even though the demands of such products change dramatically, a company is forced to implement some make-to-stock policies apart from a regular make-to-order production, so that the capacity of expensive resources can be highly utilized. The inherent characteristics to be considered include finite budget for investing resources, lump demands of customers, long production horizon, many types of products to mix simultaneously, time value of capital and asset, technology innovation of resources, efficient usage of multiple-function machines, and limited capacity of resources. In addition to revenue gained from products and the salvage/assets of resources, a decision maker also needs to consider costs regarding inventory, backorder, and resource acquisition-related costs through procurement, renting, and transfer. This study thus focuses on the following issues: (i) how to decide on resources portfolio regarding the way and timing of acquisting resources, and (ii) how to allocate resources to various orders in each production period. The goal is to maximize the long-term profit. This study formulates the problem as a non-linear mixed integer mathematical programming model. A constraint programming-based genetic algorithm is developed. It has been demonstrated to solve the problem efficiently.
AbstractList The investment on facilities for manufacturing high-tech products requires a large amount of capital. Even though the demands of such products change dramatically, a company is forced to implement some make-to-stock policies apart from a regular make-to-order production, so that the capacity of expensive resources can be highly utilized. The inherent characteristics to be considered include finite budget for investing resources, lump demands of customers, long production horizon, many types of products to mix simultaneously, time value of capital and asset, technology innovation of resources, efficient usage of multiplefunction machines, and limited capacity of resources. In addition to revenue gained from products and the salvage/assets of resources, a decision maker also needs to consider costs regarding inventory, backorder, and resource acquisition-related costs through procurement, renting, and transfer. This study thus focuses on the following issues: (i) how to decide on resources portfolio regarding the way and timing of acquisting resources, and (ii) how to allocate resources to various orders in each production period. The goal is to maximize the long-term profit. This study formulates the problem as a non-linear mixed integer mathematical programming model. A constraint programming-based genetic algorithm is developed. It has been demonstrated to solve the problem efficiently.
The investment on facilities for manufacturing high-tech products requires a large amount of capital. Even though the demands of such products change dramatically, a company is forced to implement some make-to-stock policies apart from a regular make-to-order production, so that the capacity of expensive resources can be highly utilized. The inherent characteristics to be considered include finite budget for investing resources, lump demands of customers, long production horizon, many types of products to mix simultaneously, time value of capital and asset, technology innovation of resources, efficient usage of multiple-function machines, and limited capacity of resources. In addition to revenue gained from products and the salvage/assets of resources, a decision maker also needs to consider costs regarding inventory, backorder, and resource acquisition-related costs through procurement, renting, and transfer. This study thus focuses on the following issues: (i) how to decide on resources portfolio regarding the way and timing of acquisting resources, and (ii) how to allocate resources to various orders in each production period. The goal is to maximize the long-term profit. This study formulates the problem as a non-linear mixed integer mathematical programming model. A constraint programming-based genetic algorithm is developed. It has been demonstrated to solve the problem efficiently.
The investment on facilities for manufacturing high-tech products requires a large amount of capital. Even though the demands of such products change dramatically, a company is forced to implement some make-to-stock policies apart from a regular make-to-order production, so that the capacity of expensive resources can be highly utilized. The inherent characteristics to be considered include finite budget for investing resources, lump demands of customers, long production horizon, many types of products to mix simultaneously, time value of capital and asset, technology innovation of resources, efficient usage of multiplefunction machines, and limited capacity of resources. In addition to revenue gained from products and the salvage/assets of resources, a decision maker also needs to consider costs regarding inventory, backorder, and resource acquisition-related costs through procurement, renting, and transfer. This study thus focuses on the following issues: (i) how to decide on resources portfolio regarding the way and timing of acquisting resources, and (ii) how to allocate resources to various orders in each production period. The goal is to maximize the long-term profit. This study formulates the problem as a non-linear mixed integer mathematical programming model. A constraint programming-based genetic algorithm is developed. It has been demonstrated to solve the problem efficiently. Keywords: Capacity planning; Resource portfolio; Genetic algorithm
The investment on facilities for manufacturing high-tech products requires a large amount of capital. Even though the demands of such products change dramatically, a company is forced to implement some make-to-stock policies apart from a regular make-to-order production, so that the capacity of expensive resources can be highly utilized. The inherent characteristics to be considered include finite budget for investing resources, lump demands of customers, long production horizon, many types of products to mix simultaneously, time value of capital and asset, technology innovation of resources, efficient usage of multiple-function machines, and limited capacity of resources. In addition to revenue gained from products and the salvage/assets of resources, a decision maker also needs to consider costs regarding inventory, backorder, and resource acquisition-related costs through procurement, renting, and transfer. This study thus focuses on the following issues: (i) how to decide on resources portfolio regarding the way and timing of acquisting resources, and (ii) how to allocate resources to various orders in each production period. The goal is to maximize the long-term profit. This study formulates the problem as a non-linear mixed integer mathematical programming model. A constraint programming-based genetic algorithm is developed. It has been demonstrated to solve the problem efficiently. [PUBLICATION ABSTRACT]
Audience Trade
Academic
Author Chen, J.C.
Wang, S.M.
Wang, K.-J.
Author_xml – sequence: 1
  givenname: S.M.
  surname: Wang
  fullname: Wang, S.M.
  organization: Department of Industrial Engineering, Chung-Yuan Christian University, Chung Li 320, Taiwan, ROC
– sequence: 2
  givenname: J.C.
  surname: Chen
  fullname: Chen, J.C.
  organization: Department of Industrial Engineering, Chung-Yuan Christian University, Chung Li 320, Taiwan, ROC
– sequence: 3
  givenname: K.-J.
  surname: Wang
  fullname: Wang, K.-J.
  email: kjwang@mail.ndhu.edu.tw
  organization: Department of Business Administration, National Dong Hwa University, Hualien 974, Taiwan, ROC
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18403147$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeejomega/v_3a35_3ay_3a2007_3ai_3a2_3ap_3a237-246.htm$$DView record in RePEc
BookMark eNp9Ustq3TAQNSWF3qT9gm5MoUu7elnyXXQRQp8ECqVdC1155OjGllxJN5C_77gOWZQQhDRC55x5aOa8OgsxQFW9paSlhMoPxzbOMJqWEdK1RLaE0BfVjvaKNx1T4qzaEU66hoiev6rOcz4SZPSE76rpJ-R4ShbqJabi4uRjvUwmBB_GOrp6NrfQlNjkEu1tvaQ4nGzJ9SmvuKltDLkk40NZsTGZeUagOZgMQz1CgOJtbaYxJl9u5tfVS2emDG8e7EX1-_OnX1dfm-sfX75dXV43tuOsNIo64Hs2qAM_cMmpVJIBN0zY_iCFoUp0bE-cdJZRypztKbWiFxZB6agi_KJ6t_nFnP6cIBd9xBoDhtSMS7FXRHVIajbSaCbQPriIhdg152Qm_F7n8fmSdj3tJKUK-e0TfFwDzN4-Kfi-CRIsYPWS_GzSvQaA479u6TvNDe_wuMeNrVNo_HrFvayWK82E1DdlRmfvH0oy2ZrJJROsz49OaS8Ip2INut94NsWcEzhtfTHFx7C2adKU6HVi9FFvOawTo4nUOA-o5f9pH90_q_q4qQA7euch6Ww9BAuDT2CLHqJ_Vv8XK7Dcfg
CODEN OMEGA6
CitedBy_id crossref_primary_10_1016_j_eswa_2008_01_089
crossref_primary_10_1016_j_renene_2018_03_053
crossref_primary_10_1080_00207540701871051
crossref_primary_10_1155_2013_734151
crossref_primary_10_1080_00207543_2014_904968
crossref_primary_10_1080_13675567_2022_2076818
crossref_primary_10_1016_j_ijpe_2024_109201
crossref_primary_10_1016_j_cie_2020_106603
crossref_primary_10_1016_j_omega_2014_07_003
crossref_primary_10_1016_j_autcon_2011_04_012
crossref_primary_10_1016_j_pursup_2012_11_005
crossref_primary_10_1080_00207543_2012_761361
crossref_primary_10_1108_13598541111171101
crossref_primary_10_1007_s10696_019_09335_w
crossref_primary_10_1016_j_rcim_2010_08_009
crossref_primary_10_1016_j_ijpe_2009_11_034
crossref_primary_10_1016_j_ijpe_2014_03_011
crossref_primary_10_1080_24725854_2018_1490045
crossref_primary_10_1057_jors_2015_110
crossref_primary_10_1016_j_engappai_2018_08_011
crossref_primary_10_1016_j_ijpe_2017_12_002
crossref_primary_10_1016_j_omega_2013_05_004
crossref_primary_10_1016_j_ejor_2020_12_062
crossref_primary_10_1080_00207543_2024_2314712
crossref_primary_10_1016_j_cie_2019_106111
Cites_doi 10.1016/S0377-2217(98)00389-0
10.1080/00137919308903098
10.1109/66.492820
10.1080/0020754031000109152
10.1080/002075400418298
10.1080/002075499190095
10.1080/09537280110121082
10.1016/S0360-8352(96)00303-8
10.1016/0377-2217(94)90405-7
10.1109/17.740030
10.1016/0272-6963(94)00015-7
10.1016/0377-2217(95)00170-0
10.1080/07408179208964234
ContentType Journal Article
Copyright 2005 Elsevier Ltd
2007 INIST-CNRS
COPYRIGHT 2007 Elsevier Science Publishers
Copyright Pergamon Press Inc. Apr 2007
Copyright_xml – notice: 2005 Elsevier Ltd
– notice: 2007 INIST-CNRS
– notice: COPYRIGHT 2007 Elsevier Science Publishers
– notice: Copyright Pergamon Press Inc. Apr 2007
DBID AAYXX
CITATION
IQODW
DKI
X2L
K9.
DOI 10.1016/j.omega.2005.06.001
DatabaseName CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList



ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Business
Applied Sciences
EISSN 1873-5274
EndPage 246
ExternalDocumentID 1159745951
A158156117
eeejomega_v_3a35_3ay_3a2007_3ai_3a2_3ap_3a237_246_htm
18403147
10_1016_j_omega_2005_06_001
S0305048305000861
Genre Feature
GroupedDBID --K
--M
-~X
.~1
0R~
13V
1B1
1OL
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
96U
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABJNI
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACBMB
ACDAQ
ACGFS
ACHQT
ACHRH
ACNCT
ACNTT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFACB
AFAZI
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGQRV
AGUBO
AGUMN
AGYEJ
AHEHV
AHHHB
AHMBA
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BAAKF
BDEBP
BKOJK
BKOMP
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HAMUX
HVGLF
HZ~
IAO
IEA
IGG
IHE
IHR
IOF
IPO
ITC
J1W
KOM
LPU
LXL
LY1
M41
MO0
MS~
N95
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPCBC
SSB
SSD
SSL
SSZ
T5K
TAE
TAF
TN5
U5U
VQA
WUQ
XI7
XPP
XSW
XYO
YNT
ZRQ
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
IPC
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
08R
0R
1
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
LOTEE
LXI
M
MS
NADUK
PQEST
QVA
STF
X
X2L
K9.
ID FETCH-LOGICAL-c532t-71fe392d7b3b36316762e3a24c8b64a1745290f6fc2112fc811c484cb646f1703
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000241089300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0483
IngestDate Sun Nov 30 05:13:40 EST 2025
Sat Nov 29 12:56:10 EST 2025
Mon Nov 24 15:47:58 EST 2025
Wed Aug 18 03:51:22 EDT 2021
Mon Jul 21 09:11:40 EDT 2025
Sat Nov 29 04:12:47 EST 2025
Tue Nov 18 22:36:35 EST 2025
Fri Feb 23 02:30:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Resource portfolio
Genetic algorithm
Capacity planning
Backorder
Procurement
Multiple machine
Make to order
Decision making
Resource allocation
Linear programming
Mixed integer programming
Capital
Long term
Constrained optimization
Innovation
Stock exchange
Budget
Profit
Revenue
Production capacity
Planning
Make to stock
Timing
Investment
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-71fe392d7b3b36316762e3a24c8b64a1745290f6fc2112fc811c484cb646f1703
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 236497075
PQPubID 46729
PageCount 10
ParticipantIDs proquest_journals_236497075
gale_infotracgeneralonefile_A158156117
gale_infotracacademiconefile_A158156117
repec_primary_eeejomega_v_3a35_3ay_3a2007_3ai_3a2_3ap_3a237_246_htm
pascalfrancis_primary_18403147
crossref_citationtrail_10_1016_j_omega_2005_06_001
crossref_primary_10_1016_j_omega_2005_06_001
elsevier_sciencedirect_doi_10_1016_j_omega_2005_06_001
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Exeter
PublicationPlace_xml – name: Exeter
– name: Oxford
PublicationSeriesTitle Omega
PublicationTitle Omega (Oxford)
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Elsevier Science Publishers
Pergamon Press Inc
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Elsevier Science Publishers
– name: Pergamon Press Inc
References Li, Tirupati (bib10) 1995; 12
Haupt, Haupt (bib15) 1998
Mayer (bib8) 1993; 38
Leachman, Carmon (bib2) 1992; 24
Rajagopalan (bib9) 1999; 46
Bard, Srinivasan, Tirupati (bib11) 1999; 37
Wang, Lin (bib13) 2002; 13
Swaminathan (bib6) 2000; 12
Wang, Hou (bib14) 2003; 41
Gen, Cheng (bib16) 2000
Rajagopalan S. Capacity expansion with alternative technology choices. European Journal of Operational Research 1994;392–402.
ILOG
Hung, Wang (bib5) 1997; 32
Tiwari, Vidyarth (bib12) 2000; 38
2005.
Hung, Leachman (bib1) 1996; 9
Bashyam (bib4) 1996; 95
Hsu (bib7) 1998; 29
Li (10.1016/j.omega.2005.06.001_bib10) 1995; 12
Wang (10.1016/j.omega.2005.06.001_bib14) 2003; 41
10.1016/j.omega.2005.06.001_bib3
Haupt (10.1016/j.omega.2005.06.001_bib15) 1998
Bashyam (10.1016/j.omega.2005.06.001_bib4) 1996; 95
Gen (10.1016/j.omega.2005.06.001_bib16) 2000
Leachman (10.1016/j.omega.2005.06.001_bib2) 1992; 24
Swaminathan (10.1016/j.omega.2005.06.001_bib6) 2000; 12
Tiwari (10.1016/j.omega.2005.06.001_bib12) 2000; 38
Hsu (10.1016/j.omega.2005.06.001_bib7) 1998; 29
Mayer (10.1016/j.omega.2005.06.001_bib8) 1993; 38
10.1016/j.omega.2005.06.001_bib17
Bard (10.1016/j.omega.2005.06.001_bib11) 1999; 37
Rajagopalan (10.1016/j.omega.2005.06.001_bib9) 1999; 46
Hung (10.1016/j.omega.2005.06.001_bib1) 1996; 9
Wang (10.1016/j.omega.2005.06.001_bib13) 2002; 13
Hung (10.1016/j.omega.2005.06.001_bib5) 1997; 32
References_xml – year: 1998
  ident: bib15
  article-title: Practical genetic algorithms
– volume: 29
  start-page: 23
  year: 1998
  end-page: 27
  ident: bib7
  article-title: Equipment replacement policy—a survey
  publication-title: Journal of Production and Inventory Management
– volume: 37
  start-page: 3359
  year: 1999
  end-page: 3382
  ident: bib11
  article-title: An optimization approach to capacity expansion in semiconductor manufacturing facilities
  publication-title: International Journal of Production Research
– volume: 32
  start-page: 281
  year: 1997
  end-page: 297
  ident: bib5
  article-title: A new formulation technique for alternative material planning—an approach for semiconductor bin allocation planning
  publication-title: Computer and Industrial Engineering
– reference: Rajagopalan S. Capacity expansion with alternative technology choices. European Journal of Operational Research 1994;392–402.
– volume: 9
  start-page: 257
  year: 1996
  end-page: 269
  ident: bib1
  article-title: A production planning methodology for semiconductor manufacturing based on interactive simulation and linear programming calculations
  publication-title: IEEE Transactions on Semiconductor Manufacturing
– reference: ILOG,
– reference: ; 2005.
– volume: 46
  start-page: 14
  year: 1999
  end-page: 25
  ident: bib9
  article-title: Adoption timing of new equipment with another innovation anticipated
  publication-title: IEEE Transactions on Engineering Management
– volume: 95
  start-page: 89
  year: 1996
  end-page: 114
  ident: bib4
  article-title: Competitive capacity expansion under demand uncertainty
  publication-title: European Journal of Operational Research
– volume: 41
  start-page: 3217
  year: 2003
  end-page: 3235
  ident: bib14
  article-title: Modeling and resolving the joint problem of capacity expansion and allocation with multiple resources and limited budget in semiconductor testing industry
  publication-title: International Journal of Production Research
– volume: 24
  start-page: 62
  year: 1992
  end-page: 72
  ident: bib2
  article-title: On capacity modeling for production planning with alternative machines
  publication-title: IIE Transactions
– volume: 12
  start-page: 545
  year: 2000
  end-page: 558
  ident: bib6
  article-title: Tool capacity planning for semiconductor fabrication facilities under demand uncertainty
  publication-title: European Journal of Operational Research
– volume: 38
  start-page: 209
  year: 1993
  end-page: 222
  ident: bib8
  article-title: Market obsolescence and strategic replacement models
  publication-title: The Engineering Economist
– volume: 12
  start-page: 239
  year: 1995
  end-page: 258
  ident: bib10
  article-title: Technology choice with stochastic demands and dynamic capacity allocation: a two-product analysis
  publication-title: Journal of Operations Management
– volume: 13
  start-page: 429
  year: 2002
  end-page: 437
  ident: bib13
  article-title: Capacity expansion and allocation for a semiconductor testing facility with a constrained budget
  publication-title: Production Planning and Control
– year: 2000
  ident: bib16
  article-title: Genetic algorithms and engineering optimization
– volume: 38
  start-page: 3357
  year: 2000
  end-page: 3384
  ident: bib12
  article-title: Solving machine loading problems in a flexible manufacturing system using a genetic algorithm based heuristic approach
  publication-title: International Journal of Production Research
– ident: 10.1016/j.omega.2005.06.001_bib17
– volume: 12
  start-page: 545
  year: 2000
  ident: 10.1016/j.omega.2005.06.001_bib6
  article-title: Tool capacity planning for semiconductor fabrication facilities under demand uncertainty
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(98)00389-0
– volume: 38
  start-page: 209
  year: 1993
  ident: 10.1016/j.omega.2005.06.001_bib8
  article-title: Market obsolescence and strategic replacement models
  publication-title: The Engineering Economist
  doi: 10.1080/00137919308903098
– volume: 9
  start-page: 257
  issue: 2
  year: 1996
  ident: 10.1016/j.omega.2005.06.001_bib1
  article-title: A production planning methodology for semiconductor manufacturing based on interactive simulation and linear programming calculations
  publication-title: IEEE Transactions on Semiconductor Manufacturing
  doi: 10.1109/66.492820
– volume: 41
  start-page: 3217
  issue: 14
  year: 2003
  ident: 10.1016/j.omega.2005.06.001_bib14
  article-title: Modeling and resolving the joint problem of capacity expansion and allocation with multiple resources and limited budget in semiconductor testing industry
  publication-title: International Journal of Production Research
  doi: 10.1080/0020754031000109152
– volume: 38
  start-page: 3357
  issue: 14
  year: 2000
  ident: 10.1016/j.omega.2005.06.001_bib12
  article-title: Solving machine loading problems in a flexible manufacturing system using a genetic algorithm based heuristic approach
  publication-title: International Journal of Production Research
  doi: 10.1080/002075400418298
– volume: 37
  start-page: 3359
  issue: 15
  year: 1999
  ident: 10.1016/j.omega.2005.06.001_bib11
  article-title: An optimization approach to capacity expansion in semiconductor manufacturing facilities
  publication-title: International Journal of Production Research
  doi: 10.1080/002075499190095
– year: 2000
  ident: 10.1016/j.omega.2005.06.001_bib16
– volume: 13
  start-page: 429
  issue: 5
  year: 2002
  ident: 10.1016/j.omega.2005.06.001_bib13
  article-title: Capacity expansion and allocation for a semiconductor testing facility with a constrained budget
  publication-title: Production Planning and Control
  doi: 10.1080/09537280110121082
– volume: 29
  start-page: 23
  issue: 4
  year: 1998
  ident: 10.1016/j.omega.2005.06.001_bib7
  article-title: Equipment replacement policy—a survey
  publication-title: Journal of Production and Inventory Management
– volume: 32
  start-page: 281
  issue: 2
  year: 1997
  ident: 10.1016/j.omega.2005.06.001_bib5
  article-title: A new formulation technique for alternative material planning—an approach for semiconductor bin allocation planning
  publication-title: Computer and Industrial Engineering
  doi: 10.1016/S0360-8352(96)00303-8
– ident: 10.1016/j.omega.2005.06.001_bib3
  doi: 10.1016/0377-2217(94)90405-7
– volume: 46
  start-page: 14
  issue: 1
  year: 1999
  ident: 10.1016/j.omega.2005.06.001_bib9
  article-title: Adoption timing of new equipment with another innovation anticipated
  publication-title: IEEE Transactions on Engineering Management
  doi: 10.1109/17.740030
– volume: 12
  start-page: 239
  year: 1995
  ident: 10.1016/j.omega.2005.06.001_bib10
  article-title: Technology choice with stochastic demands and dynamic capacity allocation: a two-product analysis
  publication-title: Journal of Operations Management
  doi: 10.1016/0272-6963(94)00015-7
– volume: 95
  start-page: 89
  issue: 1
  year: 1996
  ident: 10.1016/j.omega.2005.06.001_bib4
  article-title: Competitive capacity expansion under demand uncertainty
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(95)00170-0
– volume: 24
  start-page: 62
  issue: 4
  year: 1992
  ident: 10.1016/j.omega.2005.06.001_bib2
  article-title: On capacity modeling for production planning with alternative machines
  publication-title: IIE Transactions
  doi: 10.1080/07408179208964234
– year: 1998
  ident: 10.1016/j.omega.2005.06.001_bib15
SSID ssj0001803
Score 1.9873587
Snippet The investment on facilities for manufacturing high-tech products requires a large amount of capital. Even though the demands of such products change...
SourceID proquest
gale
repec
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 237
SubjectTerms Applied sciences
Capacity planning
Capacity planning Resource portfolio Genetic algorithm
Capital assets
Decision theory. Utility theory
Exact sciences and technology
Genetic algorithm
Genetic algorithms
High technology
Inventory control
Management
Manufacturing
Materials handling
Mathematical programming
Operational research and scientific management
Operational research. Management science
Portfolio theory
Resource portfolio
Studies
Title Resource portfolio planning of make-to-stock products using a constraint programming-based genetic algorithm
URI https://dx.doi.org/10.1016/j.omega.2005.06.001
http://econpapers.repec.org/article/eeejomega/v_3a35_3ay_3a2007_3ai_3a2_3ap_3a237-246.htm
https://www.proquest.com/docview/236497075
Volume 35
WOSCitedRecordID wos000241089300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001803
  issn: 0305-0483
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGixAS4jKGKIPJDwgeRqo6aXN5rKqhMaSBxBB7sxzX7tq1TdVmVfn3nONL2lIY8MBDkyhxWqfns88lx98h5HWmQhErTG7VOTgoWvcDIaQIkCkF-Z9YrPum2ERyfp5eXmaf9_ZWfi3McpxMp-lqlc3-q6jhHAgbl87-g7irL4UTcAxChy2IHbZ_JXgfkD9Gy1oX42GBpaJNZSLzMl1cq6AsAjD65DWmZyHh6-L4xsQMBGahL0zZiNKnbk3gQoDKro_llpUheB0PivmwvJpsmrafJmogDHvpyibMVyGGb127MOpLcx177Z2emASDs-Y6TuvbfWwGZ1vRiGQjicWEyJw-35jFIswObNtqNX7KtQwlDlrh5vxpGWCcKg5tdHJnlrcBh1GzwAdzcTHzTmmt1PyL_J90XZWBiI5txNrJHVIPk06W1ki9--Hk8qzS4ixt2dLarvuescrkBu788O-sGqfmH8zEAoactrVStpyZ-lzNlNywaS4ek4fOGaFdC6InZE9N98kj55hQN-0v9sk9vzziKRl7eNEKXtTDixaabsGLenhRAy8q6BpedAde1MGLVvA6IF_fn1z0TgNXsSOQnSgsg4RpBQZ3P8mjPIqRZCEOVSTCtkzzuC3A--2EWUvHWoZg52uZMibbaVvCxVgzUD7PSG1aTNVzQsNWzvqtDCxgHYFJz_I--PoqT2WSsUxErEFC_49z6ejssf9j7vMWR9yICQutdrjN3myQd9VNM8vmcnvz2IuSO4PUGpockHj7jW9R8BxRC52Swq11gUdDujXeZR1kaWIsaZA3Wy0Hlmz-Vw2PtkC07r9DcoMcelRxNx0tOJaHyBJwCxqkZ4BW3aaUGtl-L3kkog5svsMHxzTshngInxnuo4TDSORX5eTFnzpxSO6vZ4WXpFbOb9Qrclcuy-FifuTG2A8Gou81
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+portfolio+planning+of+make-to-stock+products+using+a+constraint+programming-based+genetic+algorithm&rft.jtitle=Omega+%28Oxford%29&rft.au=WANG%2C+S.+M&rft.au=CHEN%2C+J.+C&rft.au=WANG%2C+K.-J&rft.date=2007-04-01&rft.pub=Elsevier&rft.issn=0305-0483&rft.volume=35&rft.issue=2&rft.spage=237&rft.epage=246&rft_id=info:doi/10.1016%2Fj.omega.2005.06.001&rft.externalDBID=n%2Fa&rft.externalDocID=18403147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0483&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0483&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0483&client=summon