MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data
[Display omitted] Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approa...
Saved in:
| Published in: | Computational and structural biotechnology journal Vol. 19; pp. 4404 - 4411 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2021
Research Network of Computational and Structural Biotechnology Elsevier |
| Subjects: | |
| ISSN: | 2001-0370, 2001-0370 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)–based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients’ data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics. |
|---|---|
| AbstractList | Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)–based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients’ data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics. [Display omitted] Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)–based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients’ data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics. Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)-based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients' data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics.Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)-based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients' data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics. |
| Author | Gao, Xin Thafar, Maha A. Albaradei, Somayah Napolitano, Francesco Gojobori, Takashi Essack, Magbubah |
| Author_xml | – sequence: 1 givenname: Somayah surname: Albaradei fullname: Albaradei, Somayah organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia – sequence: 2 givenname: Francesco orcidid: 0000-0002-7782-8506 surname: Napolitano fullname: Napolitano, Francesco organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia – sequence: 3 givenname: Maha A. orcidid: 0000-0003-0539-7361 surname: Thafar fullname: Thafar, Maha A. organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia – sequence: 4 givenname: Takashi orcidid: 0000-0001-7850-1743 surname: Gojobori fullname: Gojobori, Takashi organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia – sequence: 5 givenname: Magbubah orcidid: 0000-0003-2709-5356 surname: Essack fullname: Essack, Magbubah email: magbubah.essack@kaust.edu.sa organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia – sequence: 6 givenname: Xin orcidid: 0000-0002-7108-3574 surname: Gao fullname: Gao, Xin email: xin.gao@kaust.edu.sa organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia |
| BookMark | eNqFkk-L3SAUxaVM6Uyn8wW6yrKbpBqj0VIKw6N_BqZ00e7F6M2rwcRUzYP59vXNG0qni6kIyvX8DhfveYnOlrAAQq8Jbggm_O3UmDRMTYtb0mDRYMyfoYsWY1Jj2uOzv-7n6CqlCZclCJcUv0DntOtaKRi_QO4rZL3Ti4H4rrquLMBaedBxccu-HnQCW616qc29opqLOJXtUrVGsM5kF5ZqDhZ8QQ_gw1qALRW4mjefXR1mZ1Jlddav0PNR-wRXD-cl-v7p44_dl_r22-eb3fVtbRgluR74AB0dejnCyI0ZicAStwPDfUcFlAJmjI5gB2m1MCNnPZUtNpRoY7Shl-jm5GqDntQa3azjnQraqftCiHulY3bGgyKMcsaKo-BDJ6EXlvVdMaZS0l4zXbw-nLzWbZjBGlhy1P6R6eOXxf1U-3BQgnIhRV8M3jwYxPBrg5TV7JIB7_UCYUuq5ZT3XHDa_V_KeNeJvmWySNuT1MSQUoTxT0cEq2M21KSO2VDHbCgsVMlGgcQ_kHFZH8dXOnf-afT9CYUytYODqJJxUPJgXQSTy8e6p_Df42LXWw |
| CitedBy_id | crossref_primary_10_1007_s12032_024_02579_z crossref_primary_10_1002_cpe_7206 crossref_primary_10_1142_S0219519425400792 crossref_primary_10_1360_SSV_2023_0297 crossref_primary_10_1016_j_pan_2025_06_017 crossref_primary_10_1073_pnas_2415071122 crossref_primary_10_1093_bib_bbad411 crossref_primary_10_3390_mca29040059 crossref_primary_10_1038_s41746_025_01471_y crossref_primary_10_1186_s13072_025_00595_5 crossref_primary_10_3389_fgene_2023_1139626 crossref_primary_10_1016_j_nexres_2025_100179 crossref_primary_10_1093_bib_bbab569 crossref_primary_10_1093_bib_bbab523 crossref_primary_10_3389_fmolb_2022_913602 crossref_primary_10_3390_biomedicines9111733 crossref_primary_10_1093_bib_bbad304 crossref_primary_10_1016_j_cytogfr_2025_06_001 crossref_primary_10_1109_TCE_2025_3565962 crossref_primary_10_1007_s13721_024_00441_w crossref_primary_10_1186_s13059_024_03293_9 crossref_primary_10_3389_fgene_2021_771092 crossref_primary_10_1002_iub_2693 crossref_primary_10_1038_s41598_023_47805_2 crossref_primary_10_1016_j_compbiomed_2024_109302 crossref_primary_10_2217_fon_2023_0070 crossref_primary_10_24054_rcta_v1i45_3751 crossref_primary_10_1016_j_csbj_2023_03_046 crossref_primary_10_1186_s13040_024_00391_z crossref_primary_10_4236_health_2025_173012 crossref_primary_10_1016_j_semcancer_2023_02_009 crossref_primary_10_1016_j_imu_2025_101679 crossref_primary_10_1038_s41598_025_07813_w crossref_primary_10_1007_s13205_024_04107_2 crossref_primary_10_3389_fonc_2022_998222 crossref_primary_10_1016_j_csbj_2021_09_001 crossref_primary_10_1109_ACCESS_2024_3394030 crossref_primary_10_1109_JBHI_2023_3284794 |
| Cites_doi | 10.1098/rsif.2017.0387 10.1177/117693510600200030 10.1186/s12864-017-3604-y 10.1007/978-1-60761-987-1_18 10.1038/s41598-020-65119-5 10.1007/s12559-020-09773-x 10.1587/transinf.E96.D.1513 10.1371/journal.pcbi.1006701 10.1007/978-1-60761-232-2_6 10.3390/genes10110865 10.1093/nar/gkv1507 10.1038/s41598-019-52134-4 10.1093/nar/gky1079 10.1007/3-540-49430-8_3 10.1016/j.apsb.2015.07.005 10.1038/nature23306 10.3389/fgene.2017.00084 10.1093/nar/29.1.239 10.1007/s11033-019-05025-w 10.3892/ijmm.2017.3126 10.18632/oncotarget.26386 10.1534/g3.118.200391 10.1016/j.ccell.2020.08.002 10.1038/s41598-017-17330-0 10.1038/nrc.2016.25 10.1158/1078-0432.CCR-17-0853 10.1038/s41598-018-19333-x 10.1155/2017/9474532 10.1561/9781601982957 10.1093/bioinformatics/btq675 10.1016/j.csbj.2014.11.005 10.1038/ng1060 10.1016/j.tranon.2017.12.002 10.3389/fonc.2020.00423 10.1080/01621459.2017.1285773 10.3322/caac.21492 |
| ContentType | Journal Article |
| Copyright | 2021 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2021 |
| Copyright_xml | – notice: 2021 – notice: 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. – notice: 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1016/j.csbj.2021.08.006 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2001-0370 |
| EndPage | 4411 |
| ExternalDocumentID | oai_doaj_org_article_153655ccf86b49e78d574edb39937a5a PMC8368987 10_1016_j_csbj_2021_08_006 S2001037021003378 |
| GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c531t-b6be43b79fef6ccf180902b507438eccf0553fedb9da8cf6573920c31accac3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694715800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2001-0370 |
| IngestDate | Fri Oct 03 12:45:30 EDT 2025 Tue Nov 04 01:59:06 EST 2025 Fri Jul 11 10:38:20 EDT 2025 Tue Sep 30 20:55:15 EDT 2025 Sat Nov 29 05:55:09 EST 2025 Tue Nov 18 22:35:42 EST 2025 Sat Aug 31 16:00:59 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Pan-cancer Autoencoder Machine learning Metastasis Clinical decision support Multi-omics Cancer |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-b6be43b79fef6ccf180902b507438eccf0553fedb9da8cf6573920c31accac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7850-1743 0000-0003-2709-5356 0000-0002-7108-3574 0000-0003-0539-7361 0000-0002-7782-8506 |
| OpenAccessLink | https://doaj.org/article/153655ccf86b49e78d574edb39937a5a |
| PMID | 34429856 |
| PQID | 2564487259 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_153655ccf86b49e78d574edb39937a5a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8368987 proquest_miscellaneous_2636768634 proquest_miscellaneous_2564487259 crossref_primary_10_1016_j_csbj_2021_08_006 crossref_citationtrail_10_1016_j_csbj_2021_08_006 elsevier_sciencedirect_doi_10_1016_j_csbj_2021_08_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computational and structural biotechnology journal |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Research Network of Computational and Structural Biotechnology Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Research Network of Computational and Structural Biotechnology – name: Elsevier |
| References | Behring, Shrestha, Manne, Cui, Gonzalez-Reymundez, Grueneberg (b0090) 2018; 9 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0175) 2014; 15 Karabulut EM, Ibrikci T. Discriminative deep belief networks for microarray based cancer classification. (2017). Lee, Quinn, Nguyen, Venkatesh, Quinn (b0215) 2019; 46 Kingma DP, Welling M Auto-encoding variational bayes. arXiv [stat.ML] (2013). Bernal Rubio YL, et al. Whole-genome multi-omic study of survival in patients with glioblastoma multiforme. G3 2018:8;3627–3636, doi:10.1534/g3.118.200391. Oughtred R, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res, 2019;47:D529-D541, doi:10.1093/nar/gky1079. Kohl, Wiese, Warscheid (b0195) 2011; 696 Bhalla, Kaur, Dhall, Raghava (b0115) 2019; 9 Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (b0025) 2018; 68 Ching, Himmelstein, Beaulieu-Jones, Kalinin, Do, Way (b0210) 2018; 15 Yu, Liu (b0225) 2003 Wei (b0040) 2018; 17 Pedregosa (b0205) 2011; 12 Li, Sun, Yu, Cui, Lou, Zhang (b0020) 2020; 38 Ramaswamy, Ross, Lander, Golub (b0015) 2003; 33 Chaudhary, Poirion, Lu, Garmire (b0135) 2018; 24 Bengio, Y. Learning Deep Architectures for AI. doi:10.1561/9781601982957 (2009). Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (b0240) 2015; 13 Smoot, Ono, Ruscheinski, Wang, Ideker (b0200) 2011; 27 Cruz JA, Wishart, DS, Applications of machine learning in cancer prediction and prognosis. Cancer Inf, 2006;2, 117693510600200, doi:10.1177/117693510600200030. Chereda, Bleckmann, Kramer, Leha, Beissbarth (b0050) 2019; 267 Gress DM et al. Principles of cancer staging. AJCC Cancer Staging Manual 8, 3-30 (2017). Zhao, Yu, Wang (b0065) 2018; 11 Mounir (b0130) 2019; 15 Haynes, Tomczak, Khatri (b0230) 2018; 8 Robinson, Wu, Lonigro, Vats, Cobain, Everett (b0005) 2017; 548 de Anda-Jáuregui, Hernández-Lemus (b0085) 2020; 10 Huang, Chaudhary, Garmire (b0110) 2017; 8 Ahsen, Boren, Singh, Misganaw, Mutch, Moore (b0060) 2017; 18 Prasad TSK, Keshava Prasad TS, Kandasamy K, Pandey A. Human protein reference database and human proteinpedia as discovery tools for systems biology. Methods Mol Biol, 2009;67-79, doi:10.1007/978-1-60761-232-2_6. Blei, Kucukelbir, McAuliffe (b0155) 2017; 112 Albaradei S, Thafar M, Van Neste C, Essack M, Bajic VB, in Proceedings of the 2019 6th International Conference on Bioinformatics Research and Applications 125-130 (Association for Computing Machinery, 2019). Chollet F, et al., Keras: The Python Deep Learning library. Astrophysics Source Code Library, ascl:1806.1022 (2018). Colaprico A et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71, doi:10.1093/nar/gkv1507. Steeg (b0105) 2016; 16 Mahmud, Kaiser, McGinnity, Hussain (b0170) 2021; 13 Hernández-Lemus, Reyes-Gopar, Espinal-Enríquez, Ochoa (b0080) 2019; 10 González-Reymúndez, Vázquez (b0100) 2020; 10 Wu, Xiao, Xia, Yang, Li, Shao (b0055) 2017; 2017 Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G. Impute: impute: Imputation for microarray data. R package version 1.54. 0. (2018). Metri, Mohan, Nsengimana, Pozniak, Molina-Paris, Newton-Bishop (b0035) 2017; 7 Jitkrittum W, Hachiya H, Sugiyama M. Feature selection via l1-penalized squared-loss mutual information. IEICE Trans Inf Syst, 2013;E96.D:1513–1524, doi:10.1587/transinf.e96.d.1513. He, Ma, Ye (b0030) 2017; 40 Guan (b0010) 2015; 5 Prechelt (b0165) 1998; 55–69 Tuo, An, Zhang (b0045) 2018; 17 Xenarios (b0190) 2001; 29 10.1016/j.csbj.2021.08.006_b0145 Zhao (10.1016/j.csbj.2021.08.006_b0065) 2018; 11 Srivastava (10.1016/j.csbj.2021.08.006_b0175) 2014; 15 10.1016/j.csbj.2021.08.006_b0125 Ahsen (10.1016/j.csbj.2021.08.006_b0060) 2017; 18 Huang (10.1016/j.csbj.2021.08.006_b0110) 2017; 8 Yu (10.1016/j.csbj.2021.08.006_b0225) 2003 Metri (10.1016/j.csbj.2021.08.006_b0035) 2017; 7 Xenarios (10.1016/j.csbj.2021.08.006_b0190) 2001; 29 He (10.1016/j.csbj.2021.08.006_b0030) 2017; 40 Chereda (10.1016/j.csbj.2021.08.006_b0050) 2019; 267 Bhalla (10.1016/j.csbj.2021.08.006_b0115) 2019; 9 Hernández-Lemus (10.1016/j.csbj.2021.08.006_b0080) 2019; 10 Robinson (10.1016/j.csbj.2021.08.006_b0005) 2017; 548 Smoot (10.1016/j.csbj.2021.08.006_b0200) 2011; 27 Haynes (10.1016/j.csbj.2021.08.006_b0230) 2018; 8 Guan (10.1016/j.csbj.2021.08.006_b0010) 2015; 5 Blei (10.1016/j.csbj.2021.08.006_b0155) 2017; 112 10.1016/j.csbj.2021.08.006_b0180 González-Reymúndez (10.1016/j.csbj.2021.08.006_b0100) 2020; 10 10.1016/j.csbj.2021.08.006_b0160 10.1016/j.csbj.2021.08.006_b0140 10.1016/j.csbj.2021.08.006_b0185 10.1016/j.csbj.2021.08.006_b0120 Mounir (10.1016/j.csbj.2021.08.006_b0130) 2019; 15 10.1016/j.csbj.2021.08.006_b0220 Wu (10.1016/j.csbj.2021.08.006_b0055) 2017; 2017 Prechelt (10.1016/j.csbj.2021.08.006_b0165) 1998; 55–69 Mahmud (10.1016/j.csbj.2021.08.006_b0170) 2021; 13 Lee (10.1016/j.csbj.2021.08.006_b0215) 2019; 46 10.1016/j.csbj.2021.08.006_b0235 Li (10.1016/j.csbj.2021.08.006_b0020) 2020; 38 Kohl (10.1016/j.csbj.2021.08.006_b0195) 2011; 696 Wei (10.1016/j.csbj.2021.08.006_b0040) 2018; 17 Steeg (10.1016/j.csbj.2021.08.006_b0105) 2016; 16 Ramaswamy (10.1016/j.csbj.2021.08.006_b0015) 2003; 33 Ching (10.1016/j.csbj.2021.08.006_b0210) 2018; 15 Tuo (10.1016/j.csbj.2021.08.006_b0045) 2018; 17 de Anda-Jáuregui (10.1016/j.csbj.2021.08.006_b0085) 2020; 10 Pedregosa (10.1016/j.csbj.2021.08.006_b0205) 2011; 12 Chaudhary (10.1016/j.csbj.2021.08.006_b0135) 2018; 24 10.1016/j.csbj.2021.08.006_b0070 10.1016/j.csbj.2021.08.006_b0095 10.1016/j.csbj.2021.08.006_b0150 Behring (10.1016/j.csbj.2021.08.006_b0090) 2018; 9 10.1016/j.csbj.2021.08.006_b0075 Bray (10.1016/j.csbj.2021.08.006_b0025) 2018; 68 Kourou (10.1016/j.csbj.2021.08.006_b0240) 2015; 13 |
| References_xml | – volume: 13 start-page: 1 year: 2021 end-page: 33 ident: b0170 article-title: Deep learning in mining biological data publication-title: Cogn Comput – reference: Oughtred R, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res, 2019;47:D529-D541, doi:10.1093/nar/gky1079. – reference: Colaprico A et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71, doi:10.1093/nar/gkv1507. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0205 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – reference: Cruz JA, Wishart, DS, Applications of machine learning in cancer prediction and prognosis. Cancer Inf, 2006;2, 117693510600200, doi:10.1177/117693510600200030. – volume: 15 start-page: 20170387 year: 2018 ident: b0210 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface – volume: 5 start-page: 402 year: 2015 end-page: 418 ident: b0010 article-title: Cancer metastases: challenges and opportunities publication-title: Acta Pharm Sinica B – volume: 29 start-page: 239 year: 2001 end-page: 241 ident: b0190 article-title: DIP: The Database of Interacting Proteins: 2001 update publication-title: Nucleic Acids Res – year: 2003 ident: b0225 article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution publication-title: Proceedings of the 20th international conference – volume: 27 start-page: 431 year: 2011 end-page: 432 ident: b0200 article-title: Cytoscape 2.8 publication-title: Bioinformatics – volume: 8 start-page: 84 year: 2017 ident: b0110 article-title: More is better: recent progress in multi-omics data integration methods publication-title: Front Genet – volume: 548 start-page: 297 year: 2017 end-page: 303 ident: b0005 article-title: Integrative clinical genomics of metastatic cancer publication-title: Nature – volume: 15 year: 2019 ident: b0130 article-title: New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx publication-title: PLoS Comput Biol – volume: 24 start-page: 1248 year: 2018 end-page: 1259 ident: b0135 article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin Cancer Res – volume: 7 year: 2017 ident: b0035 article-title: Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach publication-title: Sci Rep – volume: 17 start-page: 4281 year: 2018 end-page: 4290 ident: b0045 article-title: Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods publication-title: Mol Med Rep – volume: 9 start-page: 36836 year: 2018 end-page: 36848 ident: b0090 article-title: Integrated landscape of copy number variation and RNA expression associated with nodal metastasis in invasive ductal breast carcinoma publication-title: Oncotarget – reference: Kingma DP, Welling M Auto-encoding variational bayes. arXiv [stat.ML] (2013). – volume: 55–69 year: 1998 ident: b0165 article-title: Early stopping - but when? publication-title: Lect Notes Comput Sci – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: b0025 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – reference: Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G. Impute: impute: Imputation for microarray data. R package version 1.54. 0. (2018). – reference: Bengio, Y. Learning Deep Architectures for AI. doi:10.1561/9781601982957 (2009). – volume: 33 start-page: 49 year: 2003 end-page: 54 ident: b0015 article-title: A molecular signature of metastasis in primary solid tumors publication-title: Nat Genet – volume: 40 start-page: 1357 year: 2017 end-page: 1364 ident: b0030 article-title: A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy publication-title: Int J Mol Med – volume: 18 year: 2017 ident: b0060 article-title: Sparse feature selection for classification and prediction of metastasis in endometrial cancer publication-title: BMC Genomics – volume: 9 start-page: 15790 year: 2019 ident: b0115 article-title: Prediction and analysis of skin cancer progression using genomics profiles of patients publication-title: Sci Rep – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: b0175 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – reference: Prasad TSK, Keshava Prasad TS, Kandasamy K, Pandey A. Human protein reference database and human proteinpedia as discovery tools for systems biology. Methods Mol Biol, 2009;67-79, doi:10.1007/978-1-60761-232-2_6. – volume: 13 start-page: 8 year: 2015 end-page: 17 ident: b0240 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput Struct Biotechnol J – volume: 112 start-page: 859 year: 2017 end-page: 877 ident: b0155 article-title: Variational inference: A review for statisticians publication-title: J Am Stat Assoc – volume: 267 start-page: 181 year: 2019 end-page: 186 ident: b0050 article-title: Utilizing molecular network information via graph convolutional neural networks to predict metastatic event in breast cancer publication-title: Stud Health Technol Inform – volume: 38 start-page: 734 year: 2020 end-page: 747.e9 ident: b0020 article-title: Integrated omics of metastatic colorectal cancer publication-title: Cancer Cell – reference: Albaradei S, Thafar M, Van Neste C, Essack M, Bajic VB, in Proceedings of the 2019 6th International Conference on Bioinformatics Research and Applications 125-130 (Association for Computing Machinery, 2019). – volume: 10 start-page: 423 year: 2020 ident: b0085 article-title: Computational oncology in the multi-omics era: state of the art publication-title: Front Oncol – volume: 46 start-page: 5919 year: 2019 end-page: 5930 ident: b0215 article-title: A cross-cancer metastasis signature in the microRNA-mRNA axis of paired tissue samples publication-title: Mol Biol Rep – reference: Karabulut EM, Ibrikci T. Discriminative deep belief networks for microarray based cancer classification. (2017). – reference: Gress DM et al. Principles of cancer staging. AJCC Cancer Staging Manual 8, 3-30 (2017). – volume: 11 start-page: 157 year: 2018 end-page: 167 ident: b0065 article-title: Machine learning based prediction of brain metastasis of patients with IIIA-N2 lung adenocarcinoma by a three-miRNA signature publication-title: Transl Oncol – volume: 696 start-page: 291 year: 2011 end-page: 303 ident: b0195 article-title: Cytoscape: software for visualization and analysis of biological networks publication-title: Methods Mol Biol – reference: Jitkrittum W, Hachiya H, Sugiyama M. Feature selection via l1-penalized squared-loss mutual information. IEICE Trans Inf Syst, 2013;E96.D:1513–1524, doi:10.1587/transinf.e96.d.1513. – volume: 10 start-page: 865 year: 2019 ident: b0080 article-title: The many faces of gene regulation in cancer: a computational oncogenomics outlook publication-title: Genes – reference: Chollet F, et al., Keras: The Python Deep Learning library. Astrophysics Source Code Library, ascl:1806.1022 (2018). – volume: 2017 start-page: 1 year: 2017 end-page: 7 ident: b0055 article-title: Identification of biomarkers for predicting lymph node metastasis of stomach cancer using clinical DNA methylation data publication-title: Dis Markers – reference: Bernal Rubio YL, et al. Whole-genome multi-omic study of survival in patients with glioblastoma multiforme. G3 2018:8;3627–3636, doi:10.1534/g3.118.200391. – volume: 10 start-page: 8341 year: 2020 ident: b0100 article-title: Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin publication-title: Sci Rep – volume: 17 start-page: 2907 year: 2018 end-page: 2914 ident: b0040 article-title: A multigene support vector machine predictor for metastasis of cutaneous melanoma publication-title: Mol Med Rep – volume: 16 start-page: 201 year: 2016 end-page: 218 ident: b0105 article-title: Targeting metastasis publication-title: Nat Rev Cancer – volume: 8 start-page: 1362 year: 2018 ident: b0230 article-title: Gene annotation bias impedes biomedical research publication-title: Sci Rep – volume: 15 start-page: 20170387 year: 2018 ident: 10.1016/j.csbj.2021.08.006_b0210 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0387 – ident: 10.1016/j.csbj.2021.08.006_b0235 doi: 10.1177/117693510600200030 – volume: 18 year: 2017 ident: 10.1016/j.csbj.2021.08.006_b0060 article-title: Sparse feature selection for classification and prediction of metastasis in endometrial cancer publication-title: BMC Genomics doi: 10.1186/s12864-017-3604-y – volume: 696 start-page: 291 year: 2011 ident: 10.1016/j.csbj.2021.08.006_b0195 article-title: Cytoscape: software for visualization and analysis of biological networks publication-title: Methods Mol Biol doi: 10.1007/978-1-60761-987-1_18 – volume: 10 start-page: 8341 year: 2020 ident: 10.1016/j.csbj.2021.08.006_b0100 article-title: Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin publication-title: Sci Rep doi: 10.1038/s41598-020-65119-5 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.csbj.2021.08.006_b0170 article-title: Deep learning in mining biological data publication-title: Cogn Comput doi: 10.1007/s12559-020-09773-x – ident: 10.1016/j.csbj.2021.08.006_b0220 doi: 10.1587/transinf.E96.D.1513 – ident: 10.1016/j.csbj.2021.08.006_b0075 – volume: 15 year: 2019 ident: 10.1016/j.csbj.2021.08.006_b0130 article-title: New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006701 – ident: 10.1016/j.csbj.2021.08.006_b0185 doi: 10.1007/978-1-60761-232-2_6 – volume: 10 start-page: 865 year: 2019 ident: 10.1016/j.csbj.2021.08.006_b0080 article-title: The many faces of gene regulation in cancer: a computational oncogenomics outlook publication-title: Genes doi: 10.3390/genes10110865 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.csbj.2021.08.006_b0175 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: 10.1016/j.csbj.2021.08.006_b0125 doi: 10.1093/nar/gkv1507 – volume: 9 start-page: 15790 year: 2019 ident: 10.1016/j.csbj.2021.08.006_b0115 article-title: Prediction and analysis of skin cancer progression using genomics profiles of patients publication-title: Sci Rep doi: 10.1038/s41598-019-52134-4 – ident: 10.1016/j.csbj.2021.08.006_b0180 doi: 10.1093/nar/gky1079 – ident: 10.1016/j.csbj.2021.08.006_b0140 – volume: 55–69 year: 1998 ident: 10.1016/j.csbj.2021.08.006_b0165 article-title: Early stopping - but when? publication-title: Lect Notes Comput Sci doi: 10.1007/3-540-49430-8_3 – volume: 5 start-page: 402 year: 2015 ident: 10.1016/j.csbj.2021.08.006_b0010 article-title: Cancer metastases: challenges and opportunities publication-title: Acta Pharm Sinica B doi: 10.1016/j.apsb.2015.07.005 – volume: 548 start-page: 297 year: 2017 ident: 10.1016/j.csbj.2021.08.006_b0005 article-title: Integrative clinical genomics of metastatic cancer publication-title: Nature doi: 10.1038/nature23306 – volume: 8 start-page: 84 year: 2017 ident: 10.1016/j.csbj.2021.08.006_b0110 article-title: More is better: recent progress in multi-omics data integration methods publication-title: Front Genet doi: 10.3389/fgene.2017.00084 – volume: 29 start-page: 239 year: 2001 ident: 10.1016/j.csbj.2021.08.006_b0190 article-title: DIP: The Database of Interacting Proteins: 2001 update publication-title: Nucleic Acids Res doi: 10.1093/nar/29.1.239 – volume: 46 start-page: 5919 year: 2019 ident: 10.1016/j.csbj.2021.08.006_b0215 article-title: A cross-cancer metastasis signature in the microRNA-mRNA axis of paired tissue samples publication-title: Mol Biol Rep doi: 10.1007/s11033-019-05025-w – year: 2003 ident: 10.1016/j.csbj.2021.08.006_b0225 article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution – volume: 17 start-page: 4281 year: 2018 ident: 10.1016/j.csbj.2021.08.006_b0045 article-title: Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods publication-title: Mol Med Rep – volume: 40 start-page: 1357 year: 2017 ident: 10.1016/j.csbj.2021.08.006_b0030 article-title: A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy publication-title: Int J Mol Med doi: 10.3892/ijmm.2017.3126 – volume: 9 start-page: 36836 year: 2018 ident: 10.1016/j.csbj.2021.08.006_b0090 article-title: Integrated landscape of copy number variation and RNA expression associated with nodal metastasis in invasive ductal breast carcinoma publication-title: Oncotarget doi: 10.18632/oncotarget.26386 – ident: 10.1016/j.csbj.2021.08.006_b0095 doi: 10.1534/g3.118.200391 – volume: 38 start-page: 734 year: 2020 ident: 10.1016/j.csbj.2021.08.006_b0020 article-title: Integrated omics of metastatic colorectal cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.08.002 – volume: 267 start-page: 181 year: 2019 ident: 10.1016/j.csbj.2021.08.006_b0050 article-title: Utilizing molecular network information via graph convolutional neural networks to predict metastatic event in breast cancer publication-title: Stud Health Technol Inform – volume: 7 year: 2017 ident: 10.1016/j.csbj.2021.08.006_b0035 article-title: Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach publication-title: Sci Rep doi: 10.1038/s41598-017-17330-0 – volume: 16 start-page: 201 year: 2016 ident: 10.1016/j.csbj.2021.08.006_b0105 article-title: Targeting metastasis publication-title: Nat Rev Cancer doi: 10.1038/nrc.2016.25 – volume: 24 start-page: 1248 year: 2018 ident: 10.1016/j.csbj.2021.08.006_b0135 article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-0853 – volume: 17 start-page: 2907 year: 2018 ident: 10.1016/j.csbj.2021.08.006_b0040 article-title: A multigene support vector machine predictor for metastasis of cutaneous melanoma publication-title: Mol Med Rep – ident: 10.1016/j.csbj.2021.08.006_b0150 – volume: 8 start-page: 1362 year: 2018 ident: 10.1016/j.csbj.2021.08.006_b0230 article-title: Gene annotation bias impedes biomedical research publication-title: Sci Rep doi: 10.1038/s41598-018-19333-x – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.csbj.2021.08.006_b0055 article-title: Identification of biomarkers for predicting lymph node metastasis of stomach cancer using clinical DNA methylation data publication-title: Dis Markers doi: 10.1155/2017/9474532 – ident: 10.1016/j.csbj.2021.08.006_b0145 doi: 10.1561/9781601982957 – volume: 27 start-page: 431 year: 2011 ident: 10.1016/j.csbj.2021.08.006_b0200 article-title: Cytoscape 2.8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq675 – ident: 10.1016/j.csbj.2021.08.006_b0070 – volume: 13 start-page: 8 year: 2015 ident: 10.1016/j.csbj.2021.08.006_b0240 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2014.11.005 – volume: 33 start-page: 49 year: 2003 ident: 10.1016/j.csbj.2021.08.006_b0015 article-title: A molecular signature of metastasis in primary solid tumors publication-title: Nat Genet doi: 10.1038/ng1060 – volume: 11 start-page: 157 year: 2018 ident: 10.1016/j.csbj.2021.08.006_b0065 article-title: Machine learning based prediction of brain metastasis of patients with IIIA-N2 lung adenocarcinoma by a three-miRNA signature publication-title: Transl Oncol doi: 10.1016/j.tranon.2017.12.002 – volume: 10 start-page: 423 year: 2020 ident: 10.1016/j.csbj.2021.08.006_b0085 article-title: Computational oncology in the multi-omics era: state of the art publication-title: Front Oncol doi: 10.3389/fonc.2020.00423 – ident: 10.1016/j.csbj.2021.08.006_b0160 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.csbj.2021.08.006_b0205 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: 10.1016/j.csbj.2021.08.006_b0120 – volume: 112 start-page: 859 year: 2017 ident: 10.1016/j.csbj.2021.08.006_b0155 article-title: Variational inference: A review for statisticians publication-title: J Am Stat Assoc doi: 10.1080/01621459.2017.1285773 – volume: 68 start-page: 394 year: 2018 ident: 10.1016/j.csbj.2021.08.006_b0025 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21492 |
| SSID | ssj0000816930 |
| Score | 2.4102514 |
| Snippet | [Display omitted]
Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and... Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In... |
| SourceID | doaj pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4404 |
| SubjectTerms | Autoencoder biotechnology Cancer Clinical decision support Deep learning DNA methylation genome genomics Machine learning Metastasis microRNA Multi-omics multiomics Pan-cancer sequence analysis |
| Title | MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data |
| URI | https://dx.doi.org/10.1016/j.csbj.2021.08.006 https://www.proquest.com/docview/2564487259 https://www.proquest.com/docview/2636768634 https://pubmed.ncbi.nlm.nih.gov/PMC8368987 https://doaj.org/article/153655ccf86b49e78d574edb39937a5a |
| Volume | 19 |
| WOSCitedRecordID | wos000694715800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2001-0370 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816930 issn: 2001-0370 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BxQEOiKdYCpWRuCGLbBw_0lupWnFphQSHvVmxY5dUkK422x757cw43iq5LBcuOTjjJPbMZD4n428APnrtYqu04KUqPa98cOhzjeduqSKi7bjUTUzFJvTlpVmt6m-TUl-UEzbSA48T9xk9UknpfTTKVXXQppW6Cq1LgbWRCRoVup4sptI72BDJCH1gyTlDusg7ZsbkLj-4a1wcliN_J5U7mkSlRN4_C04T8DlPnZzEovNn8DSDSHYyPvxzeBD6F_BkQi34ErqLsG1OSaWbY3bC2hDWLFeIuOIUulqG7wHukwT7jcIIE4duYOsN_bohdbFUJYflbVXYgXLkr1hKQeS0mXlglF_6Cr6fn_04_cpzWQXu0eG23CkXKuF0HUNUOLHE4FWUThKYMKjRWEgpIk5x3TbGRyU1YqjCi2WD2vbiNRz0N314A0xgo6grJWKrK1OIpq5E6UuEJEG2spQLWO4m1frMOE6FL37ZXWrZtSVFWFKEpWqYhVrAp_s-65FvY6_0F9LVvSRxZacGtCCbLcj-y4IWIHeathl2jHACL9XtvfmHnVlY9En60dL04eZ2sAgjcdWr0db3yCjiyjNKVAvQM5uajWZ-pu9-JgZwI5SpjX77P4Z_CI9pUONnpXdwsN3chvfwyN9tu2FzBA_1yhwl58LjxZ-zvySyKs4 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetaCancer%3A+A+deep+learning-based+pan-cancer+metastasis+prediction+model+developed+using+multi-omics+data&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Albaradei%2C+Somayah&rft.au=Napolitano%2C+Francesco&rft.au=Thafar%2C+Maha+A.&rft.au=Gojobori%2C+Takashi&rft.date=2021-01-01&rft.pub=Research+Network+of+Computational+and+Structural+Biotechnology&rft.eissn=2001-0370&rft.volume=19&rft.spage=4404&rft.epage=4411&rft_id=info:doi/10.1016%2Fj.csbj.2021.08.006&rft_id=info%3Apmid%2F34429856&rft.externalDocID=PMC8368987 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |