MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data

[Display omitted] Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approa...

Full description

Saved in:
Bibliographic Details
Published in:Computational and structural biotechnology journal Vol. 19; pp. 4404 - 4411
Main Authors: Albaradei, Somayah, Napolitano, Francesco, Thafar, Maha A., Gojobori, Takashi, Essack, Magbubah, Gao, Xin
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2021
Research Network of Computational and Structural Biotechnology
Elsevier
Subjects:
ISSN:2001-0370, 2001-0370
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)–based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients’ data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics.
AbstractList Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)–based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients’ data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics.
[Display omitted] Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)–based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients’ data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics.
Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)-based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients' data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics.Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on changes on one genomic level only, and they are not being developed from a pan-cancer perspective. Thus, we here present a deep learning (DL)-based model, MetaCancer, that differentiates pan-cancer metastasis status based on three heterogeneous data layers. In particular, we built the DL-based model using 400 patients' data that includes RNA sequencing (RNA-Seq), microRNA sequencing (microRNA-Seq), and DNA methylation data from The Cancer Genome Atlas (TCGA). We quantitatively assess the proposed convolutional variational autoencoder (CVAE) and alternative feature extraction methods. We further show that integrating mRNA, microRNA, and DNA methylation data as features improves our model's performance compared to when we used mRNA data only. In addition, we show that the mRNA-related features make a more significant contribution when attempting to distinguish the primary tumors from metastatic ones computationally. Lastly, we show that our DL model significantly outperformed a machine learning (ML) ensemble method based on various metrics.
Author Gao, Xin
Thafar, Maha A.
Albaradei, Somayah
Napolitano, Francesco
Gojobori, Takashi
Essack, Magbubah
Author_xml – sequence: 1
  givenname: Somayah
  surname: Albaradei
  fullname: Albaradei, Somayah
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0002-7782-8506
  surname: Napolitano
  fullname: Napolitano, Francesco
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
– sequence: 3
  givenname: Maha A.
  orcidid: 0000-0003-0539-7361
  surname: Thafar
  fullname: Thafar, Maha A.
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
– sequence: 4
  givenname: Takashi
  orcidid: 0000-0001-7850-1743
  surname: Gojobori
  fullname: Gojobori, Takashi
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
– sequence: 5
  givenname: Magbubah
  orcidid: 0000-0003-2709-5356
  surname: Essack
  fullname: Essack, Magbubah
  email: magbubah.essack@kaust.edu.sa
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
– sequence: 6
  givenname: Xin
  orcidid: 0000-0002-7108-3574
  surname: Gao
  fullname: Gao, Xin
  email: xin.gao@kaust.edu.sa
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
BookMark eNqFkk-L3SAUxaVM6Uyn8wW6yrKbpBqj0VIKw6N_BqZ00e7F6M2rwcRUzYP59vXNG0qni6kIyvX8DhfveYnOlrAAQq8Jbggm_O3UmDRMTYtb0mDRYMyfoYsWY1Jj2uOzv-7n6CqlCZclCJcUv0DntOtaKRi_QO4rZL3Ti4H4rrquLMBaedBxccu-HnQCW616qc29opqLOJXtUrVGsM5kF5ZqDhZ8QQ_gw1qALRW4mjefXR1mZ1Jlddav0PNR-wRXD-cl-v7p44_dl_r22-eb3fVtbRgluR74AB0dejnCyI0ZicAStwPDfUcFlAJmjI5gB2m1MCNnPZUtNpRoY7Shl-jm5GqDntQa3azjnQraqftCiHulY3bGgyKMcsaKo-BDJ6EXlvVdMaZS0l4zXbw-nLzWbZjBGlhy1P6R6eOXxf1U-3BQgnIhRV8M3jwYxPBrg5TV7JIB7_UCYUuq5ZT3XHDa_V_KeNeJvmWySNuT1MSQUoTxT0cEq2M21KSO2VDHbCgsVMlGgcQ_kHFZH8dXOnf-afT9CYUytYODqJJxUPJgXQSTy8e6p_Df42LXWw
CitedBy_id crossref_primary_10_1007_s12032_024_02579_z
crossref_primary_10_1002_cpe_7206
crossref_primary_10_1142_S0219519425400792
crossref_primary_10_1360_SSV_2023_0297
crossref_primary_10_1016_j_pan_2025_06_017
crossref_primary_10_1073_pnas_2415071122
crossref_primary_10_1093_bib_bbad411
crossref_primary_10_3390_mca29040059
crossref_primary_10_1038_s41746_025_01471_y
crossref_primary_10_1186_s13072_025_00595_5
crossref_primary_10_3389_fgene_2023_1139626
crossref_primary_10_1016_j_nexres_2025_100179
crossref_primary_10_1093_bib_bbab569
crossref_primary_10_1093_bib_bbab523
crossref_primary_10_3389_fmolb_2022_913602
crossref_primary_10_3390_biomedicines9111733
crossref_primary_10_1093_bib_bbad304
crossref_primary_10_1016_j_cytogfr_2025_06_001
crossref_primary_10_1109_TCE_2025_3565962
crossref_primary_10_1007_s13721_024_00441_w
crossref_primary_10_1186_s13059_024_03293_9
crossref_primary_10_3389_fgene_2021_771092
crossref_primary_10_1002_iub_2693
crossref_primary_10_1038_s41598_023_47805_2
crossref_primary_10_1016_j_compbiomed_2024_109302
crossref_primary_10_2217_fon_2023_0070
crossref_primary_10_24054_rcta_v1i45_3751
crossref_primary_10_1016_j_csbj_2023_03_046
crossref_primary_10_1186_s13040_024_00391_z
crossref_primary_10_4236_health_2025_173012
crossref_primary_10_1016_j_semcancer_2023_02_009
crossref_primary_10_1016_j_imu_2025_101679
crossref_primary_10_1038_s41598_025_07813_w
crossref_primary_10_1007_s13205_024_04107_2
crossref_primary_10_3389_fonc_2022_998222
crossref_primary_10_1016_j_csbj_2021_09_001
crossref_primary_10_1109_ACCESS_2024_3394030
crossref_primary_10_1109_JBHI_2023_3284794
Cites_doi 10.1098/rsif.2017.0387
10.1177/117693510600200030
10.1186/s12864-017-3604-y
10.1007/978-1-60761-987-1_18
10.1038/s41598-020-65119-5
10.1007/s12559-020-09773-x
10.1587/transinf.E96.D.1513
10.1371/journal.pcbi.1006701
10.1007/978-1-60761-232-2_6
10.3390/genes10110865
10.1093/nar/gkv1507
10.1038/s41598-019-52134-4
10.1093/nar/gky1079
10.1007/3-540-49430-8_3
10.1016/j.apsb.2015.07.005
10.1038/nature23306
10.3389/fgene.2017.00084
10.1093/nar/29.1.239
10.1007/s11033-019-05025-w
10.3892/ijmm.2017.3126
10.18632/oncotarget.26386
10.1534/g3.118.200391
10.1016/j.ccell.2020.08.002
10.1038/s41598-017-17330-0
10.1038/nrc.2016.25
10.1158/1078-0432.CCR-17-0853
10.1038/s41598-018-19333-x
10.1155/2017/9474532
10.1561/9781601982957
10.1093/bioinformatics/btq675
10.1016/j.csbj.2014.11.005
10.1038/ng1060
10.1016/j.tranon.2017.12.002
10.3389/fonc.2020.00423
10.1080/01621459.2017.1285773
10.3322/caac.21492
ContentType Journal Article
Copyright 2021
2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2021
Copyright_xml – notice: 2021
– notice: 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
– notice: 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.csbj.2021.08.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 4411
ExternalDocumentID oai_doaj_org_article_153655ccf86b49e78d574edb39937a5a
PMC8368987
10_1016_j_csbj_2021_08_006
S2001037021003378
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c531t-b6be43b79fef6ccf180902b507438eccf0553fedb9da8cf6573920c31accac3
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000694715800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2001-0370
IngestDate Fri Oct 03 12:45:30 EDT 2025
Tue Nov 04 01:59:06 EST 2025
Fri Jul 11 10:38:20 EDT 2025
Tue Sep 30 20:55:15 EDT 2025
Sat Nov 29 05:55:09 EST 2025
Tue Nov 18 22:35:42 EST 2025
Sat Aug 31 16:00:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Pan-cancer
Autoencoder
Machine learning
Metastasis
Clinical decision support
Multi-omics
Cancer
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-b6be43b79fef6ccf180902b507438eccf0553fedb9da8cf6573920c31accac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7850-1743
0000-0003-2709-5356
0000-0002-7108-3574
0000-0003-0539-7361
0000-0002-7782-8506
OpenAccessLink https://doaj.org/article/153655ccf86b49e78d574edb39937a5a
PMID 34429856
PQID 2564487259
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_153655ccf86b49e78d574edb39937a5a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8368987
proquest_miscellaneous_2636768634
proquest_miscellaneous_2564487259
crossref_primary_10_1016_j_csbj_2021_08_006
crossref_citationtrail_10_1016_j_csbj_2021_08_006
elsevier_sciencedirect_doi_10_1016_j_csbj_2021_08_006
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computational and structural biotechnology journal
PublicationYear 2021
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Behring, Shrestha, Manne, Cui, Gonzalez-Reymundez, Grueneberg (b0090) 2018; 9
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0175) 2014; 15
Karabulut EM, Ibrikci T. Discriminative deep belief networks for microarray based cancer classification. (2017).
Lee, Quinn, Nguyen, Venkatesh, Quinn (b0215) 2019; 46
Kingma DP, Welling M Auto-encoding variational bayes. arXiv [stat.ML] (2013).
Bernal Rubio YL, et al. Whole-genome multi-omic study of survival in patients with glioblastoma multiforme. G3 2018:8;3627–3636, doi:10.1534/g3.118.200391.
Oughtred R, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res, 2019;47:D529-D541, doi:10.1093/nar/gky1079.
Kohl, Wiese, Warscheid (b0195) 2011; 696
Bhalla, Kaur, Dhall, Raghava (b0115) 2019; 9
Bray, Ferlay, Soerjomataram, Siegel, Torre, Jemal (b0025) 2018; 68
Ching, Himmelstein, Beaulieu-Jones, Kalinin, Do, Way (b0210) 2018; 15
Yu, Liu (b0225) 2003
Wei (b0040) 2018; 17
Pedregosa (b0205) 2011; 12
Li, Sun, Yu, Cui, Lou, Zhang (b0020) 2020; 38
Ramaswamy, Ross, Lander, Golub (b0015) 2003; 33
Chaudhary, Poirion, Lu, Garmire (b0135) 2018; 24
Bengio, Y. Learning Deep Architectures for AI. doi:10.1561/9781601982957 (2009).
Kourou, Exarchos, Exarchos, Karamouzis, Fotiadis (b0240) 2015; 13
Smoot, Ono, Ruscheinski, Wang, Ideker (b0200) 2011; 27
Cruz JA, Wishart, DS, Applications of machine learning in cancer prediction and prognosis. Cancer Inf, 2006;2, 117693510600200, doi:10.1177/117693510600200030.
Chereda, Bleckmann, Kramer, Leha, Beissbarth (b0050) 2019; 267
Gress DM et al. Principles of cancer staging. AJCC Cancer Staging Manual 8, 3-30 (2017).
Zhao, Yu, Wang (b0065) 2018; 11
Mounir (b0130) 2019; 15
Haynes, Tomczak, Khatri (b0230) 2018; 8
Robinson, Wu, Lonigro, Vats, Cobain, Everett (b0005) 2017; 548
de Anda-Jáuregui, Hernández-Lemus (b0085) 2020; 10
Huang, Chaudhary, Garmire (b0110) 2017; 8
Ahsen, Boren, Singh, Misganaw, Mutch, Moore (b0060) 2017; 18
Prasad TSK, Keshava Prasad TS, Kandasamy K, Pandey A. Human protein reference database and human proteinpedia as discovery tools for systems biology. Methods Mol Biol, 2009;67-79, doi:10.1007/978-1-60761-232-2_6.
Blei, Kucukelbir, McAuliffe (b0155) 2017; 112
Albaradei S, Thafar M, Van Neste C, Essack M, Bajic VB, in Proceedings of the 2019 6th International Conference on Bioinformatics Research and Applications 125-130 (Association for Computing Machinery, 2019).
Chollet F, et al., Keras: The Python Deep Learning library. Astrophysics Source Code Library, ascl:1806.1022 (2018).
Colaprico A et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71, doi:10.1093/nar/gkv1507.
Steeg (b0105) 2016; 16
Mahmud, Kaiser, McGinnity, Hussain (b0170) 2021; 13
Hernández-Lemus, Reyes-Gopar, Espinal-Enríquez, Ochoa (b0080) 2019; 10
González-Reymúndez, Vázquez (b0100) 2020; 10
Wu, Xiao, Xia, Yang, Li, Shao (b0055) 2017; 2017
Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G. Impute: impute: Imputation for microarray data. R package version 1.54. 0. (2018).
Metri, Mohan, Nsengimana, Pozniak, Molina-Paris, Newton-Bishop (b0035) 2017; 7
Jitkrittum W, Hachiya H, Sugiyama M. Feature selection via l1-penalized squared-loss mutual information. IEICE Trans Inf Syst, 2013;E96.D:1513–1524, doi:10.1587/transinf.e96.d.1513.
He, Ma, Ye (b0030) 2017; 40
Guan (b0010) 2015; 5
Prechelt (b0165) 1998; 55–69
Tuo, An, Zhang (b0045) 2018; 17
Xenarios (b0190) 2001; 29
10.1016/j.csbj.2021.08.006_b0145
Zhao (10.1016/j.csbj.2021.08.006_b0065) 2018; 11
Srivastava (10.1016/j.csbj.2021.08.006_b0175) 2014; 15
10.1016/j.csbj.2021.08.006_b0125
Ahsen (10.1016/j.csbj.2021.08.006_b0060) 2017; 18
Huang (10.1016/j.csbj.2021.08.006_b0110) 2017; 8
Yu (10.1016/j.csbj.2021.08.006_b0225) 2003
Metri (10.1016/j.csbj.2021.08.006_b0035) 2017; 7
Xenarios (10.1016/j.csbj.2021.08.006_b0190) 2001; 29
He (10.1016/j.csbj.2021.08.006_b0030) 2017; 40
Chereda (10.1016/j.csbj.2021.08.006_b0050) 2019; 267
Bhalla (10.1016/j.csbj.2021.08.006_b0115) 2019; 9
Hernández-Lemus (10.1016/j.csbj.2021.08.006_b0080) 2019; 10
Robinson (10.1016/j.csbj.2021.08.006_b0005) 2017; 548
Smoot (10.1016/j.csbj.2021.08.006_b0200) 2011; 27
Haynes (10.1016/j.csbj.2021.08.006_b0230) 2018; 8
Guan (10.1016/j.csbj.2021.08.006_b0010) 2015; 5
Blei (10.1016/j.csbj.2021.08.006_b0155) 2017; 112
10.1016/j.csbj.2021.08.006_b0180
González-Reymúndez (10.1016/j.csbj.2021.08.006_b0100) 2020; 10
10.1016/j.csbj.2021.08.006_b0160
10.1016/j.csbj.2021.08.006_b0140
10.1016/j.csbj.2021.08.006_b0185
10.1016/j.csbj.2021.08.006_b0120
Mounir (10.1016/j.csbj.2021.08.006_b0130) 2019; 15
10.1016/j.csbj.2021.08.006_b0220
Wu (10.1016/j.csbj.2021.08.006_b0055) 2017; 2017
Prechelt (10.1016/j.csbj.2021.08.006_b0165) 1998; 55–69
Mahmud (10.1016/j.csbj.2021.08.006_b0170) 2021; 13
Lee (10.1016/j.csbj.2021.08.006_b0215) 2019; 46
10.1016/j.csbj.2021.08.006_b0235
Li (10.1016/j.csbj.2021.08.006_b0020) 2020; 38
Kohl (10.1016/j.csbj.2021.08.006_b0195) 2011; 696
Wei (10.1016/j.csbj.2021.08.006_b0040) 2018; 17
Steeg (10.1016/j.csbj.2021.08.006_b0105) 2016; 16
Ramaswamy (10.1016/j.csbj.2021.08.006_b0015) 2003; 33
Ching (10.1016/j.csbj.2021.08.006_b0210) 2018; 15
Tuo (10.1016/j.csbj.2021.08.006_b0045) 2018; 17
de Anda-Jáuregui (10.1016/j.csbj.2021.08.006_b0085) 2020; 10
Pedregosa (10.1016/j.csbj.2021.08.006_b0205) 2011; 12
Chaudhary (10.1016/j.csbj.2021.08.006_b0135) 2018; 24
10.1016/j.csbj.2021.08.006_b0070
10.1016/j.csbj.2021.08.006_b0095
10.1016/j.csbj.2021.08.006_b0150
Behring (10.1016/j.csbj.2021.08.006_b0090) 2018; 9
10.1016/j.csbj.2021.08.006_b0075
Bray (10.1016/j.csbj.2021.08.006_b0025) 2018; 68
Kourou (10.1016/j.csbj.2021.08.006_b0240) 2015; 13
References_xml – volume: 13
  start-page: 1
  year: 2021
  end-page: 33
  ident: b0170
  article-title: Deep learning in mining biological data
  publication-title: Cogn Comput
– reference: Oughtred R, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res, 2019;47:D529-D541, doi:10.1093/nar/gky1079.
– reference: Colaprico A et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71, doi:10.1093/nar/gkv1507.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0205
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– reference: Cruz JA, Wishart, DS, Applications of machine learning in cancer prediction and prognosis. Cancer Inf, 2006;2, 117693510600200, doi:10.1177/117693510600200030.
– volume: 15
  start-page: 20170387
  year: 2018
  ident: b0210
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
– volume: 5
  start-page: 402
  year: 2015
  end-page: 418
  ident: b0010
  article-title: Cancer metastases: challenges and opportunities
  publication-title: Acta Pharm Sinica B
– volume: 29
  start-page: 239
  year: 2001
  end-page: 241
  ident: b0190
  article-title: DIP: The Database of Interacting Proteins: 2001 update
  publication-title: Nucleic Acids Res
– year: 2003
  ident: b0225
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
  publication-title: Proceedings of the 20th international conference
– volume: 27
  start-page: 431
  year: 2011
  end-page: 432
  ident: b0200
  article-title: Cytoscape 2.8
  publication-title: Bioinformatics
– volume: 8
  start-page: 84
  year: 2017
  ident: b0110
  article-title: More is better: recent progress in multi-omics data integration methods
  publication-title: Front Genet
– volume: 548
  start-page: 297
  year: 2017
  end-page: 303
  ident: b0005
  article-title: Integrative clinical genomics of metastatic cancer
  publication-title: Nature
– volume: 15
  year: 2019
  ident: b0130
  article-title: New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx
  publication-title: PLoS Comput Biol
– volume: 24
  start-page: 1248
  year: 2018
  end-page: 1259
  ident: b0135
  article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin Cancer Res
– volume: 7
  year: 2017
  ident: b0035
  article-title: Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach
  publication-title: Sci Rep
– volume: 17
  start-page: 4281
  year: 2018
  end-page: 4290
  ident: b0045
  article-title: Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods
  publication-title: Mol Med Rep
– volume: 9
  start-page: 36836
  year: 2018
  end-page: 36848
  ident: b0090
  article-title: Integrated landscape of copy number variation and RNA expression associated with nodal metastasis in invasive ductal breast carcinoma
  publication-title: Oncotarget
– reference: Kingma DP, Welling M Auto-encoding variational bayes. arXiv [stat.ML] (2013).
– volume: 55–69
  year: 1998
  ident: b0165
  article-title: Early stopping - but when?
  publication-title: Lect Notes Comput Sci
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: b0025
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– reference: Hastie, T., Tibshirani, R., Narasimhan, B. & Chu, G. Impute: impute: Imputation for microarray data. R package version 1.54. 0. (2018).
– reference: Bengio, Y. Learning Deep Architectures for AI. doi:10.1561/9781601982957 (2009).
– volume: 33
  start-page: 49
  year: 2003
  end-page: 54
  ident: b0015
  article-title: A molecular signature of metastasis in primary solid tumors
  publication-title: Nat Genet
– volume: 40
  start-page: 1357
  year: 2017
  end-page: 1364
  ident: b0030
  article-title: A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy
  publication-title: Int J Mol Med
– volume: 18
  year: 2017
  ident: b0060
  article-title: Sparse feature selection for classification and prediction of metastasis in endometrial cancer
  publication-title: BMC Genomics
– volume: 9
  start-page: 15790
  year: 2019
  ident: b0115
  article-title: Prediction and analysis of skin cancer progression using genomics profiles of patients
  publication-title: Sci Rep
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0175
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– reference: Prasad TSK, Keshava Prasad TS, Kandasamy K, Pandey A. Human protein reference database and human proteinpedia as discovery tools for systems biology. Methods Mol Biol, 2009;67-79, doi:10.1007/978-1-60761-232-2_6.
– volume: 13
  start-page: 8
  year: 2015
  end-page: 17
  ident: b0240
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput Struct Biotechnol J
– volume: 112
  start-page: 859
  year: 2017
  end-page: 877
  ident: b0155
  article-title: Variational inference: A review for statisticians
  publication-title: J Am Stat Assoc
– volume: 267
  start-page: 181
  year: 2019
  end-page: 186
  ident: b0050
  article-title: Utilizing molecular network information via graph convolutional neural networks to predict metastatic event in breast cancer
  publication-title: Stud Health Technol Inform
– volume: 38
  start-page: 734
  year: 2020
  end-page: 747.e9
  ident: b0020
  article-title: Integrated omics of metastatic colorectal cancer
  publication-title: Cancer Cell
– reference: Albaradei S, Thafar M, Van Neste C, Essack M, Bajic VB, in Proceedings of the 2019 6th International Conference on Bioinformatics Research and Applications 125-130 (Association for Computing Machinery, 2019).
– volume: 10
  start-page: 423
  year: 2020
  ident: b0085
  article-title: Computational oncology in the multi-omics era: state of the art
  publication-title: Front Oncol
– volume: 46
  start-page: 5919
  year: 2019
  end-page: 5930
  ident: b0215
  article-title: A cross-cancer metastasis signature in the microRNA-mRNA axis of paired tissue samples
  publication-title: Mol Biol Rep
– reference: Karabulut EM, Ibrikci T. Discriminative deep belief networks for microarray based cancer classification. (2017).
– reference: Gress DM et al. Principles of cancer staging. AJCC Cancer Staging Manual 8, 3-30 (2017).
– volume: 11
  start-page: 157
  year: 2018
  end-page: 167
  ident: b0065
  article-title: Machine learning based prediction of brain metastasis of patients with IIIA-N2 lung adenocarcinoma by a three-miRNA signature
  publication-title: Transl Oncol
– volume: 696
  start-page: 291
  year: 2011
  end-page: 303
  ident: b0195
  article-title: Cytoscape: software for visualization and analysis of biological networks
  publication-title: Methods Mol Biol
– reference: Jitkrittum W, Hachiya H, Sugiyama M. Feature selection via l1-penalized squared-loss mutual information. IEICE Trans Inf Syst, 2013;E96.D:1513–1524, doi:10.1587/transinf.e96.d.1513.
– volume: 10
  start-page: 865
  year: 2019
  ident: b0080
  article-title: The many faces of gene regulation in cancer: a computational oncogenomics outlook
  publication-title: Genes
– reference: Chollet F, et al., Keras: The Python Deep Learning library. Astrophysics Source Code Library, ascl:1806.1022 (2018).
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 7
  ident: b0055
  article-title: Identification of biomarkers for predicting lymph node metastasis of stomach cancer using clinical DNA methylation data
  publication-title: Dis Markers
– reference: Bernal Rubio YL, et al. Whole-genome multi-omic study of survival in patients with glioblastoma multiforme. G3 2018:8;3627–3636, doi:10.1534/g3.118.200391.
– volume: 10
  start-page: 8341
  year: 2020
  ident: b0100
  article-title: Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin
  publication-title: Sci Rep
– volume: 17
  start-page: 2907
  year: 2018
  end-page: 2914
  ident: b0040
  article-title: A multigene support vector machine predictor for metastasis of cutaneous melanoma
  publication-title: Mol Med Rep
– volume: 16
  start-page: 201
  year: 2016
  end-page: 218
  ident: b0105
  article-title: Targeting metastasis
  publication-title: Nat Rev Cancer
– volume: 8
  start-page: 1362
  year: 2018
  ident: b0230
  article-title: Gene annotation bias impedes biomedical research
  publication-title: Sci Rep
– volume: 15
  start-page: 20170387
  year: 2018
  ident: 10.1016/j.csbj.2021.08.006_b0210
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0387
– ident: 10.1016/j.csbj.2021.08.006_b0235
  doi: 10.1177/117693510600200030
– volume: 18
  year: 2017
  ident: 10.1016/j.csbj.2021.08.006_b0060
  article-title: Sparse feature selection for classification and prediction of metastasis in endometrial cancer
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3604-y
– volume: 696
  start-page: 291
  year: 2011
  ident: 10.1016/j.csbj.2021.08.006_b0195
  article-title: Cytoscape: software for visualization and analysis of biological networks
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-987-1_18
– volume: 10
  start-page: 8341
  year: 2020
  ident: 10.1016/j.csbj.2021.08.006_b0100
  article-title: Multi-omic signatures identify pan-cancer classes of tumors beyond tissue of origin
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-65119-5
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.csbj.2021.08.006_b0170
  article-title: Deep learning in mining biological data
  publication-title: Cogn Comput
  doi: 10.1007/s12559-020-09773-x
– ident: 10.1016/j.csbj.2021.08.006_b0220
  doi: 10.1587/transinf.E96.D.1513
– ident: 10.1016/j.csbj.2021.08.006_b0075
– volume: 15
  year: 2019
  ident: 10.1016/j.csbj.2021.08.006_b0130
  article-title: New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006701
– ident: 10.1016/j.csbj.2021.08.006_b0185
  doi: 10.1007/978-1-60761-232-2_6
– volume: 10
  start-page: 865
  year: 2019
  ident: 10.1016/j.csbj.2021.08.006_b0080
  article-title: The many faces of gene regulation in cancer: a computational oncogenomics outlook
  publication-title: Genes
  doi: 10.3390/genes10110865
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.csbj.2021.08.006_b0175
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: 10.1016/j.csbj.2021.08.006_b0125
  doi: 10.1093/nar/gkv1507
– volume: 9
  start-page: 15790
  year: 2019
  ident: 10.1016/j.csbj.2021.08.006_b0115
  article-title: Prediction and analysis of skin cancer progression using genomics profiles of patients
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-52134-4
– ident: 10.1016/j.csbj.2021.08.006_b0180
  doi: 10.1093/nar/gky1079
– ident: 10.1016/j.csbj.2021.08.006_b0140
– volume: 55–69
  year: 1998
  ident: 10.1016/j.csbj.2021.08.006_b0165
  article-title: Early stopping - but when?
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/3-540-49430-8_3
– volume: 5
  start-page: 402
  year: 2015
  ident: 10.1016/j.csbj.2021.08.006_b0010
  article-title: Cancer metastases: challenges and opportunities
  publication-title: Acta Pharm Sinica B
  doi: 10.1016/j.apsb.2015.07.005
– volume: 548
  start-page: 297
  year: 2017
  ident: 10.1016/j.csbj.2021.08.006_b0005
  article-title: Integrative clinical genomics of metastatic cancer
  publication-title: Nature
  doi: 10.1038/nature23306
– volume: 8
  start-page: 84
  year: 2017
  ident: 10.1016/j.csbj.2021.08.006_b0110
  article-title: More is better: recent progress in multi-omics data integration methods
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00084
– volume: 29
  start-page: 239
  year: 2001
  ident: 10.1016/j.csbj.2021.08.006_b0190
  article-title: DIP: The Database of Interacting Proteins: 2001 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.1.239
– volume: 46
  start-page: 5919
  year: 2019
  ident: 10.1016/j.csbj.2021.08.006_b0215
  article-title: A cross-cancer metastasis signature in the microRNA-mRNA axis of paired tissue samples
  publication-title: Mol Biol Rep
  doi: 10.1007/s11033-019-05025-w
– year: 2003
  ident: 10.1016/j.csbj.2021.08.006_b0225
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
– volume: 17
  start-page: 4281
  year: 2018
  ident: 10.1016/j.csbj.2021.08.006_b0045
  article-title: Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods
  publication-title: Mol Med Rep
– volume: 40
  start-page: 1357
  year: 2017
  ident: 10.1016/j.csbj.2021.08.006_b0030
  article-title: A support vector machine classifier for the prediction of osteosarcoma metastasis with high accuracy
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.2017.3126
– volume: 9
  start-page: 36836
  year: 2018
  ident: 10.1016/j.csbj.2021.08.006_b0090
  article-title: Integrated landscape of copy number variation and RNA expression associated with nodal metastasis in invasive ductal breast carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.26386
– ident: 10.1016/j.csbj.2021.08.006_b0095
  doi: 10.1534/g3.118.200391
– volume: 38
  start-page: 734
  year: 2020
  ident: 10.1016/j.csbj.2021.08.006_b0020
  article-title: Integrated omics of metastatic colorectal cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.08.002
– volume: 267
  start-page: 181
  year: 2019
  ident: 10.1016/j.csbj.2021.08.006_b0050
  article-title: Utilizing molecular network information via graph convolutional neural networks to predict metastatic event in breast cancer
  publication-title: Stud Health Technol Inform
– volume: 7
  year: 2017
  ident: 10.1016/j.csbj.2021.08.006_b0035
  article-title: Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-17330-0
– volume: 16
  start-page: 201
  year: 2016
  ident: 10.1016/j.csbj.2021.08.006_b0105
  article-title: Targeting metastasis
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2016.25
– volume: 24
  start-page: 1248
  year: 2018
  ident: 10.1016/j.csbj.2021.08.006_b0135
  article-title: Deep learning-based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-0853
– volume: 17
  start-page: 2907
  year: 2018
  ident: 10.1016/j.csbj.2021.08.006_b0040
  article-title: A multigene support vector machine predictor for metastasis of cutaneous melanoma
  publication-title: Mol Med Rep
– ident: 10.1016/j.csbj.2021.08.006_b0150
– volume: 8
  start-page: 1362
  year: 2018
  ident: 10.1016/j.csbj.2021.08.006_b0230
  article-title: Gene annotation bias impedes biomedical research
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-19333-x
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.csbj.2021.08.006_b0055
  article-title: Identification of biomarkers for predicting lymph node metastasis of stomach cancer using clinical DNA methylation data
  publication-title: Dis Markers
  doi: 10.1155/2017/9474532
– ident: 10.1016/j.csbj.2021.08.006_b0145
  doi: 10.1561/9781601982957
– volume: 27
  start-page: 431
  year: 2011
  ident: 10.1016/j.csbj.2021.08.006_b0200
  article-title: Cytoscape 2.8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq675
– ident: 10.1016/j.csbj.2021.08.006_b0070
– volume: 13
  start-page: 8
  year: 2015
  ident: 10.1016/j.csbj.2021.08.006_b0240
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2014.11.005
– volume: 33
  start-page: 49
  year: 2003
  ident: 10.1016/j.csbj.2021.08.006_b0015
  article-title: A molecular signature of metastasis in primary solid tumors
  publication-title: Nat Genet
  doi: 10.1038/ng1060
– volume: 11
  start-page: 157
  year: 2018
  ident: 10.1016/j.csbj.2021.08.006_b0065
  article-title: Machine learning based prediction of brain metastasis of patients with IIIA-N2 lung adenocarcinoma by a three-miRNA signature
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2017.12.002
– volume: 10
  start-page: 423
  year: 2020
  ident: 10.1016/j.csbj.2021.08.006_b0085
  article-title: Computational oncology in the multi-omics era: state of the art
  publication-title: Front Oncol
  doi: 10.3389/fonc.2020.00423
– ident: 10.1016/j.csbj.2021.08.006_b0160
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.csbj.2021.08.006_b0205
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: 10.1016/j.csbj.2021.08.006_b0120
– volume: 112
  start-page: 859
  year: 2017
  ident: 10.1016/j.csbj.2021.08.006_b0155
  article-title: Variational inference: A review for statisticians
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2017.1285773
– volume: 68
  start-page: 394
  year: 2018
  ident: 10.1016/j.csbj.2021.08.006_b0025
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
SSID ssj0000816930
Score 2.4102514
Snippet [Display omitted] Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and...
Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4404
SubjectTerms Autoencoder
biotechnology
Cancer
Clinical decision support
Deep learning
DNA methylation
genome
genomics
Machine learning
Metastasis
microRNA
Multi-omics
multiomics
Pan-cancer
sequence analysis
Title MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data
URI https://dx.doi.org/10.1016/j.csbj.2021.08.006
https://www.proquest.com/docview/2564487259
https://www.proquest.com/docview/2636768634
https://pubmed.ncbi.nlm.nih.gov/PMC8368987
https://doaj.org/article/153655ccf86b49e78d574edb39937a5a
Volume 19
WOSCitedRecordID wos000694715800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2001-0370
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816930
  issn: 2001-0370
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4gAHxKdYCpWRuCGLZP3dW6lacWmFBIe9WbFjl1SQrjbbHvntzDjeKrksFy572J0ka8848yYZv0fIxzrK1AbZMhR1YMKGwCDPaKaFELyypmpEymIT-vLSrFb220TqC3vCRnrgceI-w4pUUoaQjPLCRm1aqUVsfU6sjczQqNJ2Ukzle7BBkhF8wFJ6hnRVdsyMzV1h8NdQHC5H_k6UO5pkpUzeP0tOE_A5b52c5KLzZ-RpAZH0ZPzzz8mD2L8gTybUgi9JdxG3zSm6dHNMT2gb45oWhYgrhqmrpXAfYCFb0N9gDDBx6Aa63uCrG3QXzSo5tGyrggOwR_6K5hZEhpuZB4r9pa_I9_OzH6dfWZFVYAEW3JZ55aPgXtsUk4KJRQavauklggkDHk2VlDzBFNu2MSEpqQFDVYHXDXg78NfkoL_p4xtCvWk859rXjVGibQO4NRdwtVimYI1ZkHo3qS4UxnEUvvjldq1l1w4d4dARDtUwK7Ugn-6PWY98G3utv6Cv7i2RKzt_ARHkSgS5f0XQgsidp12BHSOcgFN1ey_-YRcWDtYkvmhp-nhzOziAkVD1aqgs99go5MoziosF0bOYmo1m_kvf_cwM4IYrY41--z-Gf0ge46DGx0rvyMF2cxvfk0fhbtsNmyPyUK_MUV5c8Hnx5-wvylAqrA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MetaCancer%3A+A+deep+learning-based+pan-cancer+metastasis+prediction+model+developed+using+multi-omics+data&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Albaradei%2C+Somayah&rft.au=Napolitano%2C+Francesco&rft.au=Thafar%2C+Maha+A&rft.au=Gojobori%2C+Takashi&rft.date=2021-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=19&rft.spage=4404&rft_id=info:doi/10.1016%2Fj.csbj.2021.08.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon