Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum
Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by whi...
Uložené v:
| Vydané v: | Neuron (Cambridge, Mass.) Ročník 49; číslo 1; s. 157 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
05.01.2006
|
| Predmet: | |
| ISSN: | 0896-6273 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior. |
|---|---|
| AbstractList | Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior. Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior. |
| Author | Dolan, Raymond J O'Doherty, John P Seymour, Ben Buchanan, Tony W |
| Author_xml | – sequence: 1 givenname: John P surname: O'Doherty fullname: O'Doherty, John P email: jdoherty@hss.caltech.edu organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK. jdoherty@hss.caltech.edu – sequence: 2 givenname: Tony W surname: Buchanan fullname: Buchanan, Tony W – sequence: 3 givenname: Ben surname: Seymour fullname: Seymour, Ben – sequence: 4 givenname: Raymond J surname: Dolan fullname: Dolan, Raymond J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16387647$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kMtKxDAYRrMYcS76BiJZuWtN2iZplzJ4gwFd6LqkyR_N0CY1aSviy9vB0dUHh8NZfGu0cN4BQheUpJRQfr1PHYzBuzQjhKWUpoQWC7QiZcUTnol8idYx7slMWUVP0ZLyvBS8ECv0_RxAWzXYCfChIVusvLbuDXuDA3zKoHEfwEAApwBbN_l2goi1jdErK5sWZi323sWZWoffx046PIEbDq3O6ibIGUun_2EcgpXD2J2hEyPbCOfH3aDXu9uX7UOye7p_3N7sEsVyOiRSqEroXBjFjORCa2YMcKMKCVlZ6IpXDSuLqpQ8l1xBpZtcl9wwwQquS6GzDbr67fbBf4wQh7qzUUHbSgd-jDUXnJCSFbN4eRTHpgNd98F2MnzVf3dlP6Qecq8 |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0185665 crossref_primary_10_3389_fpsyt_2017_00245 crossref_primary_10_1111_j_1751_9004_2007_00064_x crossref_primary_10_1126_science_1150605 crossref_primary_10_1016_j_neuroimage_2010_12_023 crossref_primary_10_1177_0269881110367731 crossref_primary_10_1073_pnas_1108561108 crossref_primary_10_1111_psyp_14288 crossref_primary_10_1016_j_cobeha_2020_11_001 crossref_primary_10_1007_s12078_011_9107_3 crossref_primary_10_1523_JNEUROSCI_3076_08_2008 crossref_primary_10_1371_journal_pone_0127542 crossref_primary_10_3758_s13415_014_0300_0 crossref_primary_10_1002_ana_21825 crossref_primary_10_1093_cercor_bhp169 crossref_primary_10_1016_j_appet_2012_09_032 crossref_primary_10_1093_scan_nsz046 crossref_primary_10_1111_cdev_13727 crossref_primary_10_3389_fpsyg_2014_01051 crossref_primary_10_3758_s13414_012_0348_2 crossref_primary_10_1016_j_neuroimage_2019_116368 crossref_primary_10_1080_13506285_2014_981626 crossref_primary_10_1016_j_neuroscience_2016_04_021 crossref_primary_10_1371_journal_pone_0028337 crossref_primary_10_1503_jpn_200047 crossref_primary_10_3389_fpsyg_2018_01655 crossref_primary_10_1016_j_neuroscience_2009_05_054 crossref_primary_10_1016_j_physbeh_2014_04_017 crossref_primary_10_1038_s41598_018_32990_2 crossref_primary_10_1523_JNEUROSCI_2058_08_2008 crossref_primary_10_1016_j_bandc_2008_08_004 crossref_primary_10_1016_j_cortex_2014_08_012 crossref_primary_10_1093_brain_awab254 crossref_primary_10_1016_j_brainresbull_2009_05_016 crossref_primary_10_1038_nrneurol_2012_11 crossref_primary_10_1162_jocn_a_00295 crossref_primary_10_3389_fnins_2014_00303 crossref_primary_10_1016_j_neuroimage_2013_11_039 crossref_primary_10_1016_j_neuroimage_2014_05_054 crossref_primary_10_1038_srep34580 crossref_primary_10_1016_j_pain_2008_07_030 crossref_primary_10_1016_j_brainres_2011_09_055 crossref_primary_10_1016_j_cognition_2019_104029 crossref_primary_10_1523_JNEUROSCI_0897_08_2008 crossref_primary_10_1002_hbm_23940 crossref_primary_10_1016_j_cub_2013_04_001 crossref_primary_10_1093_scan_nst047 crossref_primary_10_1523_JNEUROSCI_5227_06_2007 crossref_primary_10_1093_ajcn_nqac009 crossref_primary_10_1111_psyp_13789 crossref_primary_10_1523_JNEUROSCI_3412_11_2011 crossref_primary_10_1016_j_neuron_2011_05_042 crossref_primary_10_1111_ejn_15787 crossref_primary_10_1016_j_neuroimage_2014_05_066 crossref_primary_10_1523_JNEUROSCI_3214_10_2011 crossref_primary_10_1093_cercor_bhq145 crossref_primary_10_1038_nn2067 crossref_primary_10_1093_scan_nst033 crossref_primary_10_1002_hbm_20547 crossref_primary_10_1016_j_amepre_2018_07_044 crossref_primary_10_1016_j_bpsc_2020_06_019 crossref_primary_10_1038_s41467_020_14800_4 crossref_primary_10_1002_da_22091 crossref_primary_10_1002_hbm_20611 crossref_primary_10_1186_1866_1955_4_17 crossref_primary_10_1523_JNEUROSCI_2277_15_2015 crossref_primary_10_1523_JNEUROSCI_2218_11_2011 crossref_primary_10_3389_fnbeh_2022_853697 crossref_primary_10_1038_tp_2013_44 crossref_primary_10_1097_WNR_0b013e328010ac84 crossref_primary_10_1016_j_ijpsycho_2017_11_014 crossref_primary_10_1016_j_nlm_2014_05_002 crossref_primary_10_1523_JNEUROSCI_1979_16_2016 crossref_primary_10_1111_ejn_14590 crossref_primary_10_1093_brain_awz167 crossref_primary_10_1146_annurev_neuro_29_051605_112903 crossref_primary_10_3389_fpsyt_2022_886297 crossref_primary_10_1016_j_neuroimage_2009_06_045 crossref_primary_10_1016_j_cobeha_2017_12_001 crossref_primary_10_1016_j_neuroimage_2012_02_065 crossref_primary_10_1111_j_1460_9568_2008_06489_x crossref_primary_10_1002_hbm_21136 crossref_primary_10_1002_wcs_73 crossref_primary_10_1002_ajmg_b_30944 crossref_primary_10_1097_WNR_0b013e3281532bd7 crossref_primary_10_1016_j_neuroimage_2011_09_029 crossref_primary_10_3389_fnhum_2015_00144 crossref_primary_10_1523_JNEUROSCI_2972_11_2011 crossref_primary_10_1002_wcs_142 crossref_primary_10_1016_j_neuroimage_2022_119744 crossref_primary_10_1016_j_neuropsychologia_2010_07_036 crossref_primary_10_1016_j_neuroimage_2010_03_043 crossref_primary_10_1038_ncomms5567 crossref_primary_10_1002_da_22874 crossref_primary_10_3758_s13415_017_0512_1 crossref_primary_10_1016_j_neubiorev_2006_11_002 crossref_primary_10_1176_appi_ajp_2010_10010129 crossref_primary_10_1093_scan_nsr062 crossref_primary_10_3389_fnbeh_2020_00076 crossref_primary_10_1016_j_neuropsychologia_2014_10_025 crossref_primary_10_1111_j_1460_9568_2008_06202_x crossref_primary_10_1152_jn_01211_2006 crossref_primary_10_1523_JNEUROSCI_4690_09_2010 crossref_primary_10_1016_j_jaac_2013_12_023 crossref_primary_10_1016_j_biopsycho_2016_11_013 crossref_primary_10_3389_fnbeh_2016_00070 crossref_primary_10_1080_17470911003619916 crossref_primary_10_1017_S0033291720000367 crossref_primary_10_1007_s12124_021_09669_x crossref_primary_10_1111_j_1749_6632_2012_06573_x crossref_primary_10_1523_JNEUROSCI_4966_08_2009 crossref_primary_10_1093_cercor_bhr036 crossref_primary_10_1093_cercor_bhl176 crossref_primary_10_1016_j_neuroimage_2008_04_253 crossref_primary_10_1016_j_biopsycho_2016_11_004 crossref_primary_10_3758_s13415_014_0257_z crossref_primary_10_1523_JNEUROSCI_1491_14_2014 crossref_primary_10_1111_j_1460_9568_2008_06147_x crossref_primary_10_1093_scan_nst104 crossref_primary_10_1093_scan_nst106 crossref_primary_10_1162_qjec_2008_123_2_663 crossref_primary_10_1093_scan_nsn002 crossref_primary_10_3389_fncom_2014_00047 crossref_primary_10_1016_j_neuroimage_2011_08_047 crossref_primary_10_1007_s10567_021_00376_y crossref_primary_10_1016_j_nlm_2012_08_005 crossref_primary_10_1038_s41598_022_09894_3 crossref_primary_10_1038_s41598_019_38560_4 crossref_primary_10_1016_j_neuropsychologia_2011_06_008 crossref_primary_10_1016_j_jpain_2019_07_003 crossref_primary_10_1007_s00429_012_0481_7 crossref_primary_10_3389_fnhum_2021_615313 crossref_primary_10_1016_j_pneurobio_2008_09_004 crossref_primary_10_1038_s41467_024_49538_w crossref_primary_10_1016_j_bbr_2013_06_033 crossref_primary_10_1073_pnas_1407535111 crossref_primary_10_1111_adb_12484 crossref_primary_10_1093_cercor_bhy166 crossref_primary_10_1109_TIFS_2016_2543524 crossref_primary_10_1016_j_bbr_2010_04_031 crossref_primary_10_1027_1016_9040_a000500 crossref_primary_10_1016_j_jcps_2011_11_008 crossref_primary_10_1162_jocn_a_01660 crossref_primary_10_1523_JNEUROSCI_1502_11_2011 crossref_primary_10_1111_ejn_14288 crossref_primary_10_1002_hipo_20535 crossref_primary_10_1016_j_neuroimage_2018_02_035 crossref_primary_10_1007_s11154_022_09724_x crossref_primary_10_1152_jn_00352_2010 crossref_primary_10_1523_JNEUROSCI_1309_08_2008 crossref_primary_10_1152_jn_91195_2008 crossref_primary_10_1007_s10567_012_0118_7 crossref_primary_10_1523_JNEUROSCI_0927_14_2015 crossref_primary_10_1007_s11910_013_0365_0 crossref_primary_10_1016_j_bbr_2018_04_034 crossref_primary_10_1196_annals_1417_000 crossref_primary_10_3389_fpsyg_2015_00573 crossref_primary_10_1002_hbm_26137 crossref_primary_10_1016_j_neuron_2024_03_020 crossref_primary_10_1016_j_jpsychires_2023_11_037 crossref_primary_10_1016_j_neuron_2009_01_016 crossref_primary_10_1002_erv_1071 crossref_primary_10_1371_journal_pbio_0040233 crossref_primary_10_1371_journal_pone_0286648 crossref_primary_10_1093_cercor_bhm185 crossref_primary_10_1016_j_biopsych_2006_10_020 crossref_primary_10_1016_j_neuroimage_2023_120413 crossref_primary_10_1016_j_pscychresns_2014_05_003 crossref_primary_10_3389_fpsyg_2023_1120653 crossref_primary_10_1016_j_neuron_2008_01_021 crossref_primary_10_1016_j_bandc_2009_05_007 crossref_primary_10_1002_hbm_23173 crossref_primary_10_1016_j_neuron_2016_04_019 crossref_primary_10_1016_j_conb_2008_07_007 crossref_primary_10_3389_fnbeh_2014_00139 crossref_primary_10_1016_j_cub_2013_03_022 crossref_primary_10_1016_j_neuroimage_2006_10_032 crossref_primary_10_1016_j_pscychresns_2008_02_005 crossref_primary_10_1007_s12078_011_9109_1 crossref_primary_10_1093_cercor_bhm097 crossref_primary_10_1523_JNEUROSCI_3553_11_2012 crossref_primary_10_1162_jocn_a_00795 crossref_primary_10_1016_j_neubiorev_2021_09_005 crossref_primary_10_3758_s13415_014_0261_3 crossref_primary_10_1093_brain_awn136 crossref_primary_10_1016_j_neubiorev_2013_10_005 crossref_primary_10_1016_j_neuroimage_2008_02_031 crossref_primary_10_1523_JNEUROSCI_2265_08_2008 crossref_primary_10_1016_j_dcn_2018_12_006 crossref_primary_10_1093_scan_nsl021 crossref_primary_10_3389_fnins_2014_00056 crossref_primary_10_1002_hbm_23282 crossref_primary_10_1371_journal_pone_0288695 crossref_primary_10_1073_pnas_0604475103 crossref_primary_10_1152_jn_00853_2009 crossref_primary_10_1073_pnas_1213923110 crossref_primary_10_1016_j_neuropsychologia_2019_107139 crossref_primary_10_1111_jcpp_12557 crossref_primary_10_3390_nu15183898 crossref_primary_10_1371_journal_pone_0122798 crossref_primary_10_1016_j_neuroimage_2007_05_008 crossref_primary_10_1038_nn2007 crossref_primary_10_1111_j_1399_5618_2008_00641_x crossref_primary_10_1176_appi_ajp_2012_12060840 crossref_primary_10_1016_j_neuroimage_2007_11_006 crossref_primary_10_1007_s10567_021_00346_4 crossref_primary_10_1111_adb_12440 crossref_primary_10_1016_j_jbusres_2022_07_056 crossref_primary_10_1080_17470919_2015_1017114 crossref_primary_10_1371_journal_pbio_1000444 crossref_primary_10_1523_JNEUROSCI_4647_10_2011 crossref_primary_10_1016_j_neuroimage_2010_01_036 crossref_primary_10_1017_S0266267108002083 crossref_primary_10_1016_j_patrec_2017_05_031 crossref_primary_10_1016_j_psychres_2022_114736 crossref_primary_10_1016_j_conb_2008_08_003 crossref_primary_10_1523_JNEUROSCI_2342_23_2024 crossref_primary_10_1016_j_molmet_2012_06_002 crossref_primary_10_1111_psyp_13463 crossref_primary_10_1371_journal_pbio_3003246 crossref_primary_10_1093_cercor_bhu269 crossref_primary_10_1093_cercor_bhaa147 crossref_primary_10_1038_oby_2012_125 crossref_primary_10_1371_journal_pone_0075657 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.neuron.2005.11.014 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Biology |
| ExternalDocumentID | 16387647 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust |
| GroupedDBID | --- --K -DZ -~X .55 .GJ 0R~ 0SF 123 1RT 1~5 26- 2WC 3O- 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADVLN AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P MVM N9A NCXOZ NPM O-L O9- OK1 OZT P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW X7M 7X8 AAFWJ AAYWO ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c531t-a7c97d37fc5fa67dd5ffe6fc4ae284d969b58498a63a6ce9db3d86f57546d87d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 265 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000236699300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0896-6273 |
| IngestDate | Wed Oct 01 08:54:47 EDT 2025 Sat Sep 28 07:52:50 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c531t-a7c97d37fc5fa67dd5ffe6fc4ae284d969b58498a63a6ce9db3d86f57546d87d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S0896627305009608/pdf |
| PMID | 16387647 |
| PQID | 67600854 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_67600854 pubmed_primary_16387647 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-01-05 |
| PublicationDateYYYYMMDD | 2006-01-05 |
| PublicationDate_xml | – month: 01 year: 2006 text: 2006-01-05 day: 05 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neuron (Cambridge, Mass.) |
| PublicationTitleAlternate | Neuron |
| PublicationYear | 2006 |
| SSID | ssj0014591 |
| Score | 2.3459053 |
| Snippet | Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 157 |
| SubjectTerms | Adult Algorithms Cerebral Cortex - physiology Corpus Striatum - physiology Cues Female Food Preferences - physiology Humans Linear Models Magnetic Resonance Imaging Male Mesencephalon - physiology Models, Neurological Pupil Reaction Time Reward Taste - physiology |
| Title | Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16387647 https://www.proquest.com/docview/67600854 |
| Volume | 49 |
| WOSCitedRecordID | wos000236699300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH64ghf3fctBvEVrZyYLCCKieNDSg0JvJZMFCnamtrUg_nnfy3TqSTx4mUOYGULy8t6Xt30AZ2ihG8qEjHsfEp7aoLmWzYznFg-WtfoqNbG7_pNstVSno9tzcF3XwlBaZa0To6J2pSUf-aWgCJLK0pvBOyfOKIqtTgk05mExQSBDMi07PzGENKv48pQWXKCVrgvnYnZX7BZZ9T-9oC6eVMXzG8SMpuZh7X-TXIfVKcRkt5VMbMCcLzZh67bA63X_k52zmPQZvembsFxxUX5uwVd7SDEb0n6Mpo1_sCUZNlYGNvSUXMsGM1IS1itQr038iFFAnzY4f_P4Wky4xdFewSL7H5tU3mPW77mc2CiYKdxsMHKGjD_62_D6cP9y98inzAzc4pkdcyOtli6RwWbBCOlcFoIXwabGo7lzWugcgY1WRiRGWK9dnjglAkLDVDglXXMHFoqy8HvAmjYzjVxZhJEu1TIY72wQqHhE0-JVUe3Dab3UXZR8CmeYwpcfo2692PuwW-1Wd1A16OgSxpQilQd_fnsIKzOfSnYEiwHPvD-GJTsZ90bDkyhQ-Gy1n78BYtXZsA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+neural+coding+of+reward+preference+involves+dissociable+responses+in+human+ventral+midbrain+and+ventral+striatum&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=O%27Doherty%2C+John+P&rft.au=Buchanan%2C+Tony+W&rft.au=Seymour%2C+Ben&rft.au=Dolan%2C+Raymond+J&rft.date=2006-01-05&rft.issn=0896-6273&rft.volume=49&rft.issue=1&rft.spage=157&rft_id=info:doi/10.1016%2Fj.neuron.2005.11.014&rft_id=info%3Apmid%2F16387647&rft_id=info%3Apmid%2F16387647&rft.externalDocID=16387647 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |