Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum

Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Jg. 49; H. 1; S. 157
Hauptverfasser: O'Doherty, John P, Buchanan, Tony W, Seymour, Ben, Dolan, Raymond J
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 05.01.2006
Schlagworte:
ISSN:0896-6273
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.
AbstractList Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.
Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.
Author Dolan, Raymond J
O'Doherty, John P
Seymour, Ben
Buchanan, Tony W
Author_xml – sequence: 1
  givenname: John P
  surname: O'Doherty
  fullname: O'Doherty, John P
  email: jdoherty@hss.caltech.edu
  organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK. jdoherty@hss.caltech.edu
– sequence: 2
  givenname: Tony W
  surname: Buchanan
  fullname: Buchanan, Tony W
– sequence: 3
  givenname: Ben
  surname: Seymour
  fullname: Seymour, Ben
– sequence: 4
  givenname: Raymond J
  surname: Dolan
  fullname: Dolan, Raymond J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16387647$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtKxDAYRrMYcS76BiJZuWtN2iZplzJ4gwFd6LqkyR_N0CY1aSviy9vB0dUHh8NZfGu0cN4BQheUpJRQfr1PHYzBuzQjhKWUpoQWC7QiZcUTnol8idYx7slMWUVP0ZLyvBS8ECv0_RxAWzXYCfChIVusvLbuDXuDA3zKoHEfwEAApwBbN_l2goi1jdErK5sWZi323sWZWoffx046PIEbDq3O6ibIGUun_2EcgpXD2J2hEyPbCOfH3aDXu9uX7UOye7p_3N7sEsVyOiRSqEroXBjFjORCa2YMcKMKCVlZ6IpXDSuLqpQ8l1xBpZtcl9wwwQquS6GzDbr67fbBf4wQh7qzUUHbSgd-jDUXnJCSFbN4eRTHpgNd98F2MnzVf3dlP6Qecq8
CitedBy_id crossref_primary_10_1371_journal_pone_0185665
crossref_primary_10_3389_fpsyt_2017_00245
crossref_primary_10_1111_j_1751_9004_2007_00064_x
crossref_primary_10_1126_science_1150605
crossref_primary_10_1016_j_neuroimage_2010_12_023
crossref_primary_10_1177_0269881110367731
crossref_primary_10_1073_pnas_1108561108
crossref_primary_10_1111_psyp_14288
crossref_primary_10_1016_j_cobeha_2020_11_001
crossref_primary_10_1007_s12078_011_9107_3
crossref_primary_10_1523_JNEUROSCI_3076_08_2008
crossref_primary_10_1371_journal_pone_0127542
crossref_primary_10_3758_s13415_014_0300_0
crossref_primary_10_1002_ana_21825
crossref_primary_10_1093_cercor_bhp169
crossref_primary_10_1016_j_appet_2012_09_032
crossref_primary_10_1093_scan_nsz046
crossref_primary_10_1111_cdev_13727
crossref_primary_10_3389_fpsyg_2014_01051
crossref_primary_10_3758_s13414_012_0348_2
crossref_primary_10_1016_j_neuroimage_2019_116368
crossref_primary_10_1080_13506285_2014_981626
crossref_primary_10_1016_j_neuroscience_2016_04_021
crossref_primary_10_1371_journal_pone_0028337
crossref_primary_10_1503_jpn_200047
crossref_primary_10_3389_fpsyg_2018_01655
crossref_primary_10_1016_j_neuroscience_2009_05_054
crossref_primary_10_1016_j_physbeh_2014_04_017
crossref_primary_10_1038_s41598_018_32990_2
crossref_primary_10_1523_JNEUROSCI_2058_08_2008
crossref_primary_10_1016_j_bandc_2008_08_004
crossref_primary_10_1016_j_cortex_2014_08_012
crossref_primary_10_1093_brain_awab254
crossref_primary_10_1016_j_brainresbull_2009_05_016
crossref_primary_10_1038_nrneurol_2012_11
crossref_primary_10_1162_jocn_a_00295
crossref_primary_10_3389_fnins_2014_00303
crossref_primary_10_1016_j_neuroimage_2013_11_039
crossref_primary_10_1016_j_neuroimage_2014_05_054
crossref_primary_10_1038_srep34580
crossref_primary_10_1016_j_pain_2008_07_030
crossref_primary_10_1016_j_brainres_2011_09_055
crossref_primary_10_1016_j_cognition_2019_104029
crossref_primary_10_1523_JNEUROSCI_0897_08_2008
crossref_primary_10_1002_hbm_23940
crossref_primary_10_1016_j_cub_2013_04_001
crossref_primary_10_1093_scan_nst047
crossref_primary_10_1523_JNEUROSCI_5227_06_2007
crossref_primary_10_1093_ajcn_nqac009
crossref_primary_10_1111_psyp_13789
crossref_primary_10_1523_JNEUROSCI_3412_11_2011
crossref_primary_10_1016_j_neuron_2011_05_042
crossref_primary_10_1111_ejn_15787
crossref_primary_10_1016_j_neuroimage_2014_05_066
crossref_primary_10_1523_JNEUROSCI_3214_10_2011
crossref_primary_10_1093_cercor_bhq145
crossref_primary_10_1038_nn2067
crossref_primary_10_1093_scan_nst033
crossref_primary_10_1002_hbm_20547
crossref_primary_10_1016_j_amepre_2018_07_044
crossref_primary_10_1016_j_bpsc_2020_06_019
crossref_primary_10_1038_s41467_020_14800_4
crossref_primary_10_1002_da_22091
crossref_primary_10_1002_hbm_20611
crossref_primary_10_1186_1866_1955_4_17
crossref_primary_10_1523_JNEUROSCI_2277_15_2015
crossref_primary_10_1523_JNEUROSCI_2218_11_2011
crossref_primary_10_3389_fnbeh_2022_853697
crossref_primary_10_1038_tp_2013_44
crossref_primary_10_1097_WNR_0b013e328010ac84
crossref_primary_10_1016_j_ijpsycho_2017_11_014
crossref_primary_10_1016_j_nlm_2014_05_002
crossref_primary_10_1523_JNEUROSCI_1979_16_2016
crossref_primary_10_1111_ejn_14590
crossref_primary_10_1093_brain_awz167
crossref_primary_10_1146_annurev_neuro_29_051605_112903
crossref_primary_10_3389_fpsyt_2022_886297
crossref_primary_10_1016_j_neuroimage_2009_06_045
crossref_primary_10_1016_j_cobeha_2017_12_001
crossref_primary_10_1016_j_neuroimage_2012_02_065
crossref_primary_10_1111_j_1460_9568_2008_06489_x
crossref_primary_10_1002_hbm_21136
crossref_primary_10_1002_wcs_73
crossref_primary_10_1002_ajmg_b_30944
crossref_primary_10_1097_WNR_0b013e3281532bd7
crossref_primary_10_1016_j_neuroimage_2011_09_029
crossref_primary_10_3389_fnhum_2015_00144
crossref_primary_10_1523_JNEUROSCI_2972_11_2011
crossref_primary_10_1002_wcs_142
crossref_primary_10_1016_j_neuroimage_2022_119744
crossref_primary_10_1016_j_neuropsychologia_2010_07_036
crossref_primary_10_1016_j_neuroimage_2010_03_043
crossref_primary_10_1038_ncomms5567
crossref_primary_10_1002_da_22874
crossref_primary_10_3758_s13415_017_0512_1
crossref_primary_10_1016_j_neubiorev_2006_11_002
crossref_primary_10_1176_appi_ajp_2010_10010129
crossref_primary_10_1093_scan_nsr062
crossref_primary_10_3389_fnbeh_2020_00076
crossref_primary_10_1016_j_neuropsychologia_2014_10_025
crossref_primary_10_1111_j_1460_9568_2008_06202_x
crossref_primary_10_1152_jn_01211_2006
crossref_primary_10_1523_JNEUROSCI_4690_09_2010
crossref_primary_10_1016_j_jaac_2013_12_023
crossref_primary_10_1016_j_biopsycho_2016_11_013
crossref_primary_10_3389_fnbeh_2016_00070
crossref_primary_10_1080_17470911003619916
crossref_primary_10_1017_S0033291720000367
crossref_primary_10_1007_s12124_021_09669_x
crossref_primary_10_1111_j_1749_6632_2012_06573_x
crossref_primary_10_1523_JNEUROSCI_4966_08_2009
crossref_primary_10_1093_cercor_bhr036
crossref_primary_10_1093_cercor_bhl176
crossref_primary_10_1016_j_neuroimage_2008_04_253
crossref_primary_10_1016_j_biopsycho_2016_11_004
crossref_primary_10_3758_s13415_014_0257_z
crossref_primary_10_1523_JNEUROSCI_1491_14_2014
crossref_primary_10_1111_j_1460_9568_2008_06147_x
crossref_primary_10_1093_scan_nst104
crossref_primary_10_1093_scan_nst106
crossref_primary_10_1162_qjec_2008_123_2_663
crossref_primary_10_1093_scan_nsn002
crossref_primary_10_3389_fncom_2014_00047
crossref_primary_10_1016_j_neuroimage_2011_08_047
crossref_primary_10_1007_s10567_021_00376_y
crossref_primary_10_1016_j_nlm_2012_08_005
crossref_primary_10_1038_s41598_022_09894_3
crossref_primary_10_1038_s41598_019_38560_4
crossref_primary_10_1016_j_neuropsychologia_2011_06_008
crossref_primary_10_1016_j_jpain_2019_07_003
crossref_primary_10_1007_s00429_012_0481_7
crossref_primary_10_3389_fnhum_2021_615313
crossref_primary_10_1016_j_pneurobio_2008_09_004
crossref_primary_10_1038_s41467_024_49538_w
crossref_primary_10_1016_j_bbr_2013_06_033
crossref_primary_10_1073_pnas_1407535111
crossref_primary_10_1111_adb_12484
crossref_primary_10_1093_cercor_bhy166
crossref_primary_10_1109_TIFS_2016_2543524
crossref_primary_10_1016_j_bbr_2010_04_031
crossref_primary_10_1027_1016_9040_a000500
crossref_primary_10_1016_j_jcps_2011_11_008
crossref_primary_10_1162_jocn_a_01660
crossref_primary_10_1523_JNEUROSCI_1502_11_2011
crossref_primary_10_1111_ejn_14288
crossref_primary_10_1002_hipo_20535
crossref_primary_10_1016_j_neuroimage_2018_02_035
crossref_primary_10_1007_s11154_022_09724_x
crossref_primary_10_1152_jn_00352_2010
crossref_primary_10_1523_JNEUROSCI_1309_08_2008
crossref_primary_10_1152_jn_91195_2008
crossref_primary_10_1007_s10567_012_0118_7
crossref_primary_10_1523_JNEUROSCI_0927_14_2015
crossref_primary_10_1007_s11910_013_0365_0
crossref_primary_10_1016_j_bbr_2018_04_034
crossref_primary_10_1196_annals_1417_000
crossref_primary_10_3389_fpsyg_2015_00573
crossref_primary_10_1002_hbm_26137
crossref_primary_10_1016_j_neuron_2024_03_020
crossref_primary_10_1016_j_jpsychires_2023_11_037
crossref_primary_10_1016_j_neuron_2009_01_016
crossref_primary_10_1002_erv_1071
crossref_primary_10_1371_journal_pbio_0040233
crossref_primary_10_1371_journal_pone_0286648
crossref_primary_10_1093_cercor_bhm185
crossref_primary_10_1016_j_biopsych_2006_10_020
crossref_primary_10_1016_j_neuroimage_2023_120413
crossref_primary_10_1016_j_pscychresns_2014_05_003
crossref_primary_10_3389_fpsyg_2023_1120653
crossref_primary_10_1016_j_neuron_2008_01_021
crossref_primary_10_1016_j_bandc_2009_05_007
crossref_primary_10_1002_hbm_23173
crossref_primary_10_1016_j_neuron_2016_04_019
crossref_primary_10_1016_j_conb_2008_07_007
crossref_primary_10_3389_fnbeh_2014_00139
crossref_primary_10_1016_j_cub_2013_03_022
crossref_primary_10_1016_j_neuroimage_2006_10_032
crossref_primary_10_1016_j_pscychresns_2008_02_005
crossref_primary_10_1007_s12078_011_9109_1
crossref_primary_10_1093_cercor_bhm097
crossref_primary_10_1523_JNEUROSCI_3553_11_2012
crossref_primary_10_1162_jocn_a_00795
crossref_primary_10_1016_j_neubiorev_2021_09_005
crossref_primary_10_3758_s13415_014_0261_3
crossref_primary_10_1093_brain_awn136
crossref_primary_10_1016_j_neubiorev_2013_10_005
crossref_primary_10_1016_j_neuroimage_2008_02_031
crossref_primary_10_1523_JNEUROSCI_2265_08_2008
crossref_primary_10_1016_j_dcn_2018_12_006
crossref_primary_10_1093_scan_nsl021
crossref_primary_10_3389_fnins_2014_00056
crossref_primary_10_1002_hbm_23282
crossref_primary_10_1371_journal_pone_0288695
crossref_primary_10_1073_pnas_0604475103
crossref_primary_10_1152_jn_00853_2009
crossref_primary_10_1073_pnas_1213923110
crossref_primary_10_1016_j_neuropsychologia_2019_107139
crossref_primary_10_1111_jcpp_12557
crossref_primary_10_3390_nu15183898
crossref_primary_10_1371_journal_pone_0122798
crossref_primary_10_1016_j_neuroimage_2007_05_008
crossref_primary_10_1038_nn2007
crossref_primary_10_1111_j_1399_5618_2008_00641_x
crossref_primary_10_1176_appi_ajp_2012_12060840
crossref_primary_10_1016_j_neuroimage_2007_11_006
crossref_primary_10_1007_s10567_021_00346_4
crossref_primary_10_1111_adb_12440
crossref_primary_10_1016_j_jbusres_2022_07_056
crossref_primary_10_1080_17470919_2015_1017114
crossref_primary_10_1371_journal_pbio_1000444
crossref_primary_10_1523_JNEUROSCI_4647_10_2011
crossref_primary_10_1016_j_neuroimage_2010_01_036
crossref_primary_10_1017_S0266267108002083
crossref_primary_10_1016_j_patrec_2017_05_031
crossref_primary_10_1016_j_psychres_2022_114736
crossref_primary_10_1016_j_conb_2008_08_003
crossref_primary_10_1523_JNEUROSCI_2342_23_2024
crossref_primary_10_1016_j_molmet_2012_06_002
crossref_primary_10_1111_psyp_13463
crossref_primary_10_1371_journal_pbio_3003246
crossref_primary_10_1093_cercor_bhu269
crossref_primary_10_1093_cercor_bhaa147
crossref_primary_10_1038_oby_2012_125
crossref_primary_10_1371_journal_pone_0075657
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2005.11.014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
ExternalDocumentID 16387647
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
0SF
123
1RT
1~5
26-
2WC
3O-
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
MVM
N9A
NCXOZ
NPM
O-L
O9-
OK1
OZT
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
X7M
7X8
AAFWJ
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c531t-a7c97d37fc5fa67dd5ffe6fc4ae284d969b58498a63a6ce9db3d86f57546d87d2
IEDL.DBID 7X8
ISICitedReferencesCount 265
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000236699300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0896-6273
IngestDate Wed Oct 01 08:54:47 EDT 2025
Sat Sep 28 07:52:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c531t-a7c97d37fc5fa67dd5ffe6fc4ae284d969b58498a63a6ce9db3d86f57546d87d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S0896627305009608/pdf
PMID 16387647
PQID 67600854
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67600854
pubmed_primary_16387647
PublicationCentury 2000
PublicationDate 2006-01-05
PublicationDateYYYYMMDD 2006-01-05
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-05
  day: 05
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2006
SSID ssj0014591
Score 2.3459053
Snippet Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 157
SubjectTerms Adult
Algorithms
Cerebral Cortex - physiology
Corpus Striatum - physiology
Cues
Female
Food Preferences - physiology
Humans
Linear Models
Magnetic Resonance Imaging
Male
Mesencephalon - physiology
Models, Neurological
Pupil
Reaction Time
Reward
Taste - physiology
Title Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum
URI https://www.ncbi.nlm.nih.gov/pubmed/16387647
https://www.proquest.com/docview/67600854
Volume 49
WOSCitedRecordID wos000236699300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58ghff79cexFvUms0-QBARxYOWHlR6K9kXFGxS21oQ_7wzm6aexIOXHJYkLDuzM7Pzzc4HcCKddClPLxKOxi7h4kIlShk8uBonsoYJDR_R89dH2Wyqdlu3ZuCqvgtDZZW1TYyG2pWWcuTnghAklfHr_ntCnFGErU4INGZhPsVAhnRatn8wBJ5VfHlKi0Sgl64vzsXqrtgtsup_ekZdPOkWz28hZnQ19yv_m-QqLE9CTHZT6cQazPhiHTZuCjxe9z7ZKYtFnzGbvg6LFRfl5wZ8tQaE2ZD1YzRt_IMtybGxMrCBp-Ja1p-SkrBugXZt7IeMAH0SsHnz-FosuMXRbsEi-x8bV9lj1us6Q2wULC_cdDByhow-epvwcn_3fPuQTJgZEot7dpTk0mqUsQw2C7mQzmUheBEszz26O6eFNhjYaJWLNBfWa2dSp0TA0JALp6S73IK5oiz8DjCem-Cl09J4zw1vGGUyaaXSmQvO-MtdOK6XuoOaT3BGXvjyY9ipF3sXtitpdfpVg44OxZhScLn357f7sDTNqWQHMB9wz_tDWLDjUXc4OIoKhc9m6-kbAtjaAg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+neural+coding+of+reward+preference+involves+dissociable+responses+in+human+ventral+midbrain+and+ventral+striatum&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=O%27Doherty%2C+John+P&rft.au=Buchanan%2C+Tony+W&rft.au=Seymour%2C+Ben&rft.au=Dolan%2C+Raymond+J&rft.date=2006-01-05&rft.issn=0896-6273&rft.volume=49&rft.issue=1&rft.spage=157&rft_id=info:doi/10.1016%2Fj.neuron.2005.11.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon