Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells
Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative...
Uloženo v:
| Vydáno v: | Proceedings of the National Academy of Sciences - PNAS Ročník 103; číslo 32; s. 12167 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
08.08.2006
|
| Témata: | |
| ISSN: | 0027-8424 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role. |
|---|---|
| AbstractList | Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role. Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role.Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract and the vascular system. The use of stem cells for cell-based tissue engineering and regeneration strategies represents a promising alternative for smooth muscle repair. For such strategies to succeed, a reliable source of smooth muscle precursor cells must be identified. Adipose tissue provides an abundant source of multipotent cells. In this study, the capacity of processed lipoaspirate (PLA) and adipose-derived stem cells to differentiate into phenotypic and functional smooth muscle cells was evaluated. To induce differentiation, PLA cells were cultured in smooth muscle differentiation medium. Smooth muscle differentiation of PLA cells induced genetic expression of all smooth muscle markers and further confirmed by increased protein expression of smooth muscle cell-specific alpha actin (ASMA), calponin, caldesmon, SM22, myosin heavy chain (MHC), and smoothelin. Clonal studies of adipose derived multipotent cells demonstrated differentiation of these cells into smooth muscle cells in addition to trilineage differentiation capacity. Importantly, smooth muscle-differentiated cells, but not their precursors, exhibit the functional ability to contract and relax in direct response to pharmacologic agents. In conclusion, adipose-derived cells have the potential to differentiate into functional smooth muscle cells and, thus, adipose tissue can be a useful source of cells for treatment of injured tissues where smooth muscle plays an important role. |
| Author | Alfonso, Zeni Zhang, Rong Rodríguez, Larissa V Leung, Joanne Wu, Benjamin Ignarro, Louis J |
| Author_xml | – sequence: 1 givenname: Larissa V surname: Rodríguez fullname: Rodríguez, Larissa V email: lrodriguez@mednet.ucla.edu organization: Department of Urology, University of California School of Medicine, Los Angeles, CA 90024, USA. lrodriguez@mednet.ucla.edu – sequence: 2 givenname: Zeni surname: Alfonso fullname: Alfonso, Zeni – sequence: 3 givenname: Rong surname: Zhang fullname: Zhang, Rong – sequence: 4 givenname: Joanne surname: Leung fullname: Leung, Joanne – sequence: 5 givenname: Benjamin surname: Wu fullname: Wu, Benjamin – sequence: 6 givenname: Louis J surname: Ignarro fullname: Ignarro, Louis J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16880387$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1kD1PwzAURT0U0VKY2ZAntpRnJ7HdEVV8SZVYYI4c55kaHDvEzsC_J6hlerq6R0dX74IsQgxIyDWDDQNZ3g1Bpw0IqFQNDMoFWQFwWaiKV0tykdInAGxrBedkyYRSUCq5Il87H0P8wOAM7Sef3RAzhkxTxp4a9D5RF-hh6nWgupvbhDS7lCaknbMWxxl2OuNM5UjtFEx2MWhPUx9jPszOZDweTZfkzGqf8Op01-T98eFt91zsX59edvf7wtQl5KKVqKQxgMDaqlXWtJ0S3GgN0nJAbbRhQmKl58hFh1KLLa-RMdtZqKTga3J79A5j_J4w5aZ36W-BDhin1AglOYhazeDNCZzaHrtmGF2vx5_m_z38F3sMaxQ |
| CitedBy_id | crossref_primary_10_1111_j_1464_410X_2011_10206_x crossref_primary_10_1007_s10103_007_0479_1 crossref_primary_10_1517_14712598_7_10_1483 crossref_primary_10_1007_s00192_009_1090_8 crossref_primary_10_1007_s11934_015_0569_8 crossref_primary_10_1007_s11934_007_0034_4 crossref_primary_10_1161_CIRCRESAHA_107_150201 crossref_primary_10_1161_ATVBAHA_107_141069 crossref_primary_10_2478_s11658_011_0005_0 crossref_primary_10_3389_fgene_2020_588602 crossref_primary_10_1080_14712598_2018_1439013 crossref_primary_10_5966_sctm_2012_0092 crossref_primary_10_1016_j_actbio_2020_01_033 crossref_primary_10_1111_j_1582_4934_2009_00915_x crossref_primary_10_3389_fphys_2017_00534 crossref_primary_10_1016_j_cps_2014_12_007 crossref_primary_10_2217_17460751_4_1_109 crossref_primary_10_1002_jcp_30019 crossref_primary_10_1007_s12015_010_9144_3 crossref_primary_10_1517_17460441_2014_894975 crossref_primary_10_1002_ar_22798 crossref_primary_10_1007_s11934_011_0210_4 crossref_primary_10_1089_ten_2006_0420 crossref_primary_10_3390_app12094688 crossref_primary_10_1161_01_RES_0000266448_30370_a0 crossref_primary_10_1089_ten_tea_2009_0303 crossref_primary_10_1007_s13577_011_0022_3 crossref_primary_10_1016_j_biomaterials_2014_07_011 crossref_primary_10_2478_s11535_013_0145_x crossref_primary_10_1111_j_1582_4934_2010_01017_x crossref_primary_10_1155_2013_713959 crossref_primary_10_1016_j_biomaterials_2017_08_028 crossref_primary_10_1089_scd_2017_0020 crossref_primary_10_4252_wjsc_v2_i1_1 crossref_primary_10_1080_19768354_2010_525839 crossref_primary_10_3390_ijms19020517 crossref_primary_10_1093_cvr_cvs357 crossref_primary_10_1016_j_ejogrb_2022_08_028 crossref_primary_10_1042_CBI20100124 crossref_primary_10_1186_s13287_017_0585_3 crossref_primary_10_1093_cvr_cvs253 crossref_primary_10_1016_j_urology_2011_08_043 crossref_primary_10_1089_scd_2015_0343 crossref_primary_10_1089_ten_teb_2011_0264 crossref_primary_10_1186_s41702_020_0056_9 crossref_primary_10_1093_burnst_tkac028 crossref_primary_10_2353_ajpath_2010_091150 crossref_primary_10_1007_s00192_011_1432_1 crossref_primary_10_1371_journal_pone_0119010 crossref_primary_10_1007_s11934_010_0155_z crossref_primary_10_1007_s10529_014_1554_x crossref_primary_10_1100_2012_793823 crossref_primary_10_1016_j_diff_2010_05_004 crossref_primary_10_1039_C6CS00052E crossref_primary_10_1111_cei_12270 crossref_primary_10_1111_iju_12137 crossref_primary_10_1016_j_jss_2012_01_047 crossref_primary_10_1186_s13036_018_0122_7 crossref_primary_10_2217_rme_14_11 crossref_primary_10_1042_BC20070102 crossref_primary_10_3727_096368915X686229 crossref_primary_10_1080_14653240902736266 crossref_primary_10_3390_ijms20205218 crossref_primary_10_5966_sctm_2015_0220 crossref_primary_10_1007_s00345_010_0508_8 crossref_primary_10_3390_cells9102158 crossref_primary_10_1089_scd_2011_0086 crossref_primary_10_1038_s41598_020_76796_7 crossref_primary_10_1155_2014_827540 crossref_primary_10_1016_j_btre_2025_e00878 crossref_primary_10_1371_journal_pone_0017771 crossref_primary_10_3390_cells14050343 crossref_primary_10_1089_ten_tea_2020_0118 crossref_primary_10_1517_14712598_7_6_791 crossref_primary_10_1517_14712590903563352 crossref_primary_10_1371_journal_pone_0164918 crossref_primary_10_1016_j_yexcr_2008_12_018 crossref_primary_10_1177_1090820X10373063 crossref_primary_10_1155_2016_6979368 crossref_primary_10_1016_S0210_4806_10_70006_1 crossref_primary_10_1155_2012_812693 crossref_primary_10_1002_nau_20833 crossref_primary_10_1007_s00441_019_03009_7 crossref_primary_10_1096_fj_12_218578 crossref_primary_10_1111_nmo_12182 crossref_primary_10_1016_j_revmed_2013_08_007 crossref_primary_10_1007_s10439_013_0883_6 crossref_primary_10_1016_j_urology_2012_10_030 crossref_primary_10_1007_s40005_018_00413_z crossref_primary_10_1163_092050611X587538 crossref_primary_10_1634_stemcells_2008_0363 crossref_primary_10_3390_polym14050877 crossref_primary_10_1002_sctm_16_0329 crossref_primary_10_1016_S2173_5786_10_70006_8 crossref_primary_10_1088_1748_6041_11_3_031001 crossref_primary_10_1517_14712598_2016_1118460 crossref_primary_10_1111_j_1743_6109_2008_01190_x crossref_primary_10_3390_ijms21249598 crossref_primary_10_1007_s12015_011_9244_8 crossref_primary_10_1002_jcb_22167 crossref_primary_10_1007_s00441_021_03478_9 crossref_primary_10_1016_j_procbio_2024_04_038 crossref_primary_10_1089_ten_teb_2014_0627 crossref_primary_10_1038_srep21883 crossref_primary_10_1016_j_bbrc_2010_09_012 crossref_primary_10_3727_096368914X685050 crossref_primary_10_1016_j_colsurfb_2016_06_023 crossref_primary_10_1089_ten_tea_2019_0216 crossref_primary_10_1007_s12631_012_0186_z crossref_primary_10_1177_2041731419891256 crossref_primary_10_1371_journal_pone_0095583 crossref_primary_10_1155_2016_1267480 crossref_primary_10_1002_ar_22606 crossref_primary_10_1016_j_biomaterials_2012_01_014 crossref_primary_10_1155_2019_8907570 crossref_primary_10_1016_j_rec_2015_02_025 crossref_primary_10_5966_sctm_2012_0009 crossref_primary_10_1139_cjpp_2013_0377 crossref_primary_10_1002_jcb_24821 crossref_primary_10_1016_j_cmet_2014_03_025 crossref_primary_10_1002_mus_21781 crossref_primary_10_1016_j_biomaterials_2009_02_035 crossref_primary_10_1002_term_2223 crossref_primary_10_1194_jlr_R021089 crossref_primary_10_1111_j_1442_2042_2011_02865_x crossref_primary_10_1007_s12265_010_9246_y crossref_primary_10_1111_j_1525_1594_2009_00795_x crossref_primary_10_1097_SAP_0000000000003376 crossref_primary_10_1007_s13233_015_3138_6 crossref_primary_10_3892_mmr_2013_1707 crossref_primary_10_1093_intimm_dxx002 crossref_primary_10_1016_j_bbrc_2009_10_080 crossref_primary_10_1016_j_jvs_2016_09_034 crossref_primary_10_1007_s00772_017_0349_5 crossref_primary_10_1016_j_medcle_2017_04_018 crossref_primary_10_3389_fcell_2022_901661 crossref_primary_10_1155_2015_734731 crossref_primary_10_1186_scrt528 crossref_primary_10_3892_mmr_2014_2280 crossref_primary_10_1007_s11596_010_0344_5 crossref_primary_10_1007_s12015_009_9084_y crossref_primary_10_1016_j_biomaterials_2012_10_026 crossref_primary_10_1016_j_juro_2016_04_099 crossref_primary_10_1089_scd_2014_0132 crossref_primary_10_1016_j_actbio_2014_08_031 crossref_primary_10_1172_JCI28184 crossref_primary_10_1007_s12010_012_9932_0 crossref_primary_10_1002_stem_1023 crossref_primary_10_1097_01_prs_0000267699_99369_a8 crossref_primary_10_1177_1933719109344773 crossref_primary_10_1371_journal_pone_0020540 crossref_primary_10_1016_j_biomaterials_2015_09_008 crossref_primary_10_1002_nau_20448 crossref_primary_10_1091_mbc_e09_07_0589 crossref_primary_10_1111_j_1464_410X_2008_07507_x crossref_primary_10_1002_jbm_a_35568 crossref_primary_10_1016_j_biomaterials_2010_02_011 crossref_primary_10_1016_j_nbt_2012_04_002 crossref_primary_10_1186_s13287_021_02488_2 crossref_primary_10_1155_2014_598793 crossref_primary_10_1016_j_tcm_2006_11_001 crossref_primary_10_1007_s11934_013_0352_7 crossref_primary_10_1016_j_amsu_2018_11_005 crossref_primary_10_1016_S1879_5226_11_60012_2 crossref_primary_10_1007_s00192_007_0553_z crossref_primary_10_1016_j_diabres_2011_12_011 crossref_primary_10_3727_096368909X481764 crossref_primary_10_1371_journal_pone_0195315 crossref_primary_10_1089_ten_tec_2012_0054 crossref_primary_10_1111_j_1464_410X_2009_08352_x crossref_primary_10_1016_j_jpurol_2014_03_010 crossref_primary_10_1093_humrep_dem265 crossref_primary_10_3390_biomedicines5010004 crossref_primary_10_1007_s00404_013_3028_0 crossref_primary_10_1155_2023_6404468 crossref_primary_10_2310_6670_2007_00053 crossref_primary_10_1016_j_biomaterials_2014_01_075 crossref_primary_10_1016_j_biomaterials_2011_05_086 crossref_primary_10_1097_SAP_0b013e31818c4b0c crossref_primary_10_3892_mmr_2013_1796 crossref_primary_10_1016_S0007_9960_07_88704_9 crossref_primary_10_1007_s00167_011_1655_1 crossref_primary_10_1016_j_bbrc_2010_02_018 crossref_primary_10_1089_pho_2015_3978 crossref_primary_10_1007_s11745_014_3981_9 crossref_primary_10_1186_s13287_020_01648_0 crossref_primary_10_3109_14653240903350265 crossref_primary_10_1016_j_jss_2009_08_001 crossref_primary_10_1016_j_bcp_2010_01_027 crossref_primary_10_1111_iwj_12569 crossref_primary_10_1371_journal_pone_0083024 crossref_primary_10_1089_ten_tea_2014_0208 crossref_primary_10_1089_dna_2016_3546 crossref_primary_10_1016_j_jvs_2007_02_046 crossref_primary_10_1016_j_actbio_2019_07_032 crossref_primary_10_1007_s10616_020_00374_y |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.0604850103 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| ExternalDocumentID | 16880387 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK067198-01 – fundername: NIDDK NIH HHS grantid: R01 DK067198 – fundername: NICHD NIH HHS grantid: 5-K12-HD01400 – fundername: NICHD NIH HHS grantid: K12 HD001400 |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c530t-b7e87cc0e01b4b8fcbd862caa07f20eacac167e4a7f226de7a6925e11fdf04762 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 263 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239701900062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0027-8424 |
| IngestDate | Sun Nov 09 11:28:07 EST 2025 Thu Apr 03 07:02:23 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 32 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c530t-b7e87cc0e01b4b8fcbd862caa07f20eacac167e4a7f226de7a6925e11fdf04762 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/1567713 |
| PMID | 16880387 |
| PQID | 68720658 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_68720658 pubmed_primary_16880387 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-08-08 |
| PublicationDateYYYYMMDD | 2006-08-08 |
| PublicationDate_xml | – month: 08 year: 2006 text: 2006-08-08 day: 08 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2006 |
| SSID | ssj0009580 |
| Score | 2.3692195 |
| Snippet | Smooth muscle is a major component of human tissues and is essential for the normal function of a multitude of organs including the intestine, urinary tract... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 12167 |
| SubjectTerms | Actins - metabolism Adipose Tissue - cytology Adipose Tissue - metabolism Animals Calcium-Binding Proteins - metabolism Calmodulin-Binding Proteins - metabolism Calponins Cell Differentiation Gene Expression Regulation Humans Microfilament Proteins - metabolism Muscle, Smooth - metabolism Myocytes, Smooth Muscle - cytology Myocytes, Smooth Muscle - metabolism Myosin Heavy Chains - metabolism Rats Rats, Sprague-Dawley |
| Title | Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16880387 https://www.proquest.com/docview/68720658 |
| Volume | 103 |
| WOSCitedRecordID | wos000239701900062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6r68GLuj7XZw4e9BBN07TJgiCyuHhx2YPC3kqaByxqu9rq73fStOBFPHgplLZDSCbfTKbJ9yF0rh2EMRoZQoXKCZeUkzx3jiROKM2NiyPnGrEJMZ3K-Xw066Gb7iyM31bZYWID1KbUvkZ-nUrBfLi8Xb4Trxnl_622AhorqB9DIuN9WszlD8pdGQ6gMMBhznhH7CPi62WhqitPGyMTr3Pwe3bZRJnJ5v_at4U22uwS3wV3GKCeLbbRoJ2_Fb5oSaYvd9DL-LUsSvCehcZhU2EJ2XONPa8z9tX8Ci8K3Cj4YWXgaWVx3QwS7jRVABtqC2_VJfbRMRQVcfVWwuCDzQpaECztoufJ_dP4gbTCC0QnMa1JLqwUWlNLo5zn0uncwMJHK0WFYxSgWukoFZYruGWpsUKlI5bYKHLGUQ7wuodWi7KwBwg7zSwbKTqiVnAJ-YEwxjnIWjTYheXoEJ113ZmBY_tWqcKWn1XWdegQ7YcRyZaBfyOLUgAdsHT457dHaD2UTDwL9zHqO5jS9gSt6S_osY_Txl_gOp09fgPoJc7q |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clonogenic+multipotent+stem+cells+in+human+adipose+tissue+differentiate+into+functional+smooth+muscle+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rodr%C3%ADguez%2C+Larissa+V&rft.au=Alfonso%2C+Zeni&rft.au=Zhang%2C+Rong&rft.au=Leung%2C+Joanne&rft.date=2006-08-08&rft.issn=0027-8424&rft.volume=103&rft.issue=32&rft.spage=12167&rft_id=info:doi/10.1073%2Fpnas.0604850103&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |