Relaxations of Weakly Coupled Stochastic Dynamic Programs

We consider a broad class of stochastic dynamic programming problems that are amenable to relaxation via decomposition. These problems comprise multiple subproblems that are independent of each other except for a collection of coupling constraints on the action space. We fit an additively separable...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research Ročník 56; číslo 3; s. 712 - 727
Hlavní autoři: Adelman, Daniel, Mersereau, Adam J
Médium: Journal Article
Jazyk:angličtina
Vydáno: Linthicum, MD INFORMS 01.05.2008
Institute for Operations Research and the Management Sciences
Témata:
ISSN:0030-364X, 1526-5463
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a broad class of stochastic dynamic programming problems that are amenable to relaxation via decomposition. These problems comprise multiple subproblems that are independent of each other except for a collection of coupling constraints on the action space. We fit an additively separable value function approximation using two techniques, namely, Lagrangian relaxation and the linear programming (LP) approach to approximate dynamic programming. We prove various results comparing the relaxations to each other and to the optimal problem value. We also provide a column generation algorithm for solving the LP-based relaxation to any desired optimality tolerance, and we report on numerical experiments on bandit-like problems. Our results provide insight into the complexity versus quality trade-off when choosing which of these relaxations to implement.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0030-364X
1526-5463
DOI:10.1287/opre.1070.0445