Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble l...
Uložené v:
| Vydané v: | Advanced science Ročník 9; číslo 12; s. e2106004 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
John Wiley & Sons, Inc
01.04.2022
John Wiley and Sons Inc Wiley |
| Predmet: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed.
This review summarizes the recent advances and strategies to suppress the shuttle effect of lithium polysulfides (LiPSs) in lithium–sulfur batteries. These strategies are composed of using the modified sulfur hosts to immobilize LiPSs, electrolyte systems to alleviate shuttle behavior, functional separator to intercept LiPSs, and anode surface engineering to avoid the chemical reaction between LiPSs and Li. |
|---|---|
| AbstractList | Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and cost-effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li-S batteries is introduced first to give an in-deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li-S batteries are proposed.Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and cost-effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li-S batteries is introduced first to give an in-deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li-S batteries are proposed. Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. This review summarizes the recent advances and strategies to suppress the shuttle effect of lithium polysulfides (LiPSs) in lithium–sulfur batteries. These strategies are composed of using the modified sulfur hosts to immobilize LiPSs, electrolyte systems to alleviate shuttle behavior, functional separator to intercept LiPSs, and anode surface engineering to avoid the chemical reaction between LiPSs and Li. Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. This review summarizes the recent advances and strategies to suppress the shuttle effect of lithium polysulfides (LiPSs) in lithium–sulfur batteries. These strategies are composed of using the modified sulfur hosts to immobilize LiPSs, electrolyte systems to alleviate shuttle behavior, functional separator to intercept LiPSs, and anode surface engineering to avoid the chemical reaction between LiPSs and Li. |
| Author | Wei, Qiulong Xie, Qingshui Li, Yikai Huang, Youzhang Lin, Liang Liu, Lie Qiao, Zhensong Lin, Jie Zhang, Chengkun Wang, Laisen Peng, Dong‐Liang |
| AuthorAffiliation | 1 State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials Xiamen University Xiamen 361005 P. R. China 2 Shenzhen Research Institute of Xiamen University Shenzhen 518000 P. R. China |
| AuthorAffiliation_xml | – name: 2 Shenzhen Research Institute of Xiamen University Shenzhen 518000 P. R. China – name: 1 State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials Xiamen University Xiamen 361005 P. R. China |
| Author_xml | – sequence: 1 givenname: Youzhang orcidid: 0000-0002-3581-2995 surname: Huang fullname: Huang, Youzhang organization: Xiamen University – sequence: 2 givenname: Liang surname: Lin fullname: Lin, Liang organization: Xiamen University – sequence: 3 givenname: Chengkun surname: Zhang fullname: Zhang, Chengkun organization: Xiamen University – sequence: 4 givenname: Lie surname: Liu fullname: Liu, Lie organization: Xiamen University – sequence: 5 givenname: Yikai surname: Li fullname: Li, Yikai organization: Xiamen University – sequence: 6 givenname: Zhensong surname: Qiao fullname: Qiao, Zhensong organization: Xiamen University – sequence: 7 givenname: Jie surname: Lin fullname: Lin, Jie organization: Xiamen University – sequence: 8 givenname: Qiulong surname: Wei fullname: Wei, Qiulong organization: Xiamen University – sequence: 9 givenname: Laisen surname: Wang fullname: Wang, Laisen organization: Xiamen University – sequence: 10 givenname: Qingshui surname: Xie fullname: Xie, Qingshui email: xieqsh@xmu.edu.cn organization: Shenzhen Research Institute of Xiamen University – sequence: 11 givenname: Dong‐Liang orcidid: 0000-0003-4155-4766 surname: Peng fullname: Peng, Dong‐Liang email: dlpeng@xmu.edu.cn organization: Xiamen University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35233996$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstuEzEUhkeoiF7oliUaiQ2bhOPLeDwbpFAujRSJigBbyzO2E0eTcWt7UmXXR6jEG_ZJ8JAStd10Zfv4P59_n3OOs4POdTrL3iAYIwD8QapNGGPACBgAfZEdYVTxEeGUHjzYH2anIawAABWkpIi_yg5JgQmpKnaUrX_oRncxn6iN7BodctmpfB69jHph0zG6a-lVfuHabehbY1WKzZd9jK3Op93S1jZa1-XG-fzcLpZ3N7cX2qfTeqDlM3t382eef5Ixap9wr7OXRrZBn96vJ9mvr19-np2PZt-_Tc8ms1FT4IqOeHJJoGJEsYoZVRuQRBe4TFZrRLgkSpaIG1WiQhtpVNMYyTlSDWG1QoDISTbdcZWTK3Hp7Vr6rXDSin8B5xdC-mibVota4wJKKMCgktZgJLASa04ryhBDhiTWxx3rsq_XWg3V8rJ9BH1809mlWLiNqIAMbUmA9_cA7656HaJY29DotpWddn0QmKV20BLzwfe7J9KV632XSpVUBak4FGWZVG8fOtpb-d_VJBjvBI13IXht9hIEYpgcMUyO2E9OSqBPEhob5dDZ9CPbPpt2bVu9feYRMfn8e05YRclfzInZ6g |
| CitedBy_id | crossref_primary_10_1016_j_jpowsour_2025_236682 crossref_primary_10_1002_smll_202312288 crossref_primary_10_1016_j_apsusc_2022_154773 crossref_primary_10_3390_ma17225615 crossref_primary_10_1002_smll_202502934 crossref_primary_10_1002_adma_202503365 crossref_primary_10_1016_j_carbon_2022_09_020 crossref_primary_10_1007_s11581_024_05806_9 crossref_primary_10_1002_smsc_202300339 crossref_primary_10_1016_j_jcis_2024_04_001 crossref_primary_10_3390_batteries10040124 crossref_primary_10_1016_j_cis_2025_103479 crossref_primary_10_1002_ente_202401451 crossref_primary_10_1039_D4RA06245K crossref_primary_10_1016_j_cej_2023_147315 crossref_primary_10_1002_adfm_202300825 crossref_primary_10_1002_smll_202309422 crossref_primary_10_1016_j_jcis_2025_137953 crossref_primary_10_1002_smll_202401567 crossref_primary_10_1016_j_cej_2024_150101 crossref_primary_10_1002_chem_202501264 crossref_primary_10_1038_s43246_025_00805_3 crossref_primary_10_1016_j_jechem_2023_10_060 crossref_primary_10_1016_j_est_2023_110087 crossref_primary_10_1007_s11581_023_05321_3 crossref_primary_10_1016_j_nanoen_2023_108603 crossref_primary_10_1016_j_ensm_2025_104429 crossref_primary_10_3390_molecules29215146 crossref_primary_10_1002_smll_202306140 crossref_primary_10_1016_j_jpowsour_2025_236783 crossref_primary_10_1002_anie_202307802 crossref_primary_10_1016_j_cej_2022_139566 crossref_primary_10_1002_smll_202409740 crossref_primary_10_1016_j_biombioe_2023_106999 crossref_primary_10_1039_D4NR01520G crossref_primary_10_1002_ente_202500550 crossref_primary_10_1002_cphc_202400406 crossref_primary_10_1002_smll_202300843 crossref_primary_10_1016_j_est_2024_115168 crossref_primary_10_1016_j_est_2023_108596 crossref_primary_10_1016_j_jallcom_2024_177268 crossref_primary_10_1002_ente_202300092 crossref_primary_10_1002_sus2_119 crossref_primary_10_1016_j_carbon_2023_118066 crossref_primary_10_1002_aenm_202303389 crossref_primary_10_1002_chem_202401442 crossref_primary_10_1016_j_jcis_2024_05_140 crossref_primary_10_1016_j_jallcom_2024_178113 crossref_primary_10_1002_advs_202404834 crossref_primary_10_3389_fenrg_2023_1150737 crossref_primary_10_1016_j_electacta_2023_143033 crossref_primary_10_1016_j_jcis_2023_06_037 crossref_primary_10_1016_j_materresbull_2023_112563 crossref_primary_10_1007_s42765_023_00341_0 crossref_primary_10_1016_j_compositesb_2023_110679 crossref_primary_10_1016_j_mattod_2023_02_027 crossref_primary_10_1016_j_jpowsour_2024_235831 crossref_primary_10_1002_smll_202205470 crossref_primary_10_1016_j_jallcom_2023_173394 crossref_primary_10_1002_smll_202303784 crossref_primary_10_1002_smll_202307902 crossref_primary_10_1016_j_nanoen_2024_109611 crossref_primary_10_1002_smll_202300950 crossref_primary_10_1021_jacs_4c10238 crossref_primary_10_1002_smll_202504995 crossref_primary_10_1016_j_nanoen_2023_108353 crossref_primary_10_1016_j_apsusc_2023_157963 crossref_primary_10_1016_j_jallcom_2023_170922 crossref_primary_10_1002_adma_202204636 crossref_primary_10_1016_j_est_2024_113724 crossref_primary_10_1016_j_mtphys_2024_101453 crossref_primary_10_1016_j_apsusc_2025_163054 crossref_primary_10_1016_j_cej_2024_154347 crossref_primary_10_1039_D3NR06247C crossref_primary_10_1039_D2SE01164F crossref_primary_10_1007_s12274_022_5029_4 crossref_primary_10_1039_D4NR03190C crossref_primary_10_1002_batt_202500219 crossref_primary_10_1016_j_est_2023_110049 crossref_primary_10_1016_j_ccr_2025_217016 crossref_primary_10_1039_D5EB00073D crossref_primary_10_3390_batteries10060169 crossref_primary_10_1007_s40820_022_00976_5 crossref_primary_10_1002_adma_202310245 crossref_primary_10_1016_j_jpowsour_2023_233530 crossref_primary_10_1016_j_electacta_2022_141539 crossref_primary_10_1002_smll_202304210 crossref_primary_10_1016_j_cej_2022_140462 crossref_primary_10_1016_j_cej_2025_163225 crossref_primary_10_1002_cnma_202300087 crossref_primary_10_1002_cssc_202400799 crossref_primary_10_1016_j_matchemphys_2024_130236 crossref_primary_10_1016_j_jcis_2024_11_211 crossref_primary_10_1007_s12598_024_02708_7 crossref_primary_10_1002_batt_202400284 crossref_primary_10_1002_smtd_202501183 crossref_primary_10_1063_5_0244568 crossref_primary_10_3390_inorganics13090294 crossref_primary_10_3390_batteries9120594 crossref_primary_10_1016_j_est_2024_110479 crossref_primary_10_1016_j_cej_2022_139923 crossref_primary_10_1002_er_8103 crossref_primary_10_1002_ceat_202300320 crossref_primary_10_1016_j_cej_2025_168561 crossref_primary_10_1002_smll_202302386 crossref_primary_10_1016_j_jallcom_2024_175682 crossref_primary_10_1016_j_susmat_2023_e00712 crossref_primary_10_1007_s40820_024_01446_w crossref_primary_10_1016_j_ccr_2025_216988 crossref_primary_10_1002_ange_202319847 crossref_primary_10_1021_acsenergylett_5c00768 crossref_primary_10_1016_j_ssi_2025_116857 crossref_primary_10_1016_j_jallcom_2025_182143 crossref_primary_10_1002_ece2_80 crossref_primary_10_1039_D5NR02720A crossref_primary_10_1002_aenm_202203540 crossref_primary_10_1002_adma_202212116 crossref_primary_10_1016_j_jallcom_2024_174583 crossref_primary_10_1016_j_est_2023_109708 crossref_primary_10_1021_jacs_4c05827 crossref_primary_10_1002_chem_202303285 crossref_primary_10_1016_j_cej_2023_147847 crossref_primary_10_1016_j_cej_2023_144338 crossref_primary_10_1002_adfm_202214430 crossref_primary_10_3390_nano12203612 crossref_primary_10_1002_anie_202319847 crossref_primary_10_1002_cphc_202500315 crossref_primary_10_1016_j_est_2025_117698 crossref_primary_10_1016_S1872_5805_24_60838_3 crossref_primary_10_1002_ange_202406693 crossref_primary_10_1002_adfm_202212499 crossref_primary_10_1002_asia_202500529 crossref_primary_10_1002_ange_202410823 crossref_primary_10_1016_j_est_2024_113002 crossref_primary_10_1039_D3QM00850A crossref_primary_10_1557_s43577_024_00677_x crossref_primary_10_1002_ange_202307802 crossref_primary_10_1007_s43938_024_00045_w crossref_primary_10_1016_j_cej_2024_157002 crossref_primary_10_1016_j_mser_2024_100865 crossref_primary_10_1038_s41467_024_47565_1 crossref_primary_10_1002_ece2_22 crossref_primary_10_1007_s11581_024_05891_w crossref_primary_10_1002_adma_202411525 crossref_primary_10_1016_j_energy_2025_134755 crossref_primary_10_1038_s41427_024_00568_2 crossref_primary_10_1039_D5TA01365H crossref_primary_10_1002_batt_202400484 crossref_primary_10_1016_j_ensm_2025_104369 crossref_primary_10_1002_advs_202505685 crossref_primary_10_1002_chem_202303507 crossref_primary_10_1007_s40820_023_01037_1 crossref_primary_10_1016_j_est_2023_108072 crossref_primary_10_3390_nano12162752 crossref_primary_10_1016_j_est_2024_110552 crossref_primary_10_1016_j_est_2024_115202 crossref_primary_10_1039_D4SE00497C crossref_primary_10_1016_j_est_2024_113141 crossref_primary_10_1016_j_cej_2022_140152 crossref_primary_10_1016_j_jallcom_2025_179688 crossref_primary_10_1002_batt_202300427 crossref_primary_10_1016_j_cej_2024_148991 crossref_primary_10_1016_j_ccr_2025_216704 crossref_primary_10_1002_aenm_202303546 crossref_primary_10_1016_j_electacta_2025_147437 crossref_primary_10_1073_pnas_2301260120 crossref_primary_10_1016_j_est_2024_111419 crossref_primary_10_1016_j_jelechem_2024_118808 crossref_primary_10_1016_j_electacta_2025_145936 crossref_primary_10_1016_j_jcis_2023_01_135 crossref_primary_10_3390_batteries11080290 crossref_primary_10_1016_j_cej_2022_137433 crossref_primary_10_1016_j_cej_2025_163529 crossref_primary_10_1002_adfm_202514274 crossref_primary_10_1016_j_jcis_2023_12_021 crossref_primary_10_1007_s12598_023_02360_7 crossref_primary_10_1002_chem_202401713 crossref_primary_10_1002_smll_202302179 crossref_primary_10_1016_j_jallcom_2023_170285 crossref_primary_10_1039_D5CC01414J crossref_primary_10_1016_j_cej_2023_145862 crossref_primary_10_1002_smll_202312124 crossref_primary_10_1016_j_polymer_2022_125599 crossref_primary_10_1016_j_ensm_2025_104502 crossref_primary_10_1016_j_electacta_2025_147006 crossref_primary_10_1016_j_jelechem_2025_118961 crossref_primary_10_1002_adma_202208846 crossref_primary_10_1016_j_est_2023_108010 crossref_primary_10_1016_j_ensm_2025_104617 crossref_primary_10_1002_adfm_202315201 crossref_primary_10_1002_adfm_202211774 crossref_primary_10_1016_j_jechem_2023_10_029 crossref_primary_10_1002_eem2_70038 crossref_primary_10_1039_D5QI00119F crossref_primary_10_1002_er_8519 crossref_primary_10_1016_j_jpowsour_2023_233382 crossref_primary_10_1016_j_ces_2023_119294 crossref_primary_10_1002_adfm_202316838 crossref_primary_10_1016_j_electacta_2023_142887 crossref_primary_10_1002_celc_202400010 crossref_primary_10_1007_s10854_023_11336_3 crossref_primary_10_1007_s13233_023_00214_w crossref_primary_10_1002_anie_202406693 crossref_primary_10_1016_j_mtcomm_2023_108008 crossref_primary_10_1016_j_jallcom_2023_170783 crossref_primary_10_1016_j_ccr_2022_214879 crossref_primary_10_1016_j_jpowsour_2023_233136 crossref_primary_10_1002_smll_202206462 crossref_primary_10_1002_celc_202201151 crossref_primary_10_1016_j_jelechem_2024_118559 crossref_primary_10_1007_s11814_024_00036_1 crossref_primary_10_1016_j_apt_2025_104785 crossref_primary_10_1016_j_cej_2023_145961 crossref_primary_10_1002_adfm_202504272 crossref_primary_10_1002_cnl2_100 crossref_primary_10_1002_adfm_202400262 crossref_primary_10_1002_smll_202304162 crossref_primary_10_1016_j_jallcom_2022_167975 crossref_primary_10_1039_D5YA00050E crossref_primary_10_1016_j_jcis_2023_08_193 crossref_primary_10_1002_anie_202410823 crossref_primary_10_3390_met13050833 crossref_primary_10_1002_chem_202302334 crossref_primary_10_1002_aenm_202204345 crossref_primary_10_1007_s12274_022_5364_5 crossref_primary_10_1016_j_cej_2025_161776 crossref_primary_10_1016_j_est_2024_112374 crossref_primary_10_1016_j_jcis_2024_04_023 crossref_primary_10_1016_j_jechem_2023_07_003 crossref_primary_10_1007_s40820_024_01573_4 crossref_primary_10_1016_j_cej_2025_161099 crossref_primary_10_20517_energymater_2024_260 crossref_primary_10_1016_j_carbon_2024_119512 crossref_primary_10_1016_j_cej_2023_141477 crossref_primary_10_1149_1945_7111_ade630 crossref_primary_10_1002_advs_202407984 crossref_primary_10_1002_bkcs_12687 crossref_primary_10_1016_j_cplett_2024_141124 crossref_primary_10_1016_j_etran_2023_100298 crossref_primary_10_1039_D3QM00326D crossref_primary_10_1016_j_jpowsour_2023_233158 crossref_primary_10_1002_adma_202304551 crossref_primary_10_1002_smll_202504580 crossref_primary_10_1002_aenm_202300767 crossref_primary_10_1021_acsami_5c03556 crossref_primary_10_1002_aenm_202502691 crossref_primary_10_1002_adsu_202500076 |
| Cites_doi | 10.1002/adfm.202001165 10.1016/j.nanoen.2016.11.045 10.1016/j.electacta.2019.135108 10.1038/ncomms2513 10.1002/adfm.201902820 10.1016/j.joule.2020.02.006 10.1039/C6CC09248A 10.1016/j.joule.2018.09.024 10.1016/j.ensm.2018.03.015 10.1039/C5TA01037C 10.1002/cnma.201500055 10.1002/adma.201900009 10.1021/acsami.7b14195 10.1016/j.electacta.2014.12.041 10.1002/adma.202000315 10.1007/s10965-017-1290-8 10.1021/nl403130h 10.1002/adfm.201404472 10.1021/nl503730c 10.1002/aenm.202000651 10.1002/anie.201511673 10.1002/adfm.201902322 10.1002/advs.201800621 10.1039/C7EE01430A 10.1038/ncomms8436 10.1021/acsenergylett.0c00292 10.1016/j.cej.2019.122746 10.1002/aenm.201900953 10.1002/anie.201902413 10.1039/C9CS00635D 10.1039/D0TA05964A 10.1021/acsnano.0c06112 10.1126/science.1122152 10.1038/451652a 10.1021/nn401228t 10.1149/2.0611506jes 10.1002/aenm.201904010 10.1002/aenm.201301473 10.1002/adma.201603401 10.1021/acsnano.1c00446 10.1039/C5TA01490E 10.1016/j.mattod.2020.10.021 10.1016/j.nanoen.2021.105761 10.1021/nn203436j 10.1021/am504345s 10.1039/C4EE00372A 10.1021/acsami.9b05628 10.1016/j.nanoen.2015.10.024 10.1002/aenm.201803774 10.1002/aenm.201901896 10.1093/nsr/nwz222 10.1149/1.1837858 10.1039/D0EE03316B 10.1021/acsnano.9b03304 10.1021/acs.nanolett.9b04551 10.1016/j.nanoen.2019.103894 10.1016/j.nanoen.2020.105621 10.1016/j.nanoen.2019.03.060 10.1039/C4CC05535G 10.1002/admi.201701598 10.1002/aenm.201903937 10.1002/ente.202000348 10.1002/anie.202101958 10.1021/acsnano.5b02166 10.1021/acsami.1c03227 10.1002/anie.201605676 10.1039/D1EE00508A 10.1016/j.jpowsour.2018.08.016 10.1021/cm5044667 10.1002/adfm.202100970 10.1021/acsami.8b22014 10.1021/acsami.7b10306 10.1016/j.electacta.2018.08.107 10.1016/j.jpowsour.2017.10.005 10.1016/j.matt.2020.04.011 10.1016/j.nanoen.2018.10.001 10.1039/C9TA00535H 10.1021/acsami.0c10341 10.1038/nmat2460 10.1021/acsnano.9b00177 10.1002/advs.201700270 10.1002/aenm.201903550 10.1039/C9NR07809F 10.1002/smll.201903952 10.1016/j.cej.2020.128153 10.1016/j.ensm.2018.06.015 10.1021/acs.jpclett.7b01321 10.1002/aenm.202002271 10.1021/acs.nanolett.7b04425 10.1016/j.nanoen.2017.10.018 10.1002/adma.202002168 10.1021/acsnano.0c07332 10.1021/ja3052206 10.1007/s12598-020-01498-y 10.1002/chem.202003807 10.1021/acsnano.0c00799 10.1038/nnano.2017.16 10.1038/nchem.2085 10.1016/j.joule.2017.12.003 10.1021/jacs.5b04472 10.1016/j.ensm.2019.09.028 10.1021/acsnano.9b06629 10.1021/acs.nanolett.9b04719 10.1021/jacs.7b05251 10.1016/j.electacta.2013.06.039 10.1002/anie.202007159 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I 10.1002/aenm.202100332 10.1002/adma.201604724 10.1002/adfm.201707536 10.1002/adfm.201900392 10.1021/am501665s 10.1002/adma.201402893 10.1021/acsnano.7b01945 10.1016/j.electacta.2016.08.015 10.1038/ncomms11203 10.1002/adfm.201706391 10.1021/acsomega.9b03550 10.1016/j.ensm.2019.05.032 10.1016/j.elecom.2013.10.020 10.1016/j.ensm.2018.01.002 10.1016/j.jpowsour.2019.227232 10.1016/j.carbon.2020.01.046 10.1016/j.ensm.2019.05.034 10.1021/nl2027684 10.1021/acsami.6b03897 10.1016/j.jechem.2018.04.014 10.1016/j.ensm.2015.09.008 10.1038/nmat3066 10.1021/acscentsci.0c00449 10.1039/C7EE01047H 10.1002/adma.201603366 10.1021/jz5006913 10.1016/j.elecom.2013.09.002 10.1016/j.electacta.2018.11.145 10.1016/j.electacta.2012.03.081 10.1016/j.ensm.2018.09.012 10.1016/j.ensm.2016.01.007 10.1002/adma.201404194 10.1002/aenm.201601392 10.1021/acs.nanolett.7b01020 10.1038/srep08763 10.1016/j.nanoen.2019.03.015 10.1002/advs.201800815 10.1038/ncomms5759 10.1016/j.jpowsour.2015.07.033 10.1002/adfm.201200696 10.1149/1.3148721 10.1021/acsnano.0c01452 10.1016/j.ensm.2019.06.009 10.1016/j.jpowsour.2016.07.056 10.1002/anie.201906055 10.1021/acs.jpcc.7b06625 10.1016/j.electacta.2019.06.177 10.1021/ja308170k 10.1002/aenm.201602347 10.1002/adfm.202006798 10.1016/j.jpowsour.2016.03.093 10.1021/acsami.5b12231 10.1016/j.matt.2020.06.002 10.1021/acsami.6b10366 10.1021/acsnano.0c02294 10.1016/j.ensm.2018.12.016 10.1038/ncomms14627 10.1016/S1388-2481(02)00358-2 10.1039/C5EE00058K 10.1039/C4CP03694H 10.1016/j.electacta.2012.07.118 10.1039/C9TA10560C 10.1007/s11426-020-9810-1 10.1039/C8TA07685E 10.1016/j.joule.2018.07.022 10.1016/j.nanoen.2014.11.025 10.1016/j.jpowsour.2011.12.061 10.1002/smll.202001089 10.1021/acs.nanolett.0c01778 10.1039/C4TA04172K 10.1002/adma.202106618 10.1039/C9NH00663J 10.1016/j.cej.2019.122714 10.1002/anie.201511830 10.1002/adfm.201400845 10.1002/aenm.201901075 10.1016/j.jpowsour.2011.08.027 10.1039/D0TA02999H 10.1149/2.0111801jes 10.1002/ente.201800819 10.1021/acsnano.9b07121 10.1002/adma.201601759 10.1039/D0TA01664K 10.1021/acsami.5b11803 10.1039/C5TA04289E 10.1016/j.ssi.2004.07.070 10.1016/j.jechem.2020.02.050 10.1039/C6CP04775K 10.1016/j.joule.2019.01.003 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P 10.1021/acscentsci.9b00846 10.1002/admi.201800243 10.1016/j.ensm.2018.05.019 10.1038/s41467-021-23155-3 10.1039/C8TA09069F 10.1002/aenm.202001304 10.1016/j.ensm.2019.08.019 10.1021/acs.nanolett.5b04166 10.1002/adfm.201807485 10.1016/j.ensm.2019.02.022 10.1016/j.jechem.2020.03.034 10.1016/j.ensm.2020.03.008 10.1002/aenm.201500212 10.1021/nn501308m 10.1002/aenm.202000901 10.1016/j.nanoen.2015.01.007 10.1016/j.electacta.2016.05.087 10.1021/acs.nanolett.5b01837 10.1021/acsami.8b14045 10.1002/anie.201805972 10.1002/aenm.202003689 10.1002/adfm.201505074 10.1002/aenm.201700260 10.1016/j.nanoen.2016.12.015 10.1039/C3EE42223B 10.1002/inf2.12046 10.1016/j.nanoen.2020.105033 10.1016/j.joule.2018.08.010 10.1038/s41467-018-06629-9 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202106004 |
| DatabaseName | Wiley Open Access Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection Proquest Research Library Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_be2507050f174b0fa0672e84946161f3 PMC9036004 35233996 10_1002_advs_202106004 ADVS3694 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Xiamen University funderid: 20720200068; 20720190007; 20720200080 – fundername: National Natural Science Foundation of China funderid: 51871188; 51931006; 51701169 – fundername: “Double‐First Class” Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University – fundername: Central Universities of China – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515010139 – fundername: National Key R&D Program of China funderid: 2016YFA0202602 – fundername: Natural Science Foundation of Fujian Province of China funderid: 2019J06003; 2020J05014 – fundername: National Natural Science Foundation of China grantid: 51871188 – fundername: National Key R&D Program of China grantid: 2016YFA0202602 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515010139 – fundername: Natural Science Foundation of Fujian Province of China grantid: 2020J05014 – fundername: "Double-First Class" Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University – fundername: National Natural Science Foundation of China grantid: 51701169 – fundername: Natural Science Foundation of Fujian Province of China grantid: 2019J06003 – fundername: National Natural Science Foundation of China grantid: 51931006 – fundername: Xiamen University grantid: 20720190007 – fundername: Natural Science Foundation of Fujian Province of China grantid: 2019J06003; 2020J05014 – fundername: ; grantid: 20720200068; 20720190007; 20720200080 – fundername: ; grantid: 51871188; 51931006; 51701169 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5294-841830963d696fdbf0a3e527eceb138a3da718fd715efafdccfa881dc36bd1013 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 344 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762597200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Tue Oct 14 19:05:55 EDT 2025 Tue Nov 04 02:05:26 EST 2025 Thu Sep 04 18:58:19 EDT 2025 Sun Nov 09 08:46:34 EST 2025 Mon Jul 21 05:46:02 EDT 2025 Sat Nov 29 07:23:34 EST 2025 Tue Nov 18 22:42:32 EST 2025 Wed Jan 22 16:24:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | shuttle effect lithium anode functional separators electrolyte systems sulfur hosts |
| Language | English |
| License | Attribution 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5294-841830963d696fdbf0a3e527eceb138a3da718fd715efafdccfa881dc36bd1013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3581-2995 0000-0003-4155-4766 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202106004 |
| PMID | 35233996 |
| PQID | 2653980577 |
| PQPubID | 4365299 |
| PageCount | 35 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_be2507050f174b0fa0672e84946161f3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9036004 proquest_miscellaneous_2635247281 proquest_journals_2653980577 pubmed_primary_35233996 crossref_primary_10_1002_advs_202106004 crossref_citationtrail_10_1002_advs_202106004 wiley_primary_10_1002_advs_202106004_ADVS3694 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2002; 14 2013; 4 2019 2019; 23 7 2020; 20 2020 2020 2019; 76 20 11 2019; 11 2019; 10 2019; 13 2019; 15 2020; 161 2019; 16 2020; 16 2014; 26 2020; 14 2014; 24 2019; 18 2020; 12 2020; 10 2011; 196 2019; 442 2021 2019 2018; 11 7 27 2018; 6 2018; 9 2004; 175 2018; 2 2012; 134 2018; 5 2015; 137 2016; 319 2019; 319 2019; 21 2019; 23 1997; 144 2014; 16 2014; 14 2019; 29 2008 2006 2015; 451 311 7 2017; 165 2021; 82 1998; 10 2018; 29 2019; 9 2018; 28 2019; 3 2019; 6 2021; 45 2019; 5 2019; 31 2020; 40 2019; 2 2016; 327 2019 2021 2021; 13 81 11 2020; 381 2013; 107 2002; 4 2017 2020; 12 7 2020; 32 2016; 18 2016; 16 2011; 5 2015 2012; 3 205 2018; 18 2016; 6 2017; 53 2016; 7 2016; 3 2020; 31 2021; 410 2020; 30 2020; 28 2020; 26 2016; 210 2020; 25 2020; 24 2020; 398 2016; 213 2019; 295 2016; 28 2021; 60 2018; 10 2016; 26 2016; 8 2018; 15 2018; 13 2017; 7 2017; 8 2017; 41 2009 2020 2021; 8 6 14 2020; 63 2019 2018; 58 5 2013; 23 2019; 59 2018; 400 2019; 58 2011; 11 2009; 156 2017 2017 2020; 139 17 8 2011; 10 2015 2015; 9 3 2017; 9 2020; 8 2017; 31 2012; 70 2020; 5 2020; 4 2014; 5 2019; 60 2014; 4 2020; 3 2021; 31 2020; 2 2021; 34 2014; 2 2019; 63 2013; 13 2017; 32 2020; 49 2017; 121 2014; 8 2014; 7 2014; 50 2014; 6 2020 2020; 59 51 2017; 369 2012; 83 2015; 162 2015; 12 2015; 1 2015; 15 2015; 6 2015; 5 2014 2015 2015; 6 296 154 2015; 18 2015; 3 2017; 24 2020 2019 2020; 8 295 2020 2020; 329 382 2017; 29 2015; 8 2016; 55 2021; 14 2021; 13 2021; 15 2015; 25 2013; 37 2015; 27 2013; 36 2021; 12 2013 2015; 7 11 2021 2017; 11 2017; 10 2014 2018; 54 2018; 57 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_191_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_188_2 e_1_2_7_202_1 e_1_2_7_188_3 e_1_2_7_116_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_23_2 Liu F. (e_1_2_7_203_1) 2020; 30 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_56_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_139_1 e_1_2_7_4_3 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 Yu M. (e_1_2_7_90_1) 2014 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_192_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_67_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_166_1 Wang J. (e_1_2_7_24_1) 2019; 29 e_1_2_7_117_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_78_1 e_1_2_7_193_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_1_3 e_1_2_7_9_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_2 e_1_2_7_13_3 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_170_1 e_1_2_7_89_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_204_1 e_1_2_7_118_1 e_1_2_7_110_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_171_1 e_1_2_7_194_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_2_2 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_122_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_205_1 e_1_2_7_160_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_145_1 e_1_2_7_168_1 e_1_2_7_119_1 e_1_2_7_91_1 Li N. (e_1_2_7_64_1) 2020; 398 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_172_1 e_1_2_7_195_1 e_1_2_7_99_3 e_1_2_7_99_2 e_1_2_7_38_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_108_1 e_1_2_7_7_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_87_1 Liang X. (e_1_2_7_92_1) 2016; 6 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_206_1 e_1_2_7_161_3 e_1_2_7_26_1 e_1_2_7_161_2 e_1_2_7_49_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_112_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_75_1 e_1_2_7_150_1 e_1_2_7_196_1 e_1_2_7_37_1 e_1_2_7_173_1 e_1_2_7_196_2 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_109_1 Jeon Y. (e_1_2_7_29_3) 2020 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_86_1 e_1_2_7_185_1 e_1_2_7_207_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_207_2 e_1_2_7_147_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_74_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_197_3 e_1_2_7_197_1 e_1_2_7_197_2 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_140_2 e_1_2_7_208_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_200_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_175_1 e_1_2_7_198_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_126_1 e_1_2_7_6_2 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_209_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_201_1 e_1_2_7_164_1 e_1_2_7_187_1 e_1_2_7_149_1 e_1_2_7_115_2 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_199_1 e_1_2_7_138_1 |
| References_xml | – volume: 7 11 start-page: 5367 356 year: 2013 2015 publication-title: ACS Nano Nano Energy – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 14 start-page: 7138 year: 2014 publication-title: Nano Lett. – volume: 3 205 start-page: 420 year: 2015 2012 publication-title: J. Mater. Chem. A J. Power Sources – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 76 20 11 start-page: 701 year: 2020 2020 2019 publication-title: Nano Energy Nano Lett. ACS Appl. Mater. Interfaces – volume: 83 start-page: 78 year: 2012 publication-title: Electrochim. Acta – volume: 327 start-page: 212 year: 2016 publication-title: J. Power Sources – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 400 start-page: 212 year: 2018 publication-title: J. Power Sources – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – year: 2014 publication-title: J. Mater. Chem. A – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 9 3 start-page: 5884 year: 2015 2015 publication-title: ACS Nano J. Mater. Chem. A – volume: 8 295 start-page: 444 year: 2020 2019 2020 publication-title: J. Mater. Chem. A Electrochim. Acta Chem. Eng. J. – volume: 175 start-page: 243 year: 2004 publication-title: Solid State Ionics – volume: 398 year: 2020 publication-title: Chem. Eng. J. – volume: 7 start-page: 347 year: 2014 publication-title: Energy Environ. Sci. – volume: 10 start-page: 1476 year: 2017 publication-title: Energy Environ. Sci. – volume: 3 start-page: 920 year: 2020 publication-title: Matter – volume: 13 start-page: 3608 year: 2019 publication-title: ACS Nano – volume: 60 start-page: 332 year: 2019 publication-title: Nano Energy – volume: 26 start-page: 7352 year: 2014 publication-title: Adv. Mater. – volume: 24 start-page: 5299 year: 2014 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 136 year: 2019 publication-title: Joule – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 720 year: 2020 publication-title: Nanoscale Horiz. – volume: 10 start-page: 1694 year: 2017 publication-title: Energy Environ. Sci. – volume: 24 start-page: 135 year: 2017 publication-title: J. Polym. Res. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 9067 year: 2019 publication-title: ACS Nano – volume: 196 start-page: 9839 year: 2011 publication-title: J. Power Sources – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 5687 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 101 year: 2015 publication-title: Adv. Mater. – volume: 18 start-page: 245 year: 2015 publication-title: Nano Energy – volume: 25 start-page: 2270 year: 2015 publication-title: Adv. Funct. Mater. – volume: 82 year: 2021 publication-title: Nano Energy – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 16 start-page: 228 year: 2019 publication-title: Energy Storage Mater. – volume: 165 year: 2017 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 9187 year: 2011 publication-title: ACS Nano – volume: 11 year: 2019 publication-title: Nanoscale – volume: 29 year: 2018 publication-title: Adv. Funct. Mater. – volume: 59 51 start-page: 154 year: 2020 2020 publication-title: Angew. Chem., Int. Ed. J. Energy Chem. – volume: 12 7 start-page: 194 1208 year: 2017 2020 publication-title: Nat. Nanotechnol. Natl. Sci. Rev. – volume: 2 start-page: 2091 year: 2018 publication-title: Joule – volume: 15 start-page: 8583 year: 2021 publication-title: ACS Nano – volume: 5 start-page: 1978 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 7783 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 682 year: 2011 publication-title: Nat. Mater. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 45 start-page: 62 year: 2021 publication-title: Mater. Today – volume: 381 year: 2020 publication-title: Chem. Eng. J. – volume: 63 year: 2019 publication-title: Nano Energy – volume: 21 start-page: 14 year: 2019 publication-title: Energy Storage Mater. – volume: 8 start-page: 5249 year: 2014 publication-title: ACS Nano – volume: 2 start-page: 379 year: 2019 publication-title: InfoMat – volume: 24 start-page: 644 year: 2020 publication-title: Energy Storage Mater. – volume: 144 start-page: L208 year: 1997 publication-title: J. Electrochem. Soc. – volume: 26 start-page: 3059 year: 2016 publication-title: Adv. Funct. Mater. – volume: 162 start-page: A982 year: 2015 publication-title: J. Electrochem. Soc. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 10 start-page: 439 year: 1998 publication-title: Adv. Mater. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 7 start-page: 2697 year: 2014 publication-title: Energy Environ. Sci. – volume: 14 start-page: 9744 year: 2020 publication-title: ACS Nano – volume: 2 start-page: 2681 year: 2018 publication-title: Joule – volume: 4 start-page: 539 year: 2020 publication-title: Joule – volume: 2 start-page: 323 year: 2018 publication-title: Joule – volume: 5 start-page: 8763 year: 2015 publication-title: Sci. Rep. – volume: 3 start-page: 361 year: 2019 publication-title: Joule – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 5443 year: 2015 publication-title: Nano Lett. – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 14 start-page: 963 year: 2002 publication-title: Adv. Mater. – volume: 442 year: 2019 publication-title: J. Power Sources – volume: 53 start-page: 963 year: 2017 publication-title: Chem. Commun. – volume: 8 start-page: 8979 year: 2020 publication-title: J. Mater. Chem. A – volume: 18 start-page: 222 year: 2019 publication-title: Energy Storage Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 1177 year: 2020 publication-title: ACS Energy Lett. – volume: 369 start-page: 87 year: 2017 publication-title: J. Power Sources – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 2048 year: 2015 publication-title: Chem. Mater. – volume: 13 start-page: 5534 year: 2013 publication-title: Nano Lett. – volume: 49 start-page: 339 year: 2020 publication-title: J. Energy Chem. – volume: 28 start-page: 9551 year: 2016 publication-title: Adv. Mater. – volume: 23 start-page: 62 year: 2019 publication-title: Energy Storage Mater. – volume: 59 start-page: 636 year: 2019 publication-title: Nano Energy – volume: 28 start-page: 196 year: 2020 publication-title: Energy Storage Mater. – volume: 2 start-page: 1605 year: 2020 publication-title: Matter – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 4115 year: 2021 publication-title: Energy Environ. Sci. – volume: 8 start-page: 4700 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 156 start-page: A694 year: 2009 publication-title: J. Electrochem. Soc. – volume: 329 382 year: 2020 2020 publication-title: Electrochim. Acta Chem. Eng. J. – volume: 107 start-page: 454 year: 2013 publication-title: Electrochim. Acta – volume: 34 year: 2021 publication-title: Adv. Mater. – volume: 13 81 11 year: 2019 2021 2021 publication-title: ACS Nano Nano Energy Adv. Energy Mater. – volume: 23 7 start-page: 707 year: 2019 2019 publication-title: Energy Storage Mater. J. Mater. Chem. A – volume: 5 start-page: 31 year: 2020 publication-title: ACS Omega – volume: 319 start-page: 511 year: 2019 publication-title: Electrochim. Acta – volume: 8 start-page: 231 year: 2020 publication-title: J. Mater. Chem. A – volume: 32 start-page: 50 year: 2017 publication-title: Nano Energy – volume: 5 start-page: 1876 year: 2019 publication-title: ACS Cent. Sci. – volume: 295 start-page: 910 year: 2019 publication-title: Electrochim. Acta – volume: 4 start-page: 1481 year: 2013 publication-title: Nat. Commun. – year: 2021 publication-title: Adv. Energy Mater. – volume: 70 start-page: 344 year: 2012 publication-title: Electrochim. Acta – volume: 139 17 8 start-page: 3731 year: 2017 2017 2020 publication-title: J. Am. Chem. Soc. Nano Lett. Energy Technol. – volume: 4 start-page: 499 year: 2002 publication-title: Electrochem. Commun. – volume: 14 start-page: 6222 year: 2020 publication-title: ACS Nano – volume: 319 start-page: 247 year: 2016 publication-title: J. Power Sources – volume: 41 start-page: 573 year: 2017 publication-title: Nano Energy – volume: 16 start-page: 519 year: 2016 publication-title: Nano Lett. – volume: 31 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 6 14 start-page: 500 1095 540 year: 2009 2020 2021 publication-title: Nat. Mater. ACS Cent. Sci. Energy Environ. Sci. – volume: 16 year: 2020 publication-title: Small – volume: 161 start-page: 162 year: 2020 publication-title: Carbon – volume: 11 start-page: 6031 year: 2017 publication-title: ACS Nano – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 49 start-page: 2140 year: 2020 publication-title: Chem. Soc. Rev. – volume: 26 year: 2020 publication-title: Chem. ‐ Eur. J. – volume: 12 start-page: 468 year: 2015 publication-title: Nano Energy – volume: 58 5 year: 2019 2018 publication-title: Angew. Chem., Int. Ed. Adv. Sci. – volume: 8 start-page: 3473 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 37 start-page: 96 year: 2013 publication-title: Electrochem. Commun. – volume: 36 start-page: 38 year: 2013 publication-title: Electrochem. Commun. – volume: 20 start-page: 5391 year: 2020 publication-title: Nano Lett. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 4759 year: 2014 publication-title: Nat. Commun. – volume: 410 year: 2021 publication-title: Chem. Eng. J. – volume: 3 start-page: 77 year: 2016 publication-title: Energy Storage Mater. – volume: 451 311 7 start-page: 652 977 19 year: 2008 2006 2015 publication-title: Nature Science Nat. Chem. – volume: 63 start-page: 1483 year: 2020 publication-title: Sci. China Chem. – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 4164 year: 2018 publication-title: Nat. Commun. – volume: 16 start-page: 344 year: 2019 publication-title: Energy Storage Mater. – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 55 start-page: 3992 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 7 27 start-page: 1555 year: 2021 2019 2018 publication-title: Adv. Energy Mater. Energy Technol. J. Energy Chem. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 475 year: 2018 publication-title: Nano Lett. – volume: 1 start-page: 127 year: 2015 publication-title: Energy Storage Mater. – volume: 6 start-page: 8006 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 20 start-page: 1252 year: 2020 publication-title: Nano Lett. – volume: 55 start-page: 4231 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 23 start-page: 1064 year: 2013 publication-title: Adv. Funct. Mater. – volume: 40 start-page: 417 year: 2020 publication-title: Rare Met. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 15 year: 2019 publication-title: Small – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 13 start-page: 151 year: 2018 publication-title: Energy Storage Mater. – volume: 25 start-page: 547 year: 2020 publication-title: Energy Storage Mater. – volume: 6 start-page: 7436 year: 2015 publication-title: Nat. Commun. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 50 year: 2018 publication-title: Nano Energy – volume: 24 start-page: 198 year: 2020 publication-title: Energy Storage Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 3031 year: 2021 publication-title: Nat. Commun. – volume: 14 start-page: 4849 year: 2020 publication-title: ACS Nano – volume: 23 start-page: 55 year: 2019 publication-title: Energy Storage Mater. – volume: 6 296 154 start-page: 10 205 year: 2014 2015 2015 publication-title: ACS Appl. Mater. Interfaces J. Power Sources Electrochim. Acta – volume: 8 start-page: 1551 year: 2015 publication-title: Energy Environ. Sci. – volume: 31 start-page: 478 year: 2017 publication-title: Nano Energy – volume: 11 start-page: 4462 year: 2011 publication-title: Nano Lett. – volume: 1 start-page: 240 year: 2015 publication-title: ChemNanoMat – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 37 year: 2018 publication-title: Energy Storage Mater. – volume: 210 start-page: 71 year: 2016 publication-title: Electrochim. Acta – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 213 start-page: 871 year: 2016 publication-title: Electrochim. Acta – ident: e_1_2_7_61_1 doi: 10.1002/adfm.202001165 – ident: e_1_2_7_126_1 doi: 10.1016/j.nanoen.2016.11.045 – ident: e_1_2_7_140_1 doi: 10.1016/j.electacta.2019.135108 – ident: e_1_2_7_118_1 doi: 10.1038/ncomms2513 – ident: e_1_2_7_37_1 doi: 10.1002/adfm.201902820 – start-page: 126967 year: 2020 ident: e_1_2_7_29_3 publication-title: Chem. Eng. J. – ident: e_1_2_7_10_1 doi: 10.1016/j.joule.2020.02.006 – ident: e_1_2_7_200_1 doi: 10.1039/C6CC09248A – ident: e_1_2_7_103_1 doi: 10.1016/j.joule.2018.09.024 – ident: e_1_2_7_124_1 doi: 10.1016/j.ensm.2018.03.015 – ident: e_1_2_7_125_1 doi: 10.1039/C5TA01037C – ident: e_1_2_7_171_1 doi: 10.1002/cnma.201500055 – ident: e_1_2_7_62_1 doi: 10.1002/adma.201900009 – ident: e_1_2_7_150_1 doi: 10.1021/acsami.7b14195 – ident: e_1_2_7_188_3 doi: 10.1016/j.electacta.2014.12.041 – ident: e_1_2_7_71_1 doi: 10.1002/adma.202000315 – ident: e_1_2_7_138_1 doi: 10.1007/s10965-017-1290-8 – ident: e_1_2_7_108_1 doi: 10.1021/nl403130h – ident: e_1_2_7_97_1 doi: 10.1002/adfm.201404472 – ident: e_1_2_7_55_1 doi: 10.1021/nl503730c – ident: e_1_2_7_94_1 doi: 10.1002/aenm.202000651 – ident: e_1_2_7_144_1 doi: 10.1002/anie.201511673 – ident: e_1_2_7_17_1 doi: 10.1002/adfm.201902322 – ident: e_1_2_7_27_1 doi: 10.1002/advs.201800621 – ident: e_1_2_7_70_1 doi: 10.1039/C7EE01430A – ident: e_1_2_7_174_1 doi: 10.1038/ncomms8436 – ident: e_1_2_7_57_1 doi: 10.1021/acsenergylett.0c00292 – ident: e_1_2_7_52_1 doi: 10.1016/j.cej.2019.122746 – ident: e_1_2_7_51_1 doi: 10.1002/aenm.201900953 – ident: e_1_2_7_74_1 doi: 10.1002/anie.201902413 – ident: e_1_2_7_129_1 doi: 10.1039/C9CS00635D – ident: e_1_2_7_75_1 doi: 10.1039/D0TA05964A – ident: e_1_2_7_58_1 doi: 10.1021/acsnano.0c06112 – ident: e_1_2_7_1_2 doi: 10.1126/science.1122152 – ident: e_1_2_7_1_1 doi: 10.1038/451652a – ident: e_1_2_7_23_1 doi: 10.1021/nn401228t – ident: e_1_2_7_209_1 doi: 10.1149/2.0611506jes – ident: e_1_2_7_67_1 doi: 10.1002/aenm.201904010 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201301473 – ident: e_1_2_7_157_1 doi: 10.1002/adma.201603401 – ident: e_1_2_7_81_1 doi: 10.1021/acsnano.1c00446 – ident: e_1_2_7_196_2 doi: 10.1039/C5TA01490E – ident: e_1_2_7_89_1 doi: 10.1016/j.cej.2019.122746 – ident: e_1_2_7_162_1 doi: 10.1016/j.mattod.2020.10.021 – ident: e_1_2_7_5_1 doi: 10.1016/j.nanoen.2021.105761 – ident: e_1_2_7_107_1 doi: 10.1021/nn203436j – ident: e_1_2_7_188_1 doi: 10.1021/am504345s – ident: e_1_2_7_112_1 doi: 10.1039/C4EE00372A – ident: e_1_2_7_161_3 doi: 10.1021/acsami.9b05628 – ident: e_1_2_7_73_1 doi: 10.1016/j.nanoen.2015.10.024 – ident: e_1_2_7_114_1 doi: 10.1002/aenm.201803774 – ident: e_1_2_7_105_1 doi: 10.1002/aenm.201901896 – ident: e_1_2_7_2_2 doi: 10.1093/nsr/nwz222 – ident: e_1_2_7_165_1 doi: 10.1149/1.1837858 – ident: e_1_2_7_4_3 doi: 10.1039/D0EE03316B – ident: e_1_2_7_117_1 doi: 10.1021/acsnano.9b03304 – ident: e_1_2_7_161_2 doi: 10.1021/acs.nanolett.9b04551 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2019.103894 – ident: e_1_2_7_99_2 doi: 10.1016/j.nanoen.2020.105621 – ident: e_1_2_7_100_1 doi: 10.1016/j.nanoen.2019.03.060 – ident: e_1_2_7_201_1 doi: 10.1039/C4CC05535G – ident: e_1_2_7_72_1 doi: 10.1002/admi.201701598 – ident: e_1_2_7_189_1 doi: 10.1002/aenm.201903937 – ident: e_1_2_7_197_3 doi: 10.1002/ente.202000348 – ident: e_1_2_7_192_1 doi: 10.1002/anie.202101958 – ident: e_1_2_7_196_1 doi: 10.1021/acsnano.5b02166 – ident: e_1_2_7_131_1 doi: 10.1021/acsami.1c03227 – ident: e_1_2_7_96_1 doi: 10.1002/anie.201605676 – ident: e_1_2_7_193_1 doi: 10.1039/D1EE00508A – ident: e_1_2_7_128_1 doi: 10.1016/j.jpowsour.2018.08.016 – ident: e_1_2_7_11_1 doi: 10.1021/cm5044667 – ident: e_1_2_7_69_1 doi: 10.1002/adfm.202100970 – ident: e_1_2_7_158_1 doi: 10.1021/acsami.8b22014 – ident: e_1_2_7_205_1 doi: 10.1021/acsami.7b10306 – ident: e_1_2_7_29_2 doi: 10.1016/j.electacta.2018.08.107 – ident: e_1_2_7_159_1 doi: 10.1016/j.jpowsour.2017.10.005 – ident: e_1_2_7_21_1 doi: 10.1016/j.matt.2020.04.011 – ident: e_1_2_7_34_1 doi: 10.1016/j.nanoen.2018.10.001 – ident: e_1_2_7_6_2 doi: 10.1039/C9TA00535H – ident: e_1_2_7_91_1 doi: 10.1021/acsami.0c10341 – ident: e_1_2_7_4_1 doi: 10.1038/nmat2460 – ident: e_1_2_7_31_1 doi: 10.1021/acsnano.9b00177 – ident: e_1_2_7_74_2 doi: 10.1002/advs.201700270 – ident: e_1_2_7_46_1 doi: 10.1002/aenm.201903550 – ident: e_1_2_7_38_1 doi: 10.1039/C9NR07809F – ident: e_1_2_7_123_1 doi: 10.1002/smll.201903952 – ident: e_1_2_7_88_1 doi: 10.1016/j.cej.2020.128153 – ident: e_1_2_7_44_1 doi: 10.1016/j.ensm.2018.06.015 – ident: e_1_2_7_141_1 doi: 10.1021/acs.jpclett.7b01321 – ident: e_1_2_7_84_1 doi: 10.1002/aenm.202002271 – ident: e_1_2_7_19_1 doi: 10.1021/acs.nanolett.7b04425 – ident: e_1_2_7_206_1 doi: 10.1016/j.nanoen.2017.10.018 – ident: e_1_2_7_59_1 doi: 10.1002/adma.202002168 – ident: e_1_2_7_101_1 doi: 10.1021/acsnano.0c07332 – ident: e_1_2_7_12_1 doi: 10.1021/ja3052206 – ident: e_1_2_7_20_1 doi: 10.1007/s12598-020-01498-y – ident: e_1_2_7_39_1 doi: 10.1002/chem.202003807 – ident: e_1_2_7_104_1 doi: 10.1021/acsnano.0c00799 – ident: e_1_2_7_2_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_1_3 doi: 10.1038/nchem.2085 – ident: e_1_2_7_152_1 doi: 10.1016/j.joule.2017.12.003 – ident: e_1_2_7_79_1 doi: 10.1021/jacs.5b04472 – ident: e_1_2_7_60_1 doi: 10.1016/j.ensm.2019.09.028 – ident: e_1_2_7_66_1 doi: 10.1021/acsnano.9b06629 – volume: 30 start-page: 1903937 year: 2020 ident: e_1_2_7_203_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_82_1 doi: 10.1021/acs.nanolett.9b04719 – ident: e_1_2_7_197_1 doi: 10.1021/jacs.7b05251 – ident: e_1_2_7_111_1 doi: 10.1016/j.electacta.2013.06.039 – ident: e_1_2_7_115_1 doi: 10.1002/anie.202007159 – ident: e_1_2_7_133_1 doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I – ident: e_1_2_7_25_1 doi: 10.1002/aenm.202100332 – ident: e_1_2_7_36_1 doi: 10.1002/adma.201604724 – ident: e_1_2_7_78_1 doi: 10.1002/adfm.201707536 – year: 2014 ident: e_1_2_7_90_1 publication-title: J. Mater. Chem. A – ident: e_1_2_7_132_1 doi: 10.1002/adfm.201900392 – ident: e_1_2_7_190_1 doi: 10.1021/am501665s – ident: e_1_2_7_143_1 doi: 10.1002/adma.201402893 – ident: e_1_2_7_68_1 doi: 10.1021/acsnano.7b01945 – ident: e_1_2_7_137_1 doi: 10.1016/j.electacta.2016.08.015 – ident: e_1_2_7_87_1 doi: 10.1038/ncomms11203 – ident: e_1_2_7_98_1 doi: 10.1002/adfm.201706391 – ident: e_1_2_7_77_1 doi: 10.1021/acsomega.9b03550 – ident: e_1_2_7_47_1 doi: 10.1016/j.ensm.2019.05.032 – ident: e_1_2_7_191_1 doi: 10.1016/j.elecom.2013.10.020 – ident: e_1_2_7_199_1 doi: 10.1016/j.ensm.2018.01.002 – ident: e_1_2_7_173_1 doi: 10.1016/j.jpowsour.2019.227232 – ident: e_1_2_7_8_1 doi: 10.1016/j.carbon.2020.01.046 – ident: e_1_2_7_30_1 doi: 10.1016/j.ensm.2019.05.034 – ident: e_1_2_7_18_1 doi: 10.1021/nl2027684 – ident: e_1_2_7_172_1 doi: 10.1021/acsami.6b03897 – ident: e_1_2_7_13_3 doi: 10.1016/j.jechem.2018.04.014 – ident: e_1_2_7_142_1 doi: 10.1016/j.ensm.2015.09.008 – ident: e_1_2_7_130_1 doi: 10.1038/nmat3066 – ident: e_1_2_7_4_2 doi: 10.1021/acscentsci.0c00449 – ident: e_1_2_7_56_1 doi: 10.1039/C7EE01047H – ident: e_1_2_7_110_1 doi: 10.1002/adma.201603366 – ident: e_1_2_7_145_1 doi: 10.1021/jz5006913 – ident: e_1_2_7_202_1 doi: 10.1016/j.elecom.2013.09.002 – ident: e_1_2_7_146_1 doi: 10.1016/j.electacta.2018.11.145 – ident: e_1_2_7_178_1 doi: 10.1016/j.electacta.2012.03.081 – ident: e_1_2_7_182_1 doi: 10.1016/j.ensm.2018.09.012 – ident: e_1_2_7_177_1 doi: 10.1016/j.ensm.2016.01.007 – ident: e_1_2_7_187_1 doi: 10.1002/adma.201404194 – ident: e_1_2_7_120_1 doi: 10.1002/aenm.201601392 – volume: 398 start-page: 122746 year: 2020 ident: e_1_2_7_64_1 publication-title: Chem. Eng. J. – ident: e_1_2_7_197_2 doi: 10.1021/acs.nanolett.7b01020 – ident: e_1_2_7_14_1 doi: 10.1038/srep08763 – ident: e_1_2_7_95_1 doi: 10.1016/j.nanoen.2019.03.015 – ident: e_1_2_7_93_1 doi: 10.1002/advs.201800815 – ident: e_1_2_7_42_1 doi: 10.1038/ncomms5759 – ident: e_1_2_7_188_2 doi: 10.1016/j.jpowsour.2015.07.033 – ident: e_1_2_7_180_1 doi: 10.1002/adfm.201200696 – volume: 6 start-page: 2003689 year: 2016 ident: e_1_2_7_92_1 publication-title: Adv. Energy Mater. – ident: e_1_2_7_168_1 doi: 10.1149/1.3148721 – ident: e_1_2_7_153_1 doi: 10.1021/acsnano.0c01452 – ident: e_1_2_7_26_1 doi: 10.1016/j.ensm.2019.06.009 – ident: e_1_2_7_176_1 doi: 10.1016/j.jpowsour.2016.07.056 – ident: e_1_2_7_149_1 doi: 10.1002/anie.201906055 – ident: e_1_2_7_106_1 doi: 10.1021/acs.jpcc.7b06625 – ident: e_1_2_7_184_1 doi: 10.1016/j.electacta.2019.06.177 – ident: e_1_2_7_15_1 doi: 10.1021/ja308170k – ident: e_1_2_7_41_1 doi: 10.1002/aenm.201602347 – ident: e_1_2_7_48_1 doi: 10.1002/adfm.202006798 – ident: e_1_2_7_134_1 doi: 10.1016/j.jpowsour.2016.03.093 – ident: e_1_2_7_185_1 doi: 10.1021/acsami.5b12231 – ident: e_1_2_7_50_1 doi: 10.1016/j.matt.2020.06.002 – ident: e_1_2_7_183_1 doi: 10.1021/acsami.6b10366 – ident: e_1_2_7_32_1 doi: 10.1021/acsnano.0c02294 – ident: e_1_2_7_154_1 doi: 10.1016/j.ensm.2018.12.016 – volume: 29 start-page: 2006798 year: 2019 ident: e_1_2_7_24_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_63_1 doi: 10.1038/ncomms14627 – ident: e_1_2_7_7_1 doi: 10.1016/S1388-2481(02)00358-2 – ident: e_1_2_7_122_1 doi: 10.1039/C5EE00058K – ident: e_1_2_7_121_1 doi: 10.1039/C4CP03694H – ident: e_1_2_7_170_1 doi: 10.1016/j.electacta.2012.07.118 – ident: e_1_2_7_156_1 doi: 10.1039/C9TA10560C – ident: e_1_2_7_163_1 doi: 10.1007/s11426-020-9810-1 – ident: e_1_2_7_135_1 doi: 10.1039/C8TA07685E – ident: e_1_2_7_148_1 doi: 10.1016/j.joule.2018.07.022 – ident: e_1_2_7_23_2 doi: 10.1016/j.nanoen.2014.11.025 – ident: e_1_2_7_207_2 doi: 10.1016/j.jpowsour.2011.12.061 – ident: e_1_2_7_54_1 doi: 10.1002/smll.202001089 – ident: e_1_2_7_9_1 doi: 10.1021/acs.nanolett.0c01778 – ident: e_1_2_7_204_1 doi: 10.1039/C4TA04172K – ident: e_1_2_7_208_1 doi: 10.1002/adma.202106618 – ident: e_1_2_7_45_1 doi: 10.1039/C9NH00663J – ident: e_1_2_7_140_2 doi: 10.1016/j.cej.2019.122714 – ident: e_1_2_7_116_1 doi: 10.1002/anie.201511830 – ident: e_1_2_7_151_1 doi: 10.1002/adfm.201400845 – ident: e_1_2_7_76_1 doi: 10.1002/aenm.201901075 – ident: e_1_2_7_169_1 doi: 10.1016/j.jpowsour.2011.08.027 – ident: e_1_2_7_194_1 doi: 10.1039/D0TA02999H – ident: e_1_2_7_164_1 doi: 10.1149/2.0111801jes – ident: e_1_2_7_13_2 doi: 10.1002/ente.201800819 – ident: e_1_2_7_99_1 doi: 10.1021/acsnano.9b07121 – ident: e_1_2_7_86_1 doi: 10.1002/adma.201601759 – ident: e_1_2_7_29_1 doi: 10.1039/D0TA01664K – ident: e_1_2_7_175_1 doi: 10.1021/acsami.5b11803 – ident: e_1_2_7_207_1 doi: 10.1039/C5TA04289E – ident: e_1_2_7_166_1 doi: 10.1016/j.ssi.2004.07.070 – ident: e_1_2_7_80_1 doi: 10.1016/j.jechem.2020.02.050 – ident: e_1_2_7_113_1 doi: 10.1039/C6CP04775K – ident: e_1_2_7_160_1 doi: 10.1016/j.joule.2019.01.003 – ident: e_1_2_7_109_1 doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P – ident: e_1_2_7_49_1 doi: 10.1021/acscentsci.9b00846 – ident: e_1_2_7_155_1 doi: 10.1002/admi.201800243 – ident: e_1_2_7_65_1 doi: 10.1016/j.ensm.2018.05.019 – ident: e_1_2_7_186_1 doi: 10.1038/s41467-021-23155-3 – ident: e_1_2_7_127_1 doi: 10.1039/C8TA09069F – ident: e_1_2_7_13_1 doi: 10.1002/aenm.202001304 – ident: e_1_2_7_139_1 doi: 10.1016/j.ensm.2019.08.019 – ident: e_1_2_7_53_1 doi: 10.1021/acs.nanolett.5b04166 – ident: e_1_2_7_85_1 doi: 10.1002/adfm.201807485 – ident: e_1_2_7_6_1 doi: 10.1016/j.ensm.2019.02.022 – ident: e_1_2_7_115_2 doi: 10.1016/j.jechem.2020.03.034 – ident: e_1_2_7_83_1 doi: 10.1016/j.ensm.2020.03.008 – ident: e_1_2_7_167_1 doi: 10.1002/aenm.201500212 – ident: e_1_2_7_28_1 doi: 10.1021/nn501308m – ident: e_1_2_7_119_1 doi: 10.1002/aenm.202000901 – ident: e_1_2_7_22_1 doi: 10.1016/j.nanoen.2015.01.007 – ident: e_1_2_7_136_1 doi: 10.1016/j.electacta.2016.05.087 – ident: e_1_2_7_35_1 doi: 10.1021/acs.nanolett.5b01837 – ident: e_1_2_7_198_1 doi: 10.1021/acsami.8b14045 – ident: e_1_2_7_43_1 doi: 10.1002/anie.201805972 – ident: e_1_2_7_99_3 doi: 10.1002/aenm.202003689 – ident: e_1_2_7_179_1 doi: 10.1002/adfm.201505074 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_181_1 doi: 10.1016/j.nanoen.2016.12.015 – ident: e_1_2_7_147_1 doi: 10.1039/C3EE42223B – ident: e_1_2_7_195_1 doi: 10.1002/inf2.12046 – ident: e_1_2_7_161_1 doi: 10.1016/j.nanoen.2020.105033 – ident: e_1_2_7_102_1 doi: 10.1016/j.joule.2018.08.010 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-018-06629-9 |
| SSID | ssj0001537418 |
| Score | 2.6461537 |
| SecondaryResourceType | review_article |
| Snippet | Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and... Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and... Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2106004 |
| SubjectTerms | Carbon electrolyte systems Electrolytes Energy storage functional separators Lithium lithium anode Review Reviews shuttle effect sulfur hosts |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5I8cEXsV5Hq0QQ1IehmUlmknmsYlEoZWEV-jbkyg6ss9LdLfjWn1DoP-wv8SSZHXdR6YuPkxwyyblwvpCTLwBvtOaCGupyZ3TYoEiaK-NMrorCiMYarmx8teREnJ7Ks7NmsvXUV6gJS_TASXGH2mGSFrSiHrGzpl6Fs0MnecNrBCs-8nziH7Y2U-l-MAu0LBuWRloeKnsR2Llxh4Mpnu9koUjW_zeE-Weh5DaAjRno-AHcH6AjOUpT3oc7rn8I-0NwLsm7gUH6_SP4jmAQxyJH6YB_SVRvyYaHFj9XsVaWTBbzn8v13HcW26azdaAzJl_6WadjHRdBPEtCHcjN5dXk9_0CctLdXF5PSWLmxOEew7fjT18_fs6HdxVyU5UNzyVqhuHWhdm6qb3VnirmqlLg1HTBpGJWYcbyVhSV88pbY7ySiGsNq7XFEGZPYK9f9O4ZEC2F1oqimNW8aLy2ytmitI6ZqrKqziDf6Lk1A-l4ePti3ia65LINdmlHu2TwdpT_keg2_in5IZhtlAo02bEBnacdnKe9zXkyONgYvR1iF38R2Hol4liRweuxG6MuHKWo3i3WQQaBKxelLDJ4mnxknAn2MIR9uHax4z07U93t6btZZPZuEE_EteXRz25RQYvIZcrqhj__H7p4AffKcLUjViUdwN7qfO1ewl1zseqW569ieP0C_dEsDw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELtDwDBRkJCThETWInTk5Vi1qBVK1WLEi9RX52Iy1Ju9mt1Ft_AhL_sL-EseOkXZXHgWPiUWJ7ZuzP9vgbhN4KQVkkIx1qKewCJY9CLrUMeRxLVihJuXJZS47YeJwfHxcTv-HW-rDKfkx0A7VqpN0j30ksh2oO6ILtnp6FNmuUPV31KTTuog3LVEZHaGP_YDz5cr3LkhJLz9KzNUbJDlfnlqUbVjow1dO12ciR9v8Oad4OmLwJZN1MdPjwf9uwiR54DIr3OqPZQnd0_QhteS9v8XtPRf3hMfoOqBIqg_e6SIEW81rhntAWHpcu6BZPmvlFu5qbSsG76WxleZHx53pWCRcQhgEYYxtQcnX5Y3J9UQEfVVeXP6e4o_iEzz1B3w4Pvn78FPoEDaFMk4KGOXQtgTUQUVmRGSVMxIlOEwZVEzHJOVEcpj6jWJxqw42S0vAcALIkmVAwFpCnaFQ3tX6OsMiZEDwCMSVoXBihuFZxojSRaap4FqCwV1QpPXu5TaIxLzve5aS0ii0HxQbo3SB_2vF2_FFy3-p9kLJ82-5FszgpvfuWQgNUZFEaGVjBichwe4Ktc1rQDCCzIQHa7jVe-kEAfjGoO0BvhmJwX3smw2vdrKwMIGDKkjwO0LPOyIaaQAkB_AhtZ2vmt1bV9ZK6mjmK8AKAiWtb6Az1H11QAgSakqygL_7ejJfofmJvf7jApW00Wi5W-hW6J8-XVbt47X3vF3KYPQ8 priority: 102 providerName: ProQuest |
| Title | Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202106004 https://www.ncbi.nlm.nih.gov/pubmed/35233996 https://www.proquest.com/docview/2653980577 https://www.proquest.com/docview/2635247281 https://pubmed.ncbi.nlm.nih.gov/PMC9036004 https://doaj.org/article/be2507050f174b0fa0672e84946161f3 |
| Volume | 9 |
| WOSCitedRecordID | wos000762597200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQygMvwLhmG5WRkICHaEnsxM7jhjZRaSsRBVGeIl_XSiVFTTuJt_0EJP7hfgnHTpquAoQQL5YSHyW-Hfs79vF3EHohJWWRikxolHQGCo9CoYwKRRwrlmtFhfZRS87YcMjH47y4cYu_4YfoNtycZvj52im4kPXhhjRU6EtHtw0mS-YJQXtxTLgL3pDQYrPLkhJHz-IizIF1HRJO6Zq5MUoOtz-xtTJ5Av_foc5fnSdvglq_Kp3e-__63Ed3W0SKj5ohtItumeoB2m11vsavWmLq1w_RF8CYUBx81PgN1FhUGq_pbeFx6V1wcTGffatXMzvV8G40WTmWZDyoJlPp3cMwwGTs3Euur74Xm2sL-Gx6ffVjhBvCT_jcI_Tx9OTDm7dhG64hVGmS05BDQxOwiIjO8sxqaSNBTJowKJqErhFEC1gIrWZxaqywWikrOMBlRTKpYWYgj9FONa_MU4QlZ1KKCMS0pHFupRZGx4k2RKWpFlmAwnVXlarlMnchNWZlw8KclK41y641A_Syk__asHj8UfLY9Xwn5di3_Yv54qJslbmUBoAji9LIgj0nIyvcebbhNKcZAGhLAnSwHjdlOyXALxwJMAd4zAL0vMsGZXYnNKIy85WTATxMWcLjAD1phllXEsghgCah7mxrAG4VdTunmk48YXgOMMXXLfQD8C9NUAIgGpEsp3v_KL-P7iTucoj3azpAO8vFyjxDt9Xlclov-l4xIWVj3ke945Nh8b7vd0AgPU_e-RTye8XgvPgMT58Gw5-yhEZ0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuQHk1UGCRQMDBqu1dvw4IlUfVqGkUKUUqJ7PPJlJwSh5FvfUnIPE_-FH9JcyuHyXideqBY7wjx2N_O_7GO_sNwBMhWOJLX3taCpugpL7HpZYeDwKZZEoyrlzXkm7S66UHB1l_Bb7Xe2FsWWUdE12gVhNpv5FvhlZDNUV2kbw6-uzZrlF2dbVuoVHCYleffMGUbfay8xaf79Mw3H63_2bHq7oKeDIKM-alDFGMxJ2qOIuNEsbnVEdhoiWGLZpyqjjGa6OSINKGGyWl4SmyOkljoRDAFM97CVYZgj1twWq_s9f_cP5VJ6JWDqZWh_TDTa6OrSo4ZlZILdjS2881Cfgds_21QPNn4uzefNvX_7d7dgOuVRybbJWTYg1WdHET1qooNiPPK6ntF7fgE7JmdJ5slZUQM8ILRWrBXvw5d0XFpD8Zn8wWYzNSeGwwXFjdZ9IphiPhCt4IEn9iC2bOTr_2zzdikO7o7PTbgJQSpni62_D-Qty-A61iUuh1ICJNhOA-minBgswIxbUKQqWpjCLF4zZ4NTByWamz2yYh47zUlQ5zC6S8AVIbnjX2R6UuyR8tX1ucNVZWT9wdmEwP8yo85UIjFU78yDeYoQrfcLtCr1OWsRhTAkPbsFEjLK-CHP5FA682PG6GMTzZNSde6MnC2iDDZ0mYBm24W4K6uRIcociP0fdkCe5Ll7o8UoyGTgI9Q-LlfPPcxPjHLciR4g1onLF7f3fjEVzZ2d_r5t1Ob_c-XA3tThdXpLUBrfl0oR_AZXk8H82mD6t5T-DjRU-bH8A3m_Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQYgNUJ6BAkYCAYtoEtuJkwVChTJi1GE00oDUXfCTGWnIlHkUdddPQOJv-Jx-CdfOo4x4rbpgmfgqiZ3jm3Pj63MReiQl45GKTGiUdAFKFoVCGRWKOFY814oJ7auW9PlgkO3v58MN9L3ZC-PSKhuf6B21nin3j7xDnIZqBuyCd2ydFjHc7b44-By6ClJupbUpp1FBZM8cfYHwbfG8twvv-jEh3dfvXr0J6woDoUpIzsKMAaKBxFOd5qnV0kaCmoRwo8CF0UxQLcB3W83jxFhhtVJWZMDwFE2lBjBTuO45dJ6zJHGz6y0Znv7fSagThml0IiPSEfrQ6YNDjAUkg619B325gN9x3F9TNX-m0P4b2L3yP4_eVXS5Zt54p5oqW2jDlNfQVu3bFvhpLcD97Dr6BFwaBgLvVPkRCyxKjRsZXzhc-lRjPJxNjxarqZ1oODcar5waNO6V44n0aXAYwgHs0mhOjr8OT7dn4P7k5PjbCFfCpnC5G-j9mXT7JtosZ6W5jbDMuJQiAjMtWZxbqYXRMdGGqiTRIg1Q2ICkULVmuysdMi0qtWlSOFAVLagC9KS1P6jUSv5o-dJhrrVyKuP-xGz-saidViENEGQeJZGFuFVGVrh1e5OxnKUQKFgaoO0GbUXt-uAWLdQC9LBtBqflVqJEaWYrZwO8n3GSxQG6VQG8fRJoocCaoe98Dfprj7reUk7GXhg9Bzrm-xb6SfKPISiA-I1omrM7f-_GA3QR5krR7w327qJLxG1_8Zlb22hzOV-Ze-iCOlxOFvP73gFg9OGs58wPb8ujMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+and+Strategies+toward+Polysulfides+Shuttle+Inhibition+for+High%E2%80%90Performance+Li%E2%80%93S+Batteries&rft.jtitle=Advanced+science&rft.au=Huang%2C+Youzhang&rft.au=Lin%2C+Liang&rft.au=Zhang%2C+Chengkun&rft.au=Liu%2C+Lie&rft.date=2022-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=9&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202106004&rft.externalDBID=10.1002%252Fadvs.202106004&rft.externalDocID=ADVS3694 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |