Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries

Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble l...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced science Ročník 9; číslo 12; s. e2106004 - n/a
Hlavní autori: Huang, Youzhang, Lin, Liang, Zhang, Chengkun, Liu, Lie, Li, Yikai, Qiao, Zhensong, Lin, Jie, Wei, Qiulong, Wang, Laisen, Xie, Qingshui, Peng, Dong‐Liang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany John Wiley & Sons, Inc 01.04.2022
John Wiley and Sons Inc
Wiley
Predmet:
ISSN:2198-3844, 2198-3844
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. This review summarizes the recent advances and strategies to suppress the shuttle effect of lithium polysulfides (LiPSs) in lithium–sulfur batteries. These strategies are composed of using the modified sulfur hosts to immobilize LiPSs, electrolyte systems to alleviate shuttle behavior, functional separator to intercept LiPSs, and anode surface engineering to avoid the chemical reaction between LiPSs and Li.
AbstractList Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and cost-effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li-S batteries is introduced first to give an in-deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li-S batteries are proposed.
Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. This review summarizes the recent advances and strategies to suppress the shuttle effect of lithium polysulfides (LiPSs) in lithium–sulfur batteries. These strategies are composed of using the modified sulfur hosts to immobilize LiPSs, electrolyte systems to alleviate shuttle behavior, functional separator to intercept LiPSs, and anode surface engineering to avoid the chemical reaction between LiPSs and Li.
Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and cost-effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li-S batteries is introduced first to give an in-deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li-S batteries are proposed.Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and cost-effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li-S batteries is introduced first to give an in-deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li-S batteries are proposed.
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed.
Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and cost‐effectiveness. However, their practical applications are seriously hindered by several inevitable drawbacks, especially the shuttle effects of soluble lithium polysulfides (LiPSs) which lead to rapid capacity decay and short cycling lifespan. This review specifically concentrates on the shuttle path of LiPSs and their interaction with the corresponding cell components along the moving way, systematically retrospect the recent advances and strategies toward polysulfides diffusion suppression. Overall, the strategies for the shuttle effect inhibition can be classified into four parts, including capturing the LiPSs in the sulfur cathode, reducing the dissolution in electrolytes, blocking the shuttle channels by functional separators, and preventing the chemical reaction between LiPSs and Li metal anode. Herein, the fundamental aspect of Li–S batteries is introduced first to give an in‐deep understanding of the generation and shuttle effect of LiPSs. Then, the corresponding strategies toward LiPSs shuttle inhibition along the diffusion path are discussed step by step. Finally, general conclusions and perspectives for future research on shuttle issues and practical application of Li–S batteries are proposed. This review summarizes the recent advances and strategies to suppress the shuttle effect of lithium polysulfides (LiPSs) in lithium–sulfur batteries. These strategies are composed of using the modified sulfur hosts to immobilize LiPSs, electrolyte systems to alleviate shuttle behavior, functional separator to intercept LiPSs, and anode surface engineering to avoid the chemical reaction between LiPSs and Li.
Author Wei, Qiulong
Xie, Qingshui
Li, Yikai
Huang, Youzhang
Lin, Liang
Liu, Lie
Qiao, Zhensong
Lin, Jie
Zhang, Chengkun
Wang, Laisen
Peng, Dong‐Liang
AuthorAffiliation 1 State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials Xiamen University Xiamen 361005 P. R. China
2 Shenzhen Research Institute of Xiamen University Shenzhen 518000 P. R. China
AuthorAffiliation_xml – name: 2 Shenzhen Research Institute of Xiamen University Shenzhen 518000 P. R. China
– name: 1 State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials Xiamen University Xiamen 361005 P. R. China
Author_xml – sequence: 1
  givenname: Youzhang
  orcidid: 0000-0002-3581-2995
  surname: Huang
  fullname: Huang, Youzhang
  organization: Xiamen University
– sequence: 2
  givenname: Liang
  surname: Lin
  fullname: Lin, Liang
  organization: Xiamen University
– sequence: 3
  givenname: Chengkun
  surname: Zhang
  fullname: Zhang, Chengkun
  organization: Xiamen University
– sequence: 4
  givenname: Lie
  surname: Liu
  fullname: Liu, Lie
  organization: Xiamen University
– sequence: 5
  givenname: Yikai
  surname: Li
  fullname: Li, Yikai
  organization: Xiamen University
– sequence: 6
  givenname: Zhensong
  surname: Qiao
  fullname: Qiao, Zhensong
  organization: Xiamen University
– sequence: 7
  givenname: Jie
  surname: Lin
  fullname: Lin, Jie
  organization: Xiamen University
– sequence: 8
  givenname: Qiulong
  surname: Wei
  fullname: Wei, Qiulong
  organization: Xiamen University
– sequence: 9
  givenname: Laisen
  surname: Wang
  fullname: Wang, Laisen
  organization: Xiamen University
– sequence: 10
  givenname: Qingshui
  surname: Xie
  fullname: Xie, Qingshui
  email: xieqsh@xmu.edu.cn
  organization: Shenzhen Research Institute of Xiamen University
– sequence: 11
  givenname: Dong‐Liang
  orcidid: 0000-0003-4155-4766
  surname: Peng
  fullname: Peng, Dong‐Liang
  email: dlpeng@xmu.edu.cn
  organization: Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35233996$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiF7oliUaiQ2bhOPLeDwbpFAujRSJigBbyzO2E0eTcWt7UmXXR6jEG_ZJ8JAStd10Zfv4P59_n3OOs4POdTrL3iAYIwD8QapNGGPACBgAfZEdYVTxEeGUHjzYH2anIawAABWkpIi_yg5JgQmpKnaUrX_oRncxn6iN7BodctmpfB69jHph0zG6a-lVfuHabehbY1WKzZd9jK3Op93S1jZa1-XG-fzcLpZ3N7cX2qfTeqDlM3t382eef5Ixap9wr7OXRrZBn96vJ9mvr19-np2PZt-_Tc8ms1FT4IqOeHJJoGJEsYoZVRuQRBe4TFZrRLgkSpaIG1WiQhtpVNMYyTlSDWG1QoDISTbdcZWTK3Hp7Vr6rXDSin8B5xdC-mibVota4wJKKMCgktZgJLASa04ryhBDhiTWxx3rsq_XWg3V8rJ9BH1809mlWLiNqIAMbUmA9_cA7656HaJY29DotpWddn0QmKV20BLzwfe7J9KV632XSpVUBak4FGWZVG8fOtpb-d_VJBjvBI13IXht9hIEYpgcMUyO2E9OSqBPEhob5dDZ9CPbPpt2bVu9feYRMfn8e05YRclfzInZ6g
CitedBy_id crossref_primary_10_1016_j_jpowsour_2025_236682
crossref_primary_10_1002_smll_202312288
crossref_primary_10_1016_j_apsusc_2022_154773
crossref_primary_10_3390_ma17225615
crossref_primary_10_1002_smll_202502934
crossref_primary_10_1002_adma_202503365
crossref_primary_10_1016_j_carbon_2022_09_020
crossref_primary_10_1007_s11581_024_05806_9
crossref_primary_10_1002_smsc_202300339
crossref_primary_10_1016_j_jcis_2024_04_001
crossref_primary_10_3390_batteries10040124
crossref_primary_10_1016_j_cis_2025_103479
crossref_primary_10_1002_ente_202401451
crossref_primary_10_1039_D4RA06245K
crossref_primary_10_1016_j_cej_2023_147315
crossref_primary_10_1002_adfm_202300825
crossref_primary_10_1002_smll_202309422
crossref_primary_10_1016_j_jcis_2025_137953
crossref_primary_10_1002_smll_202401567
crossref_primary_10_1016_j_cej_2024_150101
crossref_primary_10_1002_chem_202501264
crossref_primary_10_1038_s43246_025_00805_3
crossref_primary_10_1016_j_jechem_2023_10_060
crossref_primary_10_1016_j_est_2023_110087
crossref_primary_10_1007_s11581_023_05321_3
crossref_primary_10_1016_j_nanoen_2023_108603
crossref_primary_10_1016_j_ensm_2025_104429
crossref_primary_10_3390_molecules29215146
crossref_primary_10_1002_smll_202306140
crossref_primary_10_1016_j_jpowsour_2025_236783
crossref_primary_10_1002_anie_202307802
crossref_primary_10_1016_j_cej_2022_139566
crossref_primary_10_1002_smll_202409740
crossref_primary_10_1016_j_biombioe_2023_106999
crossref_primary_10_1039_D4NR01520G
crossref_primary_10_1002_ente_202500550
crossref_primary_10_1002_cphc_202400406
crossref_primary_10_1002_smll_202300843
crossref_primary_10_1016_j_est_2024_115168
crossref_primary_10_1016_j_est_2023_108596
crossref_primary_10_1016_j_jallcom_2024_177268
crossref_primary_10_1002_ente_202300092
crossref_primary_10_1002_sus2_119
crossref_primary_10_1016_j_carbon_2023_118066
crossref_primary_10_1002_aenm_202303389
crossref_primary_10_1002_chem_202401442
crossref_primary_10_1016_j_jcis_2024_05_140
crossref_primary_10_1016_j_jallcom_2024_178113
crossref_primary_10_1002_advs_202404834
crossref_primary_10_3389_fenrg_2023_1150737
crossref_primary_10_1016_j_electacta_2023_143033
crossref_primary_10_1016_j_jcis_2023_06_037
crossref_primary_10_1016_j_materresbull_2023_112563
crossref_primary_10_1007_s42765_023_00341_0
crossref_primary_10_1016_j_compositesb_2023_110679
crossref_primary_10_1016_j_mattod_2023_02_027
crossref_primary_10_1016_j_jpowsour_2024_235831
crossref_primary_10_1002_smll_202205470
crossref_primary_10_1016_j_jallcom_2023_173394
crossref_primary_10_1002_smll_202303784
crossref_primary_10_1002_smll_202307902
crossref_primary_10_1016_j_nanoen_2024_109611
crossref_primary_10_1002_smll_202300950
crossref_primary_10_1021_jacs_4c10238
crossref_primary_10_1002_smll_202504995
crossref_primary_10_1016_j_nanoen_2023_108353
crossref_primary_10_1016_j_apsusc_2023_157963
crossref_primary_10_1016_j_jallcom_2023_170922
crossref_primary_10_1002_adma_202204636
crossref_primary_10_1016_j_est_2024_113724
crossref_primary_10_1016_j_mtphys_2024_101453
crossref_primary_10_1016_j_apsusc_2025_163054
crossref_primary_10_1016_j_cej_2024_154347
crossref_primary_10_1039_D3NR06247C
crossref_primary_10_1039_D2SE01164F
crossref_primary_10_1007_s12274_022_5029_4
crossref_primary_10_1039_D4NR03190C
crossref_primary_10_1002_batt_202500219
crossref_primary_10_1016_j_est_2023_110049
crossref_primary_10_1016_j_ccr_2025_217016
crossref_primary_10_1039_D5EB00073D
crossref_primary_10_3390_batteries10060169
crossref_primary_10_1007_s40820_022_00976_5
crossref_primary_10_1002_adma_202310245
crossref_primary_10_1016_j_jpowsour_2023_233530
crossref_primary_10_1016_j_electacta_2022_141539
crossref_primary_10_1002_smll_202304210
crossref_primary_10_1016_j_cej_2022_140462
crossref_primary_10_1016_j_cej_2025_163225
crossref_primary_10_1002_cnma_202300087
crossref_primary_10_1002_cssc_202400799
crossref_primary_10_1016_j_matchemphys_2024_130236
crossref_primary_10_1016_j_jcis_2024_11_211
crossref_primary_10_1007_s12598_024_02708_7
crossref_primary_10_1002_batt_202400284
crossref_primary_10_1002_smtd_202501183
crossref_primary_10_1063_5_0244568
crossref_primary_10_3390_inorganics13090294
crossref_primary_10_3390_batteries9120594
crossref_primary_10_1016_j_est_2024_110479
crossref_primary_10_1016_j_cej_2022_139923
crossref_primary_10_1002_er_8103
crossref_primary_10_1002_ceat_202300320
crossref_primary_10_1016_j_cej_2025_168561
crossref_primary_10_1002_smll_202302386
crossref_primary_10_1016_j_jallcom_2024_175682
crossref_primary_10_1016_j_susmat_2023_e00712
crossref_primary_10_1007_s40820_024_01446_w
crossref_primary_10_1016_j_ccr_2025_216988
crossref_primary_10_1002_ange_202319847
crossref_primary_10_1021_acsenergylett_5c00768
crossref_primary_10_1016_j_ssi_2025_116857
crossref_primary_10_1016_j_jallcom_2025_182143
crossref_primary_10_1002_ece2_80
crossref_primary_10_1039_D5NR02720A
crossref_primary_10_1002_aenm_202203540
crossref_primary_10_1002_adma_202212116
crossref_primary_10_1016_j_jallcom_2024_174583
crossref_primary_10_1016_j_est_2023_109708
crossref_primary_10_1021_jacs_4c05827
crossref_primary_10_1002_chem_202303285
crossref_primary_10_1016_j_cej_2023_147847
crossref_primary_10_1016_j_cej_2023_144338
crossref_primary_10_1002_adfm_202214430
crossref_primary_10_3390_nano12203612
crossref_primary_10_1002_anie_202319847
crossref_primary_10_1002_cphc_202500315
crossref_primary_10_1016_j_est_2025_117698
crossref_primary_10_1016_S1872_5805_24_60838_3
crossref_primary_10_1002_ange_202406693
crossref_primary_10_1002_adfm_202212499
crossref_primary_10_1002_asia_202500529
crossref_primary_10_1002_ange_202410823
crossref_primary_10_1016_j_est_2024_113002
crossref_primary_10_1039_D3QM00850A
crossref_primary_10_1557_s43577_024_00677_x
crossref_primary_10_1002_ange_202307802
crossref_primary_10_1007_s43938_024_00045_w
crossref_primary_10_1016_j_cej_2024_157002
crossref_primary_10_1016_j_mser_2024_100865
crossref_primary_10_1038_s41467_024_47565_1
crossref_primary_10_1002_ece2_22
crossref_primary_10_1007_s11581_024_05891_w
crossref_primary_10_1002_adma_202411525
crossref_primary_10_1016_j_energy_2025_134755
crossref_primary_10_1038_s41427_024_00568_2
crossref_primary_10_1039_D5TA01365H
crossref_primary_10_1002_batt_202400484
crossref_primary_10_1016_j_ensm_2025_104369
crossref_primary_10_1002_advs_202505685
crossref_primary_10_1002_chem_202303507
crossref_primary_10_1007_s40820_023_01037_1
crossref_primary_10_1016_j_est_2023_108072
crossref_primary_10_3390_nano12162752
crossref_primary_10_1016_j_est_2024_110552
crossref_primary_10_1016_j_est_2024_115202
crossref_primary_10_1039_D4SE00497C
crossref_primary_10_1016_j_est_2024_113141
crossref_primary_10_1016_j_cej_2022_140152
crossref_primary_10_1016_j_jallcom_2025_179688
crossref_primary_10_1002_batt_202300427
crossref_primary_10_1016_j_cej_2024_148991
crossref_primary_10_1016_j_ccr_2025_216704
crossref_primary_10_1002_aenm_202303546
crossref_primary_10_1016_j_electacta_2025_147437
crossref_primary_10_1073_pnas_2301260120
crossref_primary_10_1016_j_est_2024_111419
crossref_primary_10_1016_j_jelechem_2024_118808
crossref_primary_10_1016_j_electacta_2025_145936
crossref_primary_10_1016_j_jcis_2023_01_135
crossref_primary_10_3390_batteries11080290
crossref_primary_10_1016_j_cej_2022_137433
crossref_primary_10_1016_j_cej_2025_163529
crossref_primary_10_1002_adfm_202514274
crossref_primary_10_1016_j_jcis_2023_12_021
crossref_primary_10_1007_s12598_023_02360_7
crossref_primary_10_1002_chem_202401713
crossref_primary_10_1002_smll_202302179
crossref_primary_10_1016_j_jallcom_2023_170285
crossref_primary_10_1039_D5CC01414J
crossref_primary_10_1016_j_cej_2023_145862
crossref_primary_10_1002_smll_202312124
crossref_primary_10_1016_j_polymer_2022_125599
crossref_primary_10_1016_j_ensm_2025_104502
crossref_primary_10_1016_j_electacta_2025_147006
crossref_primary_10_1016_j_jelechem_2025_118961
crossref_primary_10_1002_adma_202208846
crossref_primary_10_1016_j_est_2023_108010
crossref_primary_10_1016_j_ensm_2025_104617
crossref_primary_10_1002_adfm_202315201
crossref_primary_10_1002_adfm_202211774
crossref_primary_10_1016_j_jechem_2023_10_029
crossref_primary_10_1002_eem2_70038
crossref_primary_10_1039_D5QI00119F
crossref_primary_10_1002_er_8519
crossref_primary_10_1016_j_jpowsour_2023_233382
crossref_primary_10_1016_j_ces_2023_119294
crossref_primary_10_1002_adfm_202316838
crossref_primary_10_1016_j_electacta_2023_142887
crossref_primary_10_1002_celc_202400010
crossref_primary_10_1007_s10854_023_11336_3
crossref_primary_10_1007_s13233_023_00214_w
crossref_primary_10_1002_anie_202406693
crossref_primary_10_1016_j_mtcomm_2023_108008
crossref_primary_10_1016_j_jallcom_2023_170783
crossref_primary_10_1016_j_ccr_2022_214879
crossref_primary_10_1016_j_jpowsour_2023_233136
crossref_primary_10_1002_smll_202206462
crossref_primary_10_1002_celc_202201151
crossref_primary_10_1016_j_jelechem_2024_118559
crossref_primary_10_1007_s11814_024_00036_1
crossref_primary_10_1016_j_apt_2025_104785
crossref_primary_10_1016_j_cej_2023_145961
crossref_primary_10_1002_adfm_202504272
crossref_primary_10_1002_cnl2_100
crossref_primary_10_1002_adfm_202400262
crossref_primary_10_1002_smll_202304162
crossref_primary_10_1016_j_jallcom_2022_167975
crossref_primary_10_1039_D5YA00050E
crossref_primary_10_1016_j_jcis_2023_08_193
crossref_primary_10_1002_anie_202410823
crossref_primary_10_3390_met13050833
crossref_primary_10_1002_chem_202302334
crossref_primary_10_1002_aenm_202204345
crossref_primary_10_1007_s12274_022_5364_5
crossref_primary_10_1016_j_cej_2025_161776
crossref_primary_10_1016_j_est_2024_112374
crossref_primary_10_1016_j_jcis_2024_04_023
crossref_primary_10_1016_j_jechem_2023_07_003
crossref_primary_10_1007_s40820_024_01573_4
crossref_primary_10_1016_j_cej_2025_161099
crossref_primary_10_20517_energymater_2024_260
crossref_primary_10_1016_j_carbon_2024_119512
crossref_primary_10_1016_j_cej_2023_141477
crossref_primary_10_1149_1945_7111_ade630
crossref_primary_10_1002_advs_202407984
crossref_primary_10_1002_bkcs_12687
crossref_primary_10_1016_j_cplett_2024_141124
crossref_primary_10_1016_j_etran_2023_100298
crossref_primary_10_1039_D3QM00326D
crossref_primary_10_1016_j_jpowsour_2023_233158
crossref_primary_10_1002_adma_202304551
crossref_primary_10_1002_smll_202504580
crossref_primary_10_1002_aenm_202300767
crossref_primary_10_1021_acsami_5c03556
crossref_primary_10_1002_aenm_202502691
crossref_primary_10_1002_adsu_202500076
Cites_doi 10.1002/adfm.202001165
10.1016/j.nanoen.2016.11.045
10.1016/j.electacta.2019.135108
10.1038/ncomms2513
10.1002/adfm.201902820
10.1016/j.joule.2020.02.006
10.1039/C6CC09248A
10.1016/j.joule.2018.09.024
10.1016/j.ensm.2018.03.015
10.1039/C5TA01037C
10.1002/cnma.201500055
10.1002/adma.201900009
10.1021/acsami.7b14195
10.1016/j.electacta.2014.12.041
10.1002/adma.202000315
10.1007/s10965-017-1290-8
10.1021/nl403130h
10.1002/adfm.201404472
10.1021/nl503730c
10.1002/aenm.202000651
10.1002/anie.201511673
10.1002/adfm.201902322
10.1002/advs.201800621
10.1039/C7EE01430A
10.1038/ncomms8436
10.1021/acsenergylett.0c00292
10.1016/j.cej.2019.122746
10.1002/aenm.201900953
10.1002/anie.201902413
10.1039/C9CS00635D
10.1039/D0TA05964A
10.1021/acsnano.0c06112
10.1126/science.1122152
10.1038/451652a
10.1021/nn401228t
10.1149/2.0611506jes
10.1002/aenm.201904010
10.1002/aenm.201301473
10.1002/adma.201603401
10.1021/acsnano.1c00446
10.1039/C5TA01490E
10.1016/j.mattod.2020.10.021
10.1016/j.nanoen.2021.105761
10.1021/nn203436j
10.1021/am504345s
10.1039/C4EE00372A
10.1021/acsami.9b05628
10.1016/j.nanoen.2015.10.024
10.1002/aenm.201803774
10.1002/aenm.201901896
10.1093/nsr/nwz222
10.1149/1.1837858
10.1039/D0EE03316B
10.1021/acsnano.9b03304
10.1021/acs.nanolett.9b04551
10.1016/j.nanoen.2019.103894
10.1016/j.nanoen.2020.105621
10.1016/j.nanoen.2019.03.060
10.1039/C4CC05535G
10.1002/admi.201701598
10.1002/aenm.201903937
10.1002/ente.202000348
10.1002/anie.202101958
10.1021/acsnano.5b02166
10.1021/acsami.1c03227
10.1002/anie.201605676
10.1039/D1EE00508A
10.1016/j.jpowsour.2018.08.016
10.1021/cm5044667
10.1002/adfm.202100970
10.1021/acsami.8b22014
10.1021/acsami.7b10306
10.1016/j.electacta.2018.08.107
10.1016/j.jpowsour.2017.10.005
10.1016/j.matt.2020.04.011
10.1016/j.nanoen.2018.10.001
10.1039/C9TA00535H
10.1021/acsami.0c10341
10.1038/nmat2460
10.1021/acsnano.9b00177
10.1002/advs.201700270
10.1002/aenm.201903550
10.1039/C9NR07809F
10.1002/smll.201903952
10.1016/j.cej.2020.128153
10.1016/j.ensm.2018.06.015
10.1021/acs.jpclett.7b01321
10.1002/aenm.202002271
10.1021/acs.nanolett.7b04425
10.1016/j.nanoen.2017.10.018
10.1002/adma.202002168
10.1021/acsnano.0c07332
10.1021/ja3052206
10.1007/s12598-020-01498-y
10.1002/chem.202003807
10.1021/acsnano.0c00799
10.1038/nnano.2017.16
10.1038/nchem.2085
10.1016/j.joule.2017.12.003
10.1021/jacs.5b04472
10.1016/j.ensm.2019.09.028
10.1021/acsnano.9b06629
10.1021/acs.nanolett.9b04719
10.1021/jacs.7b05251
10.1016/j.electacta.2013.06.039
10.1002/anie.202007159
10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
10.1002/aenm.202100332
10.1002/adma.201604724
10.1002/adfm.201707536
10.1002/adfm.201900392
10.1021/am501665s
10.1002/adma.201402893
10.1021/acsnano.7b01945
10.1016/j.electacta.2016.08.015
10.1038/ncomms11203
10.1002/adfm.201706391
10.1021/acsomega.9b03550
10.1016/j.ensm.2019.05.032
10.1016/j.elecom.2013.10.020
10.1016/j.ensm.2018.01.002
10.1016/j.jpowsour.2019.227232
10.1016/j.carbon.2020.01.046
10.1016/j.ensm.2019.05.034
10.1021/nl2027684
10.1021/acsami.6b03897
10.1016/j.jechem.2018.04.014
10.1016/j.ensm.2015.09.008
10.1038/nmat3066
10.1021/acscentsci.0c00449
10.1039/C7EE01047H
10.1002/adma.201603366
10.1021/jz5006913
10.1016/j.elecom.2013.09.002
10.1016/j.electacta.2018.11.145
10.1016/j.electacta.2012.03.081
10.1016/j.ensm.2018.09.012
10.1016/j.ensm.2016.01.007
10.1002/adma.201404194
10.1002/aenm.201601392
10.1021/acs.nanolett.7b01020
10.1038/srep08763
10.1016/j.nanoen.2019.03.015
10.1002/advs.201800815
10.1038/ncomms5759
10.1016/j.jpowsour.2015.07.033
10.1002/adfm.201200696
10.1149/1.3148721
10.1021/acsnano.0c01452
10.1016/j.ensm.2019.06.009
10.1016/j.jpowsour.2016.07.056
10.1002/anie.201906055
10.1021/acs.jpcc.7b06625
10.1016/j.electacta.2019.06.177
10.1021/ja308170k
10.1002/aenm.201602347
10.1002/adfm.202006798
10.1016/j.jpowsour.2016.03.093
10.1021/acsami.5b12231
10.1016/j.matt.2020.06.002
10.1021/acsami.6b10366
10.1021/acsnano.0c02294
10.1016/j.ensm.2018.12.016
10.1038/ncomms14627
10.1016/S1388-2481(02)00358-2
10.1039/C5EE00058K
10.1039/C4CP03694H
10.1016/j.electacta.2012.07.118
10.1039/C9TA10560C
10.1007/s11426-020-9810-1
10.1039/C8TA07685E
10.1016/j.joule.2018.07.022
10.1016/j.nanoen.2014.11.025
10.1016/j.jpowsour.2011.12.061
10.1002/smll.202001089
10.1021/acs.nanolett.0c01778
10.1039/C4TA04172K
10.1002/adma.202106618
10.1039/C9NH00663J
10.1016/j.cej.2019.122714
10.1002/anie.201511830
10.1002/adfm.201400845
10.1002/aenm.201901075
10.1016/j.jpowsour.2011.08.027
10.1039/D0TA02999H
10.1149/2.0111801jes
10.1002/ente.201800819
10.1021/acsnano.9b07121
10.1002/adma.201601759
10.1039/D0TA01664K
10.1021/acsami.5b11803
10.1039/C5TA04289E
10.1016/j.ssi.2004.07.070
10.1016/j.jechem.2020.02.050
10.1039/C6CP04775K
10.1016/j.joule.2019.01.003
10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
10.1021/acscentsci.9b00846
10.1002/admi.201800243
10.1016/j.ensm.2018.05.019
10.1038/s41467-021-23155-3
10.1039/C8TA09069F
10.1002/aenm.202001304
10.1016/j.ensm.2019.08.019
10.1021/acs.nanolett.5b04166
10.1002/adfm.201807485
10.1016/j.ensm.2019.02.022
10.1016/j.jechem.2020.03.034
10.1016/j.ensm.2020.03.008
10.1002/aenm.201500212
10.1021/nn501308m
10.1002/aenm.202000901
10.1016/j.nanoen.2015.01.007
10.1016/j.electacta.2016.05.087
10.1021/acs.nanolett.5b01837
10.1021/acsami.8b14045
10.1002/anie.201805972
10.1002/aenm.202003689
10.1002/adfm.201505074
10.1002/aenm.201700260
10.1016/j.nanoen.2016.12.015
10.1039/C3EE42223B
10.1002/inf2.12046
10.1016/j.nanoen.2020.105033
10.1016/j.joule.2018.08.010
10.1038/s41467-018-06629-9
ContentType Journal Article
Copyright 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202106004
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_be2507050f174b0fa0672e84946161f3
PMC9036004
35233996
10_1002_advs_202106004
ADVS3694
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Xiamen University
  funderid: 20720200068; 20720190007; 20720200080
– fundername: National Natural Science Foundation of China
  funderid: 51871188; 51931006; 51701169
– fundername: “Double‐First Class” Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University
– fundername: Central Universities of China
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515010139
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202602
– fundername: Natural Science Foundation of Fujian Province of China
  funderid: 2019J06003; 2020J05014
– fundername: National Natural Science Foundation of China
  grantid: 51871188
– fundername: National Key R&D Program of China
  grantid: 2016YFA0202602
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515010139
– fundername: Natural Science Foundation of Fujian Province of China
  grantid: 2020J05014
– fundername: "Double-First Class" Foundation of Materials Intelligent Manufacturing Discipline of Xiamen University
– fundername: National Natural Science Foundation of China
  grantid: 51701169
– fundername: Natural Science Foundation of Fujian Province of China
  grantid: 2019J06003
– fundername: National Natural Science Foundation of China
  grantid: 51931006
– fundername: Xiamen University
  grantid: 20720190007
– fundername: Natural Science Foundation of Fujian Province of China
  grantid: 2019J06003; 2020J05014
– fundername: ;
  grantid: 20720200068; 20720190007; 20720200080
– fundername: ;
  grantid: 51871188; 51931006; 51701169
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5294-841830963d696fdbf0a3e527eceb138a3da718fd715efafdccfa881dc36bd1013
IEDL.DBID DOA
ISICitedReferencesCount 346
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000762597200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Tue Oct 14 19:05:55 EDT 2025
Tue Nov 04 02:05:26 EST 2025
Thu Sep 04 18:58:19 EDT 2025
Sun Nov 09 08:46:34 EST 2025
Mon Jul 21 05:46:02 EDT 2025
Sat Nov 29 07:23:34 EST 2025
Tue Nov 18 22:42:32 EST 2025
Wed Jan 22 16:24:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords shuttle effect
lithium anode
functional separators
electrolyte systems
sulfur hosts
Language English
License Attribution
2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5294-841830963d696fdbf0a3e527eceb138a3da718fd715efafdccfa881dc36bd1013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3581-2995
0000-0003-4155-4766
OpenAccessLink https://doaj.org/article/be2507050f174b0fa0672e84946161f3
PMID 35233996
PQID 2653980577
PQPubID 4365299
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_be2507050f174b0fa0672e84946161f3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9036004
proquest_miscellaneous_2635247281
proquest_journals_2653980577
pubmed_primary_35233996
crossref_primary_10_1002_advs_202106004
crossref_citationtrail_10_1002_advs_202106004
wiley_primary_10_1002_advs_202106004_ADVS3694
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2002; 14
2013; 4
2019 2019; 23 7
2020; 20
2020 2020 2019; 76 20 11
2019; 11
2019; 10
2019; 13
2019; 15
2020; 161
2019; 16
2020; 16
2014; 26
2020; 14
2014; 24
2019; 18
2020; 12
2020; 10
2011; 196
2019; 442
2021 2019 2018; 11 7 27
2018; 6
2018; 9
2004; 175
2018; 2
2012; 134
2018; 5
2015; 137
2016; 319
2019; 319
2019; 21
2019; 23
1997; 144
2014; 16
2014; 14
2019; 29
2008 2006 2015; 451 311 7
2017; 165
2021; 82
1998; 10
2018; 29
2019; 9
2018; 28
2019; 3
2019; 6
2021; 45
2019; 5
2019; 31
2020; 40
2019; 2
2016; 327
2019 2021 2021; 13 81 11
2020; 381
2013; 107
2002; 4
2017 2020; 12 7
2020; 32
2016; 18
2016; 16
2011; 5
2015 2012; 3 205
2018; 18
2016; 6
2017; 53
2016; 7
2016; 3
2020; 31
2021; 410
2020; 30
2020; 28
2020; 26
2016; 210
2020; 25
2020; 24
2020; 398
2016; 213
2019; 295
2016; 28
2021; 60
2018; 10
2016; 26
2016; 8
2018; 15
2018; 13
2017; 7
2017; 8
2017; 41
2009 2020 2021; 8 6 14
2020; 63
2019 2018; 58 5
2013; 23
2019; 59
2018; 400
2019; 58
2011; 11
2009; 156
2017 2017 2020; 139 17 8
2011; 10
2015 2015; 9 3
2017; 9
2020; 8
2017; 31
2012; 70
2020; 5
2020; 4
2014; 5
2019; 60
2014; 4
2020; 3
2021; 31
2020; 2
2021; 34
2014; 2
2019; 63
2013; 13
2017; 32
2020; 49
2017; 121
2014; 8
2014; 7
2014; 50
2014; 6
2020 2020; 59 51
2017; 369
2012; 83
2015; 162
2015; 12
2015; 1
2015; 15
2015; 6
2015; 5
2014 2015 2015; 6 296 154
2015; 18
2015; 3
2017; 24
2020 2019 2020; 8 295
2020 2020; 329 382
2017; 29
2015; 8
2016; 55
2021; 14
2021; 13
2021; 15
2015; 25
2013; 37
2015; 27
2013; 36
2021; 12
2013 2015; 7 11
2021
2017; 11
2017; 10
2014
2018; 54
2018; 57
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_191_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_188_2
e_1_2_7_202_1
e_1_2_7_188_3
e_1_2_7_116_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_23_2
Liu F. (e_1_2_7_203_1) 2020; 30
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_56_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_177_1
e_1_2_7_139_1
e_1_2_7_4_3
e_1_2_7_4_2
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
Yu M. (e_1_2_7_90_1) 2014
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_192_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_67_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_166_1
Wang J. (e_1_2_7_24_1) 2019; 29
e_1_2_7_117_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_78_1
e_1_2_7_193_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_1_3
e_1_2_7_9_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_2
e_1_2_7_13_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_170_1
e_1_2_7_89_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_204_1
e_1_2_7_118_1
e_1_2_7_110_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_171_1
e_1_2_7_194_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_2_2
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_122_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_205_1
e_1_2_7_160_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_145_1
e_1_2_7_168_1
e_1_2_7_119_1
e_1_2_7_91_1
Li N. (e_1_2_7_64_1) 2020; 398
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_172_1
e_1_2_7_195_1
e_1_2_7_99_3
e_1_2_7_99_2
e_1_2_7_38_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_108_1
e_1_2_7_7_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_87_1
Liang X. (e_1_2_7_92_1) 2016; 6
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_206_1
e_1_2_7_161_3
e_1_2_7_26_1
e_1_2_7_161_2
e_1_2_7_49_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_112_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_75_1
e_1_2_7_150_1
e_1_2_7_196_1
e_1_2_7_37_1
e_1_2_7_173_1
e_1_2_7_196_2
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_109_1
Jeon Y. (e_1_2_7_29_3) 2020
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_63_1
e_1_2_7_86_1
e_1_2_7_185_1
e_1_2_7_207_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_207_2
e_1_2_7_147_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_74_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_197_3
e_1_2_7_197_1
e_1_2_7_197_2
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_140_2
e_1_2_7_208_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_200_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_175_1
e_1_2_7_198_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_126_1
e_1_2_7_6_2
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_209_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_201_1
e_1_2_7_164_1
e_1_2_7_187_1
e_1_2_7_149_1
e_1_2_7_115_2
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_199_1
e_1_2_7_138_1
References_xml – volume: 7 11
  start-page: 5367 356
  year: 2013 2015
  publication-title: ACS Nano Nano Energy
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 7138
  year: 2014
  publication-title: Nano Lett.
– volume: 3 205
  start-page: 420
  year: 2015 2012
  publication-title: J. Mater. Chem. A J. Power Sources
– volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 76 20 11
  start-page: 701
  year: 2020 2020 2019
  publication-title: Nano Energy Nano Lett. ACS Appl. Mater. Interfaces
– volume: 83
  start-page: 78
  year: 2012
  publication-title: Electrochim. Acta
– volume: 327
  start-page: 212
  year: 2016
  publication-title: J. Power Sources
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 400
  start-page: 212
  year: 2018
  publication-title: J. Power Sources
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– year: 2014
  publication-title: J. Mater. Chem. A
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 9 3
  start-page: 5884
  year: 2015 2015
  publication-title: ACS Nano J. Mater. Chem. A
– volume: 8 295
  start-page: 444
  year: 2020 2019 2020
  publication-title: J. Mater. Chem. A Electrochim. Acta Chem. Eng. J.
– volume: 175
  start-page: 243
  year: 2004
  publication-title: Solid State Ionics
– volume: 398
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 347
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1476
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 920
  year: 2020
  publication-title: Matter
– volume: 13
  start-page: 3608
  year: 2019
  publication-title: ACS Nano
– volume: 60
  start-page: 332
  year: 2019
  publication-title: Nano Energy
– volume: 26
  start-page: 7352
  year: 2014
  publication-title: Adv. Mater.
– volume: 24
  start-page: 5299
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 136
  year: 2019
  publication-title: Joule
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 720
  year: 2020
  publication-title: Nanoscale Horiz.
– volume: 10
  start-page: 1694
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 135
  year: 2017
  publication-title: J. Polym. Res.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 9067
  year: 2019
  publication-title: ACS Nano
– volume: 196
  start-page: 9839
  year: 2011
  publication-title: J. Power Sources
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 5687
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 101
  year: 2015
  publication-title: Adv. Mater.
– volume: 18
  start-page: 245
  year: 2015
  publication-title: Nano Energy
– volume: 25
  start-page: 2270
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 82
  year: 2021
  publication-title: Nano Energy
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 16
  start-page: 228
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 165
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 9187
  year: 2011
  publication-title: ACS Nano
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 29
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 59 51
  start-page: 154
  year: 2020 2020
  publication-title: Angew. Chem., Int. Ed. J. Energy Chem.
– volume: 12 7
  start-page: 194 1208
  year: 2017 2020
  publication-title: Nat. Nanotechnol. Natl. Sci. Rev.
– volume: 2
  start-page: 2091
  year: 2018
  publication-title: Joule
– volume: 15
  start-page: 8583
  year: 2021
  publication-title: ACS Nano
– volume: 5
  start-page: 1978
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 7783
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 682
  year: 2011
  publication-title: Nat. Mater.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 62
  year: 2021
  publication-title: Mater. Today
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 21
  start-page: 14
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 5249
  year: 2014
  publication-title: ACS Nano
– volume: 2
  start-page: 379
  year: 2019
  publication-title: InfoMat
– volume: 24
  start-page: 644
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 144
  start-page: L208
  year: 1997
  publication-title: J. Electrochem. Soc.
– volume: 26
  start-page: 3059
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 162
  start-page: A982
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 10
  start-page: 439
  year: 1998
  publication-title: Adv. Mater.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2697
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 9744
  year: 2020
  publication-title: ACS Nano
– volume: 2
  start-page: 2681
  year: 2018
  publication-title: Joule
– volume: 4
  start-page: 539
  year: 2020
  publication-title: Joule
– volume: 2
  start-page: 323
  year: 2018
  publication-title: Joule
– volume: 5
  start-page: 8763
  year: 2015
  publication-title: Sci. Rep.
– volume: 3
  start-page: 361
  year: 2019
  publication-title: Joule
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 5443
  year: 2015
  publication-title: Nano Lett.
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 14
  start-page: 963
  year: 2002
  publication-title: Adv. Mater.
– volume: 442
  year: 2019
  publication-title: J. Power Sources
– volume: 53
  start-page: 963
  year: 2017
  publication-title: Chem. Commun.
– volume: 8
  start-page: 8979
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 18
  start-page: 222
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 1177
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 369
  start-page: 87
  year: 2017
  publication-title: J. Power Sources
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 2048
  year: 2015
  publication-title: Chem. Mater.
– volume: 13
  start-page: 5534
  year: 2013
  publication-title: Nano Lett.
– volume: 49
  start-page: 339
  year: 2020
  publication-title: J. Energy Chem.
– volume: 28
  start-page: 9551
  year: 2016
  publication-title: Adv. Mater.
– volume: 23
  start-page: 62
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 59
  start-page: 636
  year: 2019
  publication-title: Nano Energy
– volume: 28
  start-page: 196
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 1605
  year: 2020
  publication-title: Matter
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 4115
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 4700
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 156
  start-page: A694
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 329 382
  year: 2020 2020
  publication-title: Electrochim. Acta Chem. Eng. J.
– volume: 107
  start-page: 454
  year: 2013
  publication-title: Electrochim. Acta
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– volume: 13 81 11
  year: 2019 2021 2021
  publication-title: ACS Nano Nano Energy Adv. Energy Mater.
– volume: 23 7
  start-page: 707
  year: 2019 2019
  publication-title: Energy Storage Mater. J. Mater. Chem. A
– volume: 5
  start-page: 31
  year: 2020
  publication-title: ACS Omega
– volume: 319
  start-page: 511
  year: 2019
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 231
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 32
  start-page: 50
  year: 2017
  publication-title: Nano Energy
– volume: 5
  start-page: 1876
  year: 2019
  publication-title: ACS Cent. Sci.
– volume: 295
  start-page: 910
  year: 2019
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1481
  year: 2013
  publication-title: Nat. Commun.
– year: 2021
  publication-title: Adv. Energy Mater.
– volume: 70
  start-page: 344
  year: 2012
  publication-title: Electrochim. Acta
– volume: 139 17 8
  start-page: 3731
  year: 2017 2017 2020
  publication-title: J. Am. Chem. Soc. Nano Lett. Energy Technol.
– volume: 4
  start-page: 499
  year: 2002
  publication-title: Electrochem. Commun.
– volume: 14
  start-page: 6222
  year: 2020
  publication-title: ACS Nano
– volume: 319
  start-page: 247
  year: 2016
  publication-title: J. Power Sources
– volume: 41
  start-page: 573
  year: 2017
  publication-title: Nano Energy
– volume: 16
  start-page: 519
  year: 2016
  publication-title: Nano Lett.
– volume: 31
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8 6 14
  start-page: 500 1095 540
  year: 2009 2020 2021
  publication-title: Nat. Mater. ACS Cent. Sci. Energy Environ. Sci.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 161
  start-page: 162
  year: 2020
  publication-title: Carbon
– volume: 11
  start-page: 6031
  year: 2017
  publication-title: ACS Nano
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 2140
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 26
  year: 2020
  publication-title: Chem. ‐ Eur. J.
– volume: 12
  start-page: 468
  year: 2015
  publication-title: Nano Energy
– volume: 58 5
  year: 2019 2018
  publication-title: Angew. Chem., Int. Ed. Adv. Sci.
– volume: 8
  start-page: 3473
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 37
  start-page: 96
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 36
  start-page: 38
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 20
  start-page: 5391
  year: 2020
  publication-title: Nano Lett.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4759
  year: 2014
  publication-title: Nat. Commun.
– volume: 410
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 77
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 451 311 7
  start-page: 652 977 19
  year: 2008 2006 2015
  publication-title: Nature Science Nat. Chem.
– volume: 63
  start-page: 1483
  year: 2020
  publication-title: Sci. China Chem.
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 4164
  year: 2018
  publication-title: Nat. Commun.
– volume: 16
  start-page: 344
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 3992
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11 7 27
  start-page: 1555
  year: 2021 2019 2018
  publication-title: Adv. Energy Mater. Energy Technol. J. Energy Chem.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 475
  year: 2018
  publication-title: Nano Lett.
– volume: 1
  start-page: 127
  year: 2015
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 8006
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 20
  start-page: 1252
  year: 2020
  publication-title: Nano Lett.
– volume: 55
  start-page: 4231
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 23
  start-page: 1064
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 417
  year: 2020
  publication-title: Rare Met.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 15
  year: 2019
  publication-title: Small
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 151
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 25
  start-page: 547
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 50
  year: 2018
  publication-title: Nano Energy
– volume: 24
  start-page: 198
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 3031
  year: 2021
  publication-title: Nat. Commun.
– volume: 14
  start-page: 4849
  year: 2020
  publication-title: ACS Nano
– volume: 23
  start-page: 55
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 6 296 154
  start-page: 10 205
  year: 2014 2015 2015
  publication-title: ACS Appl. Mater. Interfaces J. Power Sources Electrochim. Acta
– volume: 8
  start-page: 1551
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 478
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 4462
  year: 2011
  publication-title: Nano Lett.
– volume: 1
  start-page: 240
  year: 2015
  publication-title: ChemNanoMat
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 37
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 210
  start-page: 71
  year: 2016
  publication-title: Electrochim. Acta
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 213
  start-page: 871
  year: 2016
  publication-title: Electrochim. Acta
– ident: e_1_2_7_61_1
  doi: 10.1002/adfm.202001165
– ident: e_1_2_7_126_1
  doi: 10.1016/j.nanoen.2016.11.045
– ident: e_1_2_7_140_1
  doi: 10.1016/j.electacta.2019.135108
– ident: e_1_2_7_118_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_7_37_1
  doi: 10.1002/adfm.201902820
– start-page: 126967
  year: 2020
  ident: e_1_2_7_29_3
  publication-title: Chem. Eng. J.
– ident: e_1_2_7_10_1
  doi: 10.1016/j.joule.2020.02.006
– ident: e_1_2_7_200_1
  doi: 10.1039/C6CC09248A
– ident: e_1_2_7_103_1
  doi: 10.1016/j.joule.2018.09.024
– ident: e_1_2_7_124_1
  doi: 10.1016/j.ensm.2018.03.015
– ident: e_1_2_7_125_1
  doi: 10.1039/C5TA01037C
– ident: e_1_2_7_171_1
  doi: 10.1002/cnma.201500055
– ident: e_1_2_7_62_1
  doi: 10.1002/adma.201900009
– ident: e_1_2_7_150_1
  doi: 10.1021/acsami.7b14195
– ident: e_1_2_7_188_3
  doi: 10.1016/j.electacta.2014.12.041
– ident: e_1_2_7_71_1
  doi: 10.1002/adma.202000315
– ident: e_1_2_7_138_1
  doi: 10.1007/s10965-017-1290-8
– ident: e_1_2_7_108_1
  doi: 10.1021/nl403130h
– ident: e_1_2_7_97_1
  doi: 10.1002/adfm.201404472
– ident: e_1_2_7_55_1
  doi: 10.1021/nl503730c
– ident: e_1_2_7_94_1
  doi: 10.1002/aenm.202000651
– ident: e_1_2_7_144_1
  doi: 10.1002/anie.201511673
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.201902322
– ident: e_1_2_7_27_1
  doi: 10.1002/advs.201800621
– ident: e_1_2_7_70_1
  doi: 10.1039/C7EE01430A
– ident: e_1_2_7_174_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_7_57_1
  doi: 10.1021/acsenergylett.0c00292
– ident: e_1_2_7_52_1
  doi: 10.1016/j.cej.2019.122746
– ident: e_1_2_7_51_1
  doi: 10.1002/aenm.201900953
– ident: e_1_2_7_74_1
  doi: 10.1002/anie.201902413
– ident: e_1_2_7_129_1
  doi: 10.1039/C9CS00635D
– ident: e_1_2_7_75_1
  doi: 10.1039/D0TA05964A
– ident: e_1_2_7_58_1
  doi: 10.1021/acsnano.0c06112
– ident: e_1_2_7_1_2
  doi: 10.1126/science.1122152
– ident: e_1_2_7_1_1
  doi: 10.1038/451652a
– ident: e_1_2_7_23_1
  doi: 10.1021/nn401228t
– ident: e_1_2_7_209_1
  doi: 10.1149/2.0611506jes
– ident: e_1_2_7_67_1
  doi: 10.1002/aenm.201904010
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201301473
– ident: e_1_2_7_157_1
  doi: 10.1002/adma.201603401
– ident: e_1_2_7_81_1
  doi: 10.1021/acsnano.1c00446
– ident: e_1_2_7_196_2
  doi: 10.1039/C5TA01490E
– ident: e_1_2_7_89_1
  doi: 10.1016/j.cej.2019.122746
– ident: e_1_2_7_162_1
  doi: 10.1016/j.mattod.2020.10.021
– ident: e_1_2_7_5_1
  doi: 10.1016/j.nanoen.2021.105761
– ident: e_1_2_7_107_1
  doi: 10.1021/nn203436j
– ident: e_1_2_7_188_1
  doi: 10.1021/am504345s
– ident: e_1_2_7_112_1
  doi: 10.1039/C4EE00372A
– ident: e_1_2_7_161_3
  doi: 10.1021/acsami.9b05628
– ident: e_1_2_7_73_1
  doi: 10.1016/j.nanoen.2015.10.024
– ident: e_1_2_7_114_1
  doi: 10.1002/aenm.201803774
– ident: e_1_2_7_105_1
  doi: 10.1002/aenm.201901896
– ident: e_1_2_7_2_2
  doi: 10.1093/nsr/nwz222
– ident: e_1_2_7_165_1
  doi: 10.1149/1.1837858
– ident: e_1_2_7_4_3
  doi: 10.1039/D0EE03316B
– ident: e_1_2_7_117_1
  doi: 10.1021/acsnano.9b03304
– ident: e_1_2_7_161_2
  doi: 10.1021/acs.nanolett.9b04551
– ident: e_1_2_7_33_1
  doi: 10.1016/j.nanoen.2019.103894
– ident: e_1_2_7_99_2
  doi: 10.1016/j.nanoen.2020.105621
– ident: e_1_2_7_100_1
  doi: 10.1016/j.nanoen.2019.03.060
– ident: e_1_2_7_201_1
  doi: 10.1039/C4CC05535G
– ident: e_1_2_7_72_1
  doi: 10.1002/admi.201701598
– ident: e_1_2_7_189_1
  doi: 10.1002/aenm.201903937
– ident: e_1_2_7_197_3
  doi: 10.1002/ente.202000348
– ident: e_1_2_7_192_1
  doi: 10.1002/anie.202101958
– ident: e_1_2_7_196_1
  doi: 10.1021/acsnano.5b02166
– ident: e_1_2_7_131_1
  doi: 10.1021/acsami.1c03227
– ident: e_1_2_7_96_1
  doi: 10.1002/anie.201605676
– ident: e_1_2_7_193_1
  doi: 10.1039/D1EE00508A
– ident: e_1_2_7_128_1
  doi: 10.1016/j.jpowsour.2018.08.016
– ident: e_1_2_7_11_1
  doi: 10.1021/cm5044667
– ident: e_1_2_7_69_1
  doi: 10.1002/adfm.202100970
– ident: e_1_2_7_158_1
  doi: 10.1021/acsami.8b22014
– ident: e_1_2_7_205_1
  doi: 10.1021/acsami.7b10306
– ident: e_1_2_7_29_2
  doi: 10.1016/j.electacta.2018.08.107
– ident: e_1_2_7_159_1
  doi: 10.1016/j.jpowsour.2017.10.005
– ident: e_1_2_7_21_1
  doi: 10.1016/j.matt.2020.04.011
– ident: e_1_2_7_34_1
  doi: 10.1016/j.nanoen.2018.10.001
– ident: e_1_2_7_6_2
  doi: 10.1039/C9TA00535H
– ident: e_1_2_7_91_1
  doi: 10.1021/acsami.0c10341
– ident: e_1_2_7_4_1
  doi: 10.1038/nmat2460
– ident: e_1_2_7_31_1
  doi: 10.1021/acsnano.9b00177
– ident: e_1_2_7_74_2
  doi: 10.1002/advs.201700270
– ident: e_1_2_7_46_1
  doi: 10.1002/aenm.201903550
– ident: e_1_2_7_38_1
  doi: 10.1039/C9NR07809F
– ident: e_1_2_7_123_1
  doi: 10.1002/smll.201903952
– ident: e_1_2_7_88_1
  doi: 10.1016/j.cej.2020.128153
– ident: e_1_2_7_44_1
  doi: 10.1016/j.ensm.2018.06.015
– ident: e_1_2_7_141_1
  doi: 10.1021/acs.jpclett.7b01321
– ident: e_1_2_7_84_1
  doi: 10.1002/aenm.202002271
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.nanolett.7b04425
– ident: e_1_2_7_206_1
  doi: 10.1016/j.nanoen.2017.10.018
– ident: e_1_2_7_59_1
  doi: 10.1002/adma.202002168
– ident: e_1_2_7_101_1
  doi: 10.1021/acsnano.0c07332
– ident: e_1_2_7_12_1
  doi: 10.1021/ja3052206
– ident: e_1_2_7_20_1
  doi: 10.1007/s12598-020-01498-y
– ident: e_1_2_7_39_1
  doi: 10.1002/chem.202003807
– ident: e_1_2_7_104_1
  doi: 10.1021/acsnano.0c00799
– ident: e_1_2_7_2_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_1_3
  doi: 10.1038/nchem.2085
– ident: e_1_2_7_152_1
  doi: 10.1016/j.joule.2017.12.003
– ident: e_1_2_7_79_1
  doi: 10.1021/jacs.5b04472
– ident: e_1_2_7_60_1
  doi: 10.1016/j.ensm.2019.09.028
– ident: e_1_2_7_66_1
  doi: 10.1021/acsnano.9b06629
– volume: 30
  start-page: 1903937
  year: 2020
  ident: e_1_2_7_203_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_82_1
  doi: 10.1021/acs.nanolett.9b04719
– ident: e_1_2_7_197_1
  doi: 10.1021/jacs.7b05251
– ident: e_1_2_7_111_1
  doi: 10.1016/j.electacta.2013.06.039
– ident: e_1_2_7_115_1
  doi: 10.1002/anie.202007159
– ident: e_1_2_7_133_1
  doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.202100332
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.201604724
– ident: e_1_2_7_78_1
  doi: 10.1002/adfm.201707536
– year: 2014
  ident: e_1_2_7_90_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_132_1
  doi: 10.1002/adfm.201900392
– ident: e_1_2_7_190_1
  doi: 10.1021/am501665s
– ident: e_1_2_7_143_1
  doi: 10.1002/adma.201402893
– ident: e_1_2_7_68_1
  doi: 10.1021/acsnano.7b01945
– ident: e_1_2_7_137_1
  doi: 10.1016/j.electacta.2016.08.015
– ident: e_1_2_7_87_1
  doi: 10.1038/ncomms11203
– ident: e_1_2_7_98_1
  doi: 10.1002/adfm.201706391
– ident: e_1_2_7_77_1
  doi: 10.1021/acsomega.9b03550
– ident: e_1_2_7_47_1
  doi: 10.1016/j.ensm.2019.05.032
– ident: e_1_2_7_191_1
  doi: 10.1016/j.elecom.2013.10.020
– ident: e_1_2_7_199_1
  doi: 10.1016/j.ensm.2018.01.002
– ident: e_1_2_7_173_1
  doi: 10.1016/j.jpowsour.2019.227232
– ident: e_1_2_7_8_1
  doi: 10.1016/j.carbon.2020.01.046
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ensm.2019.05.034
– ident: e_1_2_7_18_1
  doi: 10.1021/nl2027684
– ident: e_1_2_7_172_1
  doi: 10.1021/acsami.6b03897
– ident: e_1_2_7_13_3
  doi: 10.1016/j.jechem.2018.04.014
– ident: e_1_2_7_142_1
  doi: 10.1016/j.ensm.2015.09.008
– ident: e_1_2_7_130_1
  doi: 10.1038/nmat3066
– ident: e_1_2_7_4_2
  doi: 10.1021/acscentsci.0c00449
– ident: e_1_2_7_56_1
  doi: 10.1039/C7EE01047H
– ident: e_1_2_7_110_1
  doi: 10.1002/adma.201603366
– ident: e_1_2_7_145_1
  doi: 10.1021/jz5006913
– ident: e_1_2_7_202_1
  doi: 10.1016/j.elecom.2013.09.002
– ident: e_1_2_7_146_1
  doi: 10.1016/j.electacta.2018.11.145
– ident: e_1_2_7_178_1
  doi: 10.1016/j.electacta.2012.03.081
– ident: e_1_2_7_182_1
  doi: 10.1016/j.ensm.2018.09.012
– ident: e_1_2_7_177_1
  doi: 10.1016/j.ensm.2016.01.007
– ident: e_1_2_7_187_1
  doi: 10.1002/adma.201404194
– ident: e_1_2_7_120_1
  doi: 10.1002/aenm.201601392
– volume: 398
  start-page: 122746
  year: 2020
  ident: e_1_2_7_64_1
  publication-title: Chem. Eng. J.
– ident: e_1_2_7_197_2
  doi: 10.1021/acs.nanolett.7b01020
– ident: e_1_2_7_14_1
  doi: 10.1038/srep08763
– ident: e_1_2_7_95_1
  doi: 10.1016/j.nanoen.2019.03.015
– ident: e_1_2_7_93_1
  doi: 10.1002/advs.201800815
– ident: e_1_2_7_42_1
  doi: 10.1038/ncomms5759
– ident: e_1_2_7_188_2
  doi: 10.1016/j.jpowsour.2015.07.033
– ident: e_1_2_7_180_1
  doi: 10.1002/adfm.201200696
– volume: 6
  start-page: 2003689
  year: 2016
  ident: e_1_2_7_92_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_168_1
  doi: 10.1149/1.3148721
– ident: e_1_2_7_153_1
  doi: 10.1021/acsnano.0c01452
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ensm.2019.06.009
– ident: e_1_2_7_176_1
  doi: 10.1016/j.jpowsour.2016.07.056
– ident: e_1_2_7_149_1
  doi: 10.1002/anie.201906055
– ident: e_1_2_7_106_1
  doi: 10.1021/acs.jpcc.7b06625
– ident: e_1_2_7_184_1
  doi: 10.1016/j.electacta.2019.06.177
– ident: e_1_2_7_15_1
  doi: 10.1021/ja308170k
– ident: e_1_2_7_41_1
  doi: 10.1002/aenm.201602347
– ident: e_1_2_7_48_1
  doi: 10.1002/adfm.202006798
– ident: e_1_2_7_134_1
  doi: 10.1016/j.jpowsour.2016.03.093
– ident: e_1_2_7_185_1
  doi: 10.1021/acsami.5b12231
– ident: e_1_2_7_50_1
  doi: 10.1016/j.matt.2020.06.002
– ident: e_1_2_7_183_1
  doi: 10.1021/acsami.6b10366
– ident: e_1_2_7_32_1
  doi: 10.1021/acsnano.0c02294
– ident: e_1_2_7_154_1
  doi: 10.1016/j.ensm.2018.12.016
– volume: 29
  start-page: 2006798
  year: 2019
  ident: e_1_2_7_24_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_63_1
  doi: 10.1038/ncomms14627
– ident: e_1_2_7_7_1
  doi: 10.1016/S1388-2481(02)00358-2
– ident: e_1_2_7_122_1
  doi: 10.1039/C5EE00058K
– ident: e_1_2_7_121_1
  doi: 10.1039/C4CP03694H
– ident: e_1_2_7_170_1
  doi: 10.1016/j.electacta.2012.07.118
– ident: e_1_2_7_156_1
  doi: 10.1039/C9TA10560C
– ident: e_1_2_7_163_1
  doi: 10.1007/s11426-020-9810-1
– ident: e_1_2_7_135_1
  doi: 10.1039/C8TA07685E
– ident: e_1_2_7_148_1
  doi: 10.1016/j.joule.2018.07.022
– ident: e_1_2_7_23_2
  doi: 10.1016/j.nanoen.2014.11.025
– ident: e_1_2_7_207_2
  doi: 10.1016/j.jpowsour.2011.12.061
– ident: e_1_2_7_54_1
  doi: 10.1002/smll.202001089
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.nanolett.0c01778
– ident: e_1_2_7_204_1
  doi: 10.1039/C4TA04172K
– ident: e_1_2_7_208_1
  doi: 10.1002/adma.202106618
– ident: e_1_2_7_45_1
  doi: 10.1039/C9NH00663J
– ident: e_1_2_7_140_2
  doi: 10.1016/j.cej.2019.122714
– ident: e_1_2_7_116_1
  doi: 10.1002/anie.201511830
– ident: e_1_2_7_151_1
  doi: 10.1002/adfm.201400845
– ident: e_1_2_7_76_1
  doi: 10.1002/aenm.201901075
– ident: e_1_2_7_169_1
  doi: 10.1016/j.jpowsour.2011.08.027
– ident: e_1_2_7_194_1
  doi: 10.1039/D0TA02999H
– ident: e_1_2_7_164_1
  doi: 10.1149/2.0111801jes
– ident: e_1_2_7_13_2
  doi: 10.1002/ente.201800819
– ident: e_1_2_7_99_1
  doi: 10.1021/acsnano.9b07121
– ident: e_1_2_7_86_1
  doi: 10.1002/adma.201601759
– ident: e_1_2_7_29_1
  doi: 10.1039/D0TA01664K
– ident: e_1_2_7_175_1
  doi: 10.1021/acsami.5b11803
– ident: e_1_2_7_207_1
  doi: 10.1039/C5TA04289E
– ident: e_1_2_7_166_1
  doi: 10.1016/j.ssi.2004.07.070
– ident: e_1_2_7_80_1
  doi: 10.1016/j.jechem.2020.02.050
– ident: e_1_2_7_113_1
  doi: 10.1039/C6CP04775K
– ident: e_1_2_7_160_1
  doi: 10.1016/j.joule.2019.01.003
– ident: e_1_2_7_109_1
  doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
– ident: e_1_2_7_49_1
  doi: 10.1021/acscentsci.9b00846
– ident: e_1_2_7_155_1
  doi: 10.1002/admi.201800243
– ident: e_1_2_7_65_1
  doi: 10.1016/j.ensm.2018.05.019
– ident: e_1_2_7_186_1
  doi: 10.1038/s41467-021-23155-3
– ident: e_1_2_7_127_1
  doi: 10.1039/C8TA09069F
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.202001304
– ident: e_1_2_7_139_1
  doi: 10.1016/j.ensm.2019.08.019
– ident: e_1_2_7_53_1
  doi: 10.1021/acs.nanolett.5b04166
– ident: e_1_2_7_85_1
  doi: 10.1002/adfm.201807485
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ensm.2019.02.022
– ident: e_1_2_7_115_2
  doi: 10.1016/j.jechem.2020.03.034
– ident: e_1_2_7_83_1
  doi: 10.1016/j.ensm.2020.03.008
– ident: e_1_2_7_167_1
  doi: 10.1002/aenm.201500212
– ident: e_1_2_7_28_1
  doi: 10.1021/nn501308m
– ident: e_1_2_7_119_1
  doi: 10.1002/aenm.202000901
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2015.01.007
– ident: e_1_2_7_136_1
  doi: 10.1016/j.electacta.2016.05.087
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.nanolett.5b01837
– ident: e_1_2_7_198_1
  doi: 10.1021/acsami.8b14045
– ident: e_1_2_7_43_1
  doi: 10.1002/anie.201805972
– ident: e_1_2_7_99_3
  doi: 10.1002/aenm.202003689
– ident: e_1_2_7_179_1
  doi: 10.1002/adfm.201505074
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_181_1
  doi: 10.1016/j.nanoen.2016.12.015
– ident: e_1_2_7_147_1
  doi: 10.1039/C3EE42223B
– ident: e_1_2_7_195_1
  doi: 10.1002/inf2.12046
– ident: e_1_2_7_161_1
  doi: 10.1016/j.nanoen.2020.105033
– ident: e_1_2_7_102_1
  doi: 10.1016/j.joule.2018.08.010
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-018-06629-9
SSID ssj0001537418
Score 2.645928
SecondaryResourceType review_article
Snippet Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and...
Lithium-sulfur (Li-S) batteries are regarded as the most promising next-generation energy storage systems due to their high energy density and...
Abstract Lithium–sulfur (Li–S) batteries are regarded as the most promising next‐generation energy storage systems due to their high energy density and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2106004
SubjectTerms Carbon
electrolyte systems
Electrolytes
Energy storage
functional separators
Lithium
lithium anode
Review
Reviews
shuttle effect
sulfur hosts
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4FLoTwDBRkJCThYTWInsU-oRa1AqlYrFlBvkR3bbKQlaTe7lbj1JyDxD_tLGDvelBWvA0c_lIw99sxne_wZoec0o5rbxBKaGUYYU5xwUQiiiyQ1UhRU-RPTT8fFeMxPTsQkbLh1IaxybRO9odZt5fbI91LHocoBXRSvT8-IezXKna6GJzSuoy3HVMZGaOvgcDx5f7XLklFHz7Jma4zTPanPHUs3rHTA1bMNb-RJ-3-HNH8NmPwZyHpPdHTrf9twG20HDIr3-0Gzg66Z5g7aCbO8wy8DFfWru-gLoEoQBu_3kQIdlo3Ga0JbSC590C2etPOv3Wpuaw1509nK8SLjd82sVj4gDAMwxi6g5PLi2-TqogI-ri8vvk9xT_EJn7uHPh4dfnjzloQHGkiVpYIRDl1LYQ1EdS5yq5WNJTVZWoBoKqFcUi3B9VnQe2astLqqrOQAkCuaKw22gN5Ho6ZtzEOEbWYTrpM8FSpmDsWANYAkWAeVKHCzESJrRZVVYC93j2jMy553OS2dYstBsRF6MdQ_7Xk7_ljzwOl9qOX4tn1Gu_hchulbKgNQsYiz2MIKTsVWuhNsw5lgOUBmC-LtrjVeBiMAvxjUHaFnQzFMX3cmIxvTrlwdQMCsSHkSoQf9IBskgRIK-DGPULEx_DZE3Sxp6pmnCBcATHzbiB-o_-iCEiDQlOaCPfp7Mx6jm6m7_eEDl3bRaLlYmSfoRnW-rLvF0zD3fgBLezlf
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pi9QwFA-yevCirn-rq0QQ1EPYNkmb5LiKi8KyDIzK3krSJE5htiPTmYW97UdY8BvuJ_El7XS2qIh4bPJIX5P3Xn5pXn5B6BXLmZU-84TljhPOjSRSCUWsyKjTSjATd0y_HonjY3lyoibXTvF3_BDDD7fgGTFeBwfXpt3fkoZqexbotmHJUkRC0JtZxmS4vIHyyfYvS84CPUu4YQ5W14RJzjfMjSndHzcxmpkigf_vUOevyZPXQW2clQ7v_v_33EN3ekSKDzoT2kU3XHMf7fY-3-I3PTH12wfoFDAmqIMPuryBFuvG4g29LTyuYgounizm5-167msLZdPZOrAk40_NrDYxPQwDTMYhveTq4nKyPbaAj-qrix9T3BF-QnMP0ZfDD5_ffyT9dQ2kyqniREJHM1gRMVuowlvjU81cTgWoZmBoNLMaJkIPVpA7r72tKq8lwOWKFcZCZGCP0E6zaNwThH3uM2mzgiqT8oBpIDbAI8QKkxmYdBNENkNVVj2XebhSY152LMy0DL1ZDr2ZoNeD_PeOxeOPku_CyA9SgX07FiyW38remUvjADiKNE89rOdM6nXYz3aSK14AgPag3t7Gbso-JMArAgmwBHgsEvRyqAZnDjs0unGLdZABPMwFlVmCHndmNmgCNQzQZJEgMTLAkarjmqaeRcJwBTAlfhuJBviXLigBEE1ZofjTf5R_hm7TcDgk5jXtoZ3Vcu2eo1vV2apuly-iY_4EW5E6rQ
  priority: 102
  providerName: Wiley-Blackwell
Title Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for High‐Performance Li–S Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202106004
https://www.ncbi.nlm.nih.gov/pubmed/35233996
https://www.proquest.com/docview/2653980577
https://www.proquest.com/docview/2635247281
https://pubmed.ncbi.nlm.nih.gov/PMC9036004
https://doaj.org/article/be2507050f174b0fa0672e84946161f3
Volume 9
WOSCitedRecordID wos000762597200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (WRLC)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZg44EXxLgGRmUkJOAhWmI7sf24oU1U2kpEuZSnyI5tNVJJ0dpO4m0_AYl_uF_CsZOGVoD2woslX-Q456LzWT7-jNALmlEjXOpimlkWM6ZFLCSXseEpsUpyqsOJ6adTPhqJyUQWG099-Zywlh64FdyBthCkeZIlDrCzTpzyZ4dWMMlyACsu8HwC6tnYTLX3g6mnZVmzNCbkQJkLz84NOxwI8WwrCgWy_r8hzD8TJTcBbIhAJ3fRnQ464sN2yXvohm3uob3OORf4Vccg_fo--gpgEObCh-0B_wKrxuA1Dy1UlyFXFhfz2ffFauZqA23j6crTGeNhM611yOPCgGexzwO5uvxR_L5fgE_rq8ufY9wyc8J0D9DHk-MPb97G3bsKcZURyWIBkqGwdaEml7kz2iWK2oxwWJpOqVDUKIhYDtSVWaecqSqnBODaiubagAvTh2inmTf2McIuc6kwaU6kTpgHH-DEUAWn1qmG6BiheC3nsupIx_3bF7OypUsmpddL2eslQi_78d9auo1_jjzyautHeZrs0ADGU3bGU15nPBHaXyu97HwXPuHZegXgWB6h5303eJ0_SlGNna_8GACujBORRuhRayP9SqCHAuzLI8S3rGdrqds9TT0NzN4S8ET4tzjY2TUiKAG5jGku2ZP_IYun6DbxVztCVtI-2lmer-wzdKu6WNaL8wG6SVgBJZ-IAdo9Oh4V7wfB5aA8I-9CCf27xfCs-AK1z8PRL5vAMFg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyTYAOU5UMBIIGARNbGdxFkgVB5VR52ORpqC2lVIYpuJNGTKZKaou34CEv_BR_VLuHYeZcRr1QXLxFZiJ8cnx_H1uQCPmc-k0J52mK-4w3kqHBGFkSNDj6okCllqV0zf98PBQOzvR8MV-N7shTFhlQ0nWqKW08z8I9-gxkNVoLoIXx5-dkzWKLO62qTQqGCxo46_4JStfNF7g-_3CaVbb_debzt1VgEn82nEHcERxSjcmQyiQMtUuwlTPg1VhrTFRMJkgnytsbG-0omWWaYTgaouY0EqEcAMr3sBVjmCXXRgddjbHR6c_dXxmbGDadwhXbqRyCPjCo4zK5QWfOnrZ5ME_E7Z_hqg-bNwtl--rav_2zO7BldqjU02q0GxBiuquA5rNYuV5Flttf38BnxC1YydJ5tVJERJkkKSxrAXD-c2qJgMp5PjcjHRucRzo_HC-D6TXjHOUxvwRlD4ExMwc3rydXi2EYP089OTbyNSWZji5W7Cu3Pp9i3oFNNC3QGife0J6QU0Sl1uVBqyHR4i-6VeijKiC04DjDir3dlNkpBJXPlK09gAKW6B1IWnbf3DypfkjzVfGZy1tYyfuD0xnX2Ma3qKU4VSOHR9V-MMNXV1YlboleARD3BKoLF56w3C4prk8BYtvLrwqC1GejJrTkmhpgtTBxU-D6nwunC7AnXbEixhqI-DLoRLcF9q6nJJkY-tBXqEwsv2zbED4x-PIEaJN2JBxO_-vRsP4dL23m4_7vcGO_fgMjU7XWyQ1jp05rOFug8Xs6N5Xs4e1OOewIfzHjY_AOM9mEQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwGP00BkLcAONvhQFGAsEuoia2kzgXCA1GRbVSVSqg3YUkttdKJRlNO7S7PQISb8Pj7En47PyMir-rXXCZ2Ept9_jkfPHnY4DHzGdSaE87zFfc4TwVjojCyJGhR1UShSy1K6YfBuFwKPb3o9EafG_2wpi0yoYTLVHLIjPfyLvUeKgKVBdhV9dpEaPd3ovDz445QcqstDbHaVQQ2VPHXzB8K5_3d_G_fkJp7_W7V2-c-oQBJ_NpxB3BEdEo4pkMokDLVLsJUz4NVYYUxkTCZILcrbHhvtKJllmmE4EKL2NBKhHMDJ97AS6G3PfN7HpLR2ffd3xmjGEan0iXdhN5ZPzBMcZCkcFX3oP2uIDfadxfUzV_ltD2Hdi79j-P3nW4WitvslNNlQ1YU_kN2Ki5rSTPagPu7ZvwCbU0DgTZqfIjSpLkkjQ2vni5sKnGZFTMjsvlTE8l3htPlsYNmvTzyTS1aXAEwwFi0mhOT76OzrZnkMH09OTbmFTGpvi4W_D-XLp9G9bzIlebQLSvPSG9gEapy412Qw7ES-TE1EtRXHTAaUASZ7Vnuzk6ZBZXbtM0NqCKW1B14Glb_7ByK_ljzZcGc20t4zJubxTzg7gmrThVKJBD13c1xq2pqxOzbq8Ej3iAgYLG5m01aItr6sOfaKHWgUdtMZKWWYlKclUsTR3U_TykwuvAnQrgbUuwhKFqDjoQrkB_pamrJfl0Yo3RI5Rjtm-OnST_GIIYhd-YBRG_-_duPITLOFfiQX-4dw-uULP9xWZubcH6Yr5U9-FSdrSYlvMHlgAIfDzvOfMDgfOfgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+and+Strategies+toward+Polysulfides+Shuttle+Inhibition+for+High%E2%80%90Performance+Li%E2%80%93S+Batteries&rft.jtitle=Advanced+science&rft.au=Youzhang+Huang&rft.au=Liang+Lin&rft.au=Chengkun+Zhang&rft.au=Lie+Liu&rft.date=2022-04-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=9&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202106004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_be2507050f174b0fa0672e84946161f3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon