ImmuCellAI: A Unique Method for Comprehensive T‐Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy

The distribution and abundance of immune cells, particularly T‐cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T‐cell subsets is urgentl...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science Vol. 7; no. 7; pp. 1902880 - n/a
Main Authors: Miao, Ya‐Ru, Zhang, Qiong, Lei, Qian, Luo, Mei, Xie, Gui‐Yan, Wang, Hongxiang, Guo, An‐Yuan
Format: Journal Article
Language:English
Published: Germany John Wiley & Sons, Inc 01.04.2020
John Wiley and Sons Inc
Wiley
Subjects:
ISSN:2198-3844, 2198-3844
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The distribution and abundance of immune cells, particularly T‐cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T‐cell subsets is urgently needed in cancer immunology research. Here, Immune Cell Abundance Identifier (ImmuCellAI), a gene set signature‐based method, is introduced for precisely estimating the abundance of 24 immune cell types including 18 T‐cell subsets, from gene expression data. Performance evaluation on both the sequencing data with flow cytometry results and public expression data indicate that ImmuCellAI can estimate the abundance of immune cells with superior accuracy to other methods especially on many T‐cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals that the abundance of dendritic cells, cytotoxic T, and gamma delta T cells is significantly higher both in comparisons of on‐treatment versus pre‐treatment and responders versus non‐responders. Meanwhile, an ImmuCellAI result‐based model is built for predicting the immunotherapy response with high accuracy (area under curve 0.80–0.91). These results demonstrate the powerful and unique function of ImmuCellAI in tumor immune infiltration estimation and immunotherapy response prediction. Immune Cell Abundance Identifier (ImmuCellAI) is a gene set signature‐based method for precisely estimating the abundance of 24 immune cell types including 18 T‐cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals the dynamic change of immune cell abundance. An ImmuCellAI result‐based model for predicting the immunotherapy response achieves high accuracy with area under curve 0.80–0.91.
AbstractList The distribution and abundance of immune cells, particularly T-cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T-cell subsets is urgently needed in cancer immunology research. Here, Immune Cell Abundance Identifier (ImmuCellAI), a gene set signature-based method, is introduced for precisely estimating the abundance of 24 immune cell types including 18 T-cell subsets, from gene expression data. Performance evaluation on both the sequencing data with flow cytometry results and public expression data indicate that ImmuCellAI can estimate the abundance of immune cells with superior accuracy to other methods especially on many T-cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals that the abundance of dendritic cells, cytotoxic T, and gamma delta T cells is significantly higher both in comparisons of on-treatment versus pre-treatment and responders versus non-responders. Meanwhile, an ImmuCellAI result-based model is built for predicting the immunotherapy response with high accuracy (area under curve 0.80-0.91). These results demonstrate the powerful and unique function of ImmuCellAI in tumor immune infiltration estimation and immunotherapy response prediction.
Abstract The distribution and abundance of immune cells, particularly T‐cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T‐cell subsets is urgently needed in cancer immunology research. Here, Immune Cell Abundance Identifier (ImmuCellAI), a gene set signature‐based method, is introduced for precisely estimating the abundance of 24 immune cell types including 18 T‐cell subsets, from gene expression data. Performance evaluation on both the sequencing data with flow cytometry results and public expression data indicate that ImmuCellAI can estimate the abundance of immune cells with superior accuracy to other methods especially on many T‐cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals that the abundance of dendritic cells, cytotoxic T, and gamma delta T cells is significantly higher both in comparisons of on‐treatment versus pre‐treatment and responders versus non‐responders. Meanwhile, an ImmuCellAI result‐based model is built for predicting the immunotherapy response with high accuracy (area under curve 0.80–0.91). These results demonstrate the powerful and unique function of ImmuCellAI in tumor immune infiltration estimation and immunotherapy response prediction.
The distribution and abundance of immune cells, particularly T-cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T-cell subsets is urgently needed in cancer immunology research. Here, Immune Cell Abundance Identifier (ImmuCellAI), a gene set signature-based method, is introduced for precisely estimating the abundance of 24 immune cell types including 18 T-cell subsets, from gene expression data. Performance evaluation on both the sequencing data with flow cytometry results and public expression data indicate that ImmuCellAI can estimate the abundance of immune cells with superior accuracy to other methods especially on many T-cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals that the abundance of dendritic cells, cytotoxic T, and gamma delta T cells is significantly higher both in comparisons of on-treatment versus pre-treatment and responders versus non-responders. Meanwhile, an ImmuCellAI result-based model is built for predicting the immunotherapy response with high accuracy (area under curve 0.80-0.91). These results demonstrate the powerful and unique function of ImmuCellAI in tumor immune infiltration estimation and immunotherapy response prediction.The distribution and abundance of immune cells, particularly T-cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T-cell subsets is urgently needed in cancer immunology research. Here, Immune Cell Abundance Identifier (ImmuCellAI), a gene set signature-based method, is introduced for precisely estimating the abundance of 24 immune cell types including 18 T-cell subsets, from gene expression data. Performance evaluation on both the sequencing data with flow cytometry results and public expression data indicate that ImmuCellAI can estimate the abundance of immune cells with superior accuracy to other methods especially on many T-cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals that the abundance of dendritic cells, cytotoxic T, and gamma delta T cells is significantly higher both in comparisons of on-treatment versus pre-treatment and responders versus non-responders. Meanwhile, an ImmuCellAI result-based model is built for predicting the immunotherapy response with high accuracy (area under curve 0.80-0.91). These results demonstrate the powerful and unique function of ImmuCellAI in tumor immune infiltration estimation and immunotherapy response prediction.
The distribution and abundance of immune cells, particularly T‐cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T‐cell subsets is urgently needed in cancer immunology research. Here, Immune Cell Abundance Identifier (ImmuCellAI), a gene set signature‐based method, is introduced for precisely estimating the abundance of 24 immune cell types including 18 T‐cell subsets, from gene expression data. Performance evaluation on both the sequencing data with flow cytometry results and public expression data indicate that ImmuCellAI can estimate the abundance of immune cells with superior accuracy to other methods especially on many T‐cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals that the abundance of dendritic cells, cytotoxic T, and gamma delta T cells is significantly higher both in comparisons of on‐treatment versus pre‐treatment and responders versus non‐responders. Meanwhile, an ImmuCellAI result‐based model is built for predicting the immunotherapy response with high accuracy (area under curve 0.80–0.91). These results demonstrate the powerful and unique function of ImmuCellAI in tumor immune infiltration estimation and immunotherapy response prediction. Immune Cell Abundance Identifier (ImmuCellAI) is a gene set signature‐based method for precisely estimating the abundance of 24 immune cell types including 18 T‐cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals the dynamic change of immune cell abundance. An ImmuCellAI result‐based model for predicting the immunotherapy response achieves high accuracy with area under curve 0.80–0.91.
The distribution and abundance of immune cells, particularly T‐cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets with specific function and current methods are limited in estimating them, thus, a method for predicting comprehensive T‐cell subsets is urgently needed in cancer immunology research. Here, Immune Cell Abundance Identifier (ImmuCellAI), a gene set signature‐based method, is introduced for precisely estimating the abundance of 24 immune cell types including 18 T‐cell subsets, from gene expression data. Performance evaluation on both the sequencing data with flow cytometry results and public expression data indicate that ImmuCellAI can estimate the abundance of immune cells with superior accuracy to other methods especially on many T‐cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals that the abundance of dendritic cells, cytotoxic T, and gamma delta T cells is significantly higher both in comparisons of on‐treatment versus pre‐treatment and responders versus non‐responders. Meanwhile, an ImmuCellAI result‐based model is built for predicting the immunotherapy response with high accuracy (area under curve 0.80–0.91). These results demonstrate the powerful and unique function of ImmuCellAI in tumor immune infiltration estimation and immunotherapy response prediction. Immune Cell Abundance Identifier (ImmuCellAI) is a gene set signature‐based method for precisely estimating the abundance of 24 immune cell types including 18 T‐cell subsets. Application of ImmuCellAI to immunotherapy datasets reveals the dynamic change of immune cell abundance. An ImmuCellAI result‐based model for predicting the immunotherapy response achieves high accuracy with area under curve 0.80–0.91.
Author Zhang, Qiong
Guo, An‐Yuan
Xie, Gui‐Yan
Miao, Ya‐Ru
Lei, Qian
Wang, Hongxiang
Luo, Mei
AuthorAffiliation 1 Center for Artificial Intelligence Biology Hubei Bioinformatics and Molecular Imaging Key Laboratory Department of Bioinformatics and Systems Biology Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
2 Department of Hematology Wuhan Central Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430074 China
AuthorAffiliation_xml – name: 1 Center for Artificial Intelligence Biology Hubei Bioinformatics and Molecular Imaging Key Laboratory Department of Bioinformatics and Systems Biology Key Laboratory of Molecular Biophysics of the Ministry of Education College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
– name: 2 Department of Hematology Wuhan Central Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430074 China
Author_xml – sequence: 1
  givenname: Ya‐Ru
  orcidid: 0000-0002-1982-3141
  surname: Miao
  fullname: Miao, Ya‐Ru
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Qiong
  surname: Zhang
  fullname: Zhang, Qiong
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Qian
  surname: Lei
  fullname: Lei, Qian
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Mei
  surname: Luo
  fullname: Luo, Mei
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Gui‐Yan
  surname: Xie
  fullname: Xie, Gui‐Yan
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Hongxiang
  surname: Wang
  fullname: Wang, Hongxiang
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: An‐Yuan
  surname: Guo
  fullname: Guo, An‐Yuan
  email: guoay@hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32274301$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNUREvplSOyxIXLLv7Ih8MBKVq-VioCqS1Xy7EnXa8SO9jJoj3BT-A38ktwdrdVWwlxsjXzzDujeedpcmSdhSR5TvCcYExfS70Jc4pJiSnn-FFyQknJZ4yn6dGd_3FyFsIaY0wyVqSEP0mOGaVFyjA5SX4uu25cQNtWyzeoQlfWfB8BfYZh5TRqnEcL1_UeVmCD2QC6_PPr90Sji7EOMARU1aPV0ipAXz1oowbjLJJWIzMl-741Su5ixqLFxHk0dbRuWIGX_fZZ8riRbYCzw3uaXH14f7n4NDv_8nG5qM5nKqMlm2WSMkKw1pkqSAOayDxrauCypJKRuqwpoalMleR1ThoMWtcUYiDTeZPzMmenyXKvq51ci96bTvqtcNKIXcD5ayH9YFQLIsUFK2jTKAV1ykpVF5nKOPAmZ1mBgUStt3utfqw70Ars4GV7T_R-xpqVuHYbUZA0-pZFgVcHAe_iusMgOhNUXKu04MYgKOOc04KVE_ryAbp2o7dxVZEqo_U5TmmkXtyd6HaUG58jkO4B5V0IHhqhzLAzJg5oWkGwmC5KTBclbi8qls0flN0o_7Pg0OeHaWH7H1pU775dkBwz9hc4Sd9L
CitedBy_id crossref_primary_10_3389_fimmu_2023_1290839
crossref_primary_10_3389_fonc_2021_739871
crossref_primary_10_1002_JLB_5MA0321_158RR
crossref_primary_10_1016_j_canlet_2022_215959
crossref_primary_10_2147_NDT_S490717
crossref_primary_10_1371_journal_pone_0330725
crossref_primary_10_1186_s12885_023_11241_2
crossref_primary_10_1016_j_ajpath_2021_01_014
crossref_primary_10_1038_s41598_021_04495_y
crossref_primary_10_1016_j_jep_2024_118463
crossref_primary_10_3389_fneur_2023_1104738
crossref_primary_10_1038_s41418_023_01217_x
crossref_primary_10_3390_cells11101672
crossref_primary_10_1186_s13019_024_03038_6
crossref_primary_10_3389_fimmu_2020_573920
crossref_primary_10_1128_spectrum_05038_22
crossref_primary_10_1016_j_ygeno_2024_110977
crossref_primary_10_1186_s12967_023_04611_8
crossref_primary_10_3389_fgene_2022_951243
crossref_primary_10_3390_biomedicines13020331
crossref_primary_10_1007_s00432_023_05401_x
crossref_primary_10_3389_fcell_2020_592490
crossref_primary_10_3389_fimmu_2022_986346
crossref_primary_10_3389_fimmu_2022_1033967
crossref_primary_10_1007_s00262_023_03414_6
crossref_primary_10_1158_2159_8290_CD_24_0827
crossref_primary_10_2147_CCID_S310426
crossref_primary_10_1186_s12967_021_03076_x
crossref_primary_10_1016_j_biomaterials_2023_122460
crossref_primary_10_1080_0284186X_2023_2225703
crossref_primary_10_1093_bib_bbab362
crossref_primary_10_1007_s10528_023_10615_2
crossref_primary_10_3389_fimmu_2022_978851
crossref_primary_10_3390_biology12020318
crossref_primary_10_1016_j_intimp_2021_108430
crossref_primary_10_1002_cam4_70604
crossref_primary_10_3389_fninf_2022_800079
crossref_primary_10_1016_j_tranon_2024_102049
crossref_primary_10_1007_s12672_024_01513_z
crossref_primary_10_3389_fcell_2021_811734
crossref_primary_10_3389_fendo_2021_743155
crossref_primary_10_1016_j_intimp_2024_112505
crossref_primary_10_1186_s12935_021_01804_3
crossref_primary_10_1016_j_ejphar_2022_174803
crossref_primary_10_3390_genes12091305
crossref_primary_10_3390_ijms26031066
crossref_primary_10_3389_fimmu_2023_1012999
crossref_primary_10_1055_a_2196_7811
crossref_primary_10_3389_fonc_2023_1180662
crossref_primary_10_5209_rced_82623
crossref_primary_10_1186_s12935_021_01938_4
crossref_primary_10_1186_s41065_023_00273_0
crossref_primary_10_3389_fonc_2022_780493
crossref_primary_10_1186_s12885_022_09402_w
crossref_primary_10_3389_fimmu_2023_1148483
crossref_primary_10_1038_s41423_022_00911_z
crossref_primary_10_1097_TP_0000000000004754
crossref_primary_10_3390_cancers15204932
crossref_primary_10_1186_s12967_021_03162_0
crossref_primary_10_1038_s41598_024_75055_3
crossref_primary_10_1038_s41420_021_00588_9
crossref_primary_10_1093_bib_bbaa176
crossref_primary_10_1177_15330338211045823
crossref_primary_10_3389_fonc_2022_781686
crossref_primary_10_1016_j_canlet_2024_217304
crossref_primary_10_1016_j_heliyon_2024_e33109
crossref_primary_10_3390_ijms21186968
crossref_primary_10_1186_s12885_021_09010_0
crossref_primary_10_3389_fimmu_2023_1307588
crossref_primary_10_3389_fimmu_2024_1436114
crossref_primary_10_3390_cancers14102399
crossref_primary_10_1016_j_heliyon_2024_e29099
crossref_primary_10_3389_fimmu_2021_748447
crossref_primary_10_3389_fonc_2021_706915
crossref_primary_10_3389_fcell_2021_743724
crossref_primary_10_3389_fmolb_2021_625470
crossref_primary_10_1016_j_intimp_2020_107267
crossref_primary_10_3389_fimmu_2022_951137
crossref_primary_10_1186_s40537_023_00752_1
crossref_primary_10_3389_fcell_2021_796156
crossref_primary_10_1093_jnci_djae207
crossref_primary_10_1111_aji_13359
crossref_primary_10_1172_JCI172218
crossref_primary_10_1080_0886022X_2024_2435487
crossref_primary_10_3389_fmolb_2021_697993
crossref_primary_10_1016_j_clim_2022_109105
crossref_primary_10_1016_j_jormas_2024_102130
crossref_primary_10_1080_1354750X_2024_2435867
crossref_primary_10_1093_bib_bbaa358
crossref_primary_10_3390_life11080835
crossref_primary_10_1155_2022_8028825
crossref_primary_10_3390_ijms222212572
crossref_primary_10_1016_j_phrs_2023_106756
crossref_primary_10_3390_cancers13030391
crossref_primary_10_1002_mnfr_202200444
crossref_primary_10_3389_fnmol_2023_1123708
crossref_primary_10_1155_2022_8998493
crossref_primary_10_2147_JIR_S488400
crossref_primary_10_25259_Cytojournal_44_2025
crossref_primary_10_1007_s10528_024_10687_8
crossref_primary_10_3389_fimmu_2022_849592
crossref_primary_10_3389_fcell_2022_886989
crossref_primary_10_1016_j_clim_2023_109637
crossref_primary_10_3892_etm_2023_12233
crossref_primary_10_1080_2162402X_2024_2340154
crossref_primary_10_3389_fimmu_2021_671201
crossref_primary_10_1111_jcmm_18092
crossref_primary_10_1126_scitranslmed_adv0766
crossref_primary_10_1097_CJI_0000000000000523
crossref_primary_10_3389_fimmu_2020_609900
crossref_primary_10_3390_cells14171315
crossref_primary_10_1007_s12672_024_01642_5
crossref_primary_10_1002_imt2_231
crossref_primary_10_1016_j_canlet_2021_12_016
crossref_primary_10_3389_fcell_2022_973073
crossref_primary_10_3389_fimmu_2021_797450
crossref_primary_10_1158_0008_5472_CAN_21_2058
crossref_primary_10_3389_fimmu_2022_874978
crossref_primary_10_3389_fimmu_2022_929138
crossref_primary_10_1007_s13167_023_00320_w
crossref_primary_10_1002_iid3_476
crossref_primary_10_3389_fimmu_2022_828875
crossref_primary_10_1016_j_ijbiomac_2024_138645
crossref_primary_10_3389_fimmu_2025_1623486
crossref_primary_10_3389_fimmu_2021_617163
crossref_primary_10_3389_fimmu_2022_894580
crossref_primary_10_1097_MD_0000000000031599
crossref_primary_10_3389_fimmu_2021_715508
crossref_primary_10_3389_fonc_2023_1209168
crossref_primary_10_1080_15384101_2023_2293594
crossref_primary_10_1016_j_ebiom_2024_105138
crossref_primary_10_1093_nar_gkaa796
crossref_primary_10_1038_s42003_025_08130_8
crossref_primary_10_3389_fgene_2022_862210
crossref_primary_10_1136_gutjnl_2024_334026
crossref_primary_10_3390_cancers12123856
crossref_primary_10_1177_1758835920977117
crossref_primary_10_1155_2022_4748796
crossref_primary_10_1186_s12935_022_02480_7
crossref_primary_10_1371_journal_pone_0321717
crossref_primary_10_3389_fnagi_2022_1047908
crossref_primary_10_3389_fphar_2023_1264345
crossref_primary_10_1016_j_smhs_2025_09_001
crossref_primary_10_3389_fmed_2022_842383
crossref_primary_10_3389_fcell_2021_766503
crossref_primary_10_2147_IJGM_S313584
crossref_primary_10_1155_2022_7231046
crossref_primary_10_1007_s00432_023_04642_0
crossref_primary_10_1096_fj_202301353RR
crossref_primary_10_1002_cam4_4687
crossref_primary_10_1093_cvr_cvae079
crossref_primary_10_3389_fimmu_2023_1048567
crossref_primary_10_3390_biom12111617
crossref_primary_10_3389_fcvm_2023_857578
crossref_primary_10_3389_fgene_2022_808041
crossref_primary_10_1016_j_intimp_2024_113572
crossref_primary_10_1007_s13402_024_00921_1
crossref_primary_10_3389_fendo_2022_895428
crossref_primary_10_3389_fimmu_2021_599512
crossref_primary_10_1093_bib_bbaa311
crossref_primary_10_1186_s12859_023_05137_y
crossref_primary_10_3389_fonc_2022_993726
crossref_primary_10_2478_jtim_2024_0025
crossref_primary_10_4103_1673_5374_375343
crossref_primary_10_1097_MD_0000000000034166
crossref_primary_10_3389_fimmu_2021_762120
crossref_primary_10_3389_fgene_2022_914219
crossref_primary_10_3389_fonc_2022_1055371
crossref_primary_10_3389_fonc_2021_607224
crossref_primary_10_1093_nar_gkad888
crossref_primary_10_1186_s12890_022_01902_6
crossref_primary_10_1016_j_xcrm_2025_102306
crossref_primary_10_1002_cam4_4338
crossref_primary_10_1038_s41388_022_02368_w
crossref_primary_10_3390_genes13101913
crossref_primary_10_3389_fonc_2022_920599
crossref_primary_10_1080_2162402X_2021_1947665
crossref_primary_10_1155_2022_1525245
crossref_primary_10_3389_fgene_2024_1441189
crossref_primary_10_3389_fonc_2021_771749
crossref_primary_10_3390_genes15010053
crossref_primary_10_1007_s12026_025_09632_7
crossref_primary_10_2147_NDT_S525882
crossref_primary_10_1155_2022_9719671
crossref_primary_10_1007_s12072_022_10445_1
crossref_primary_10_1002_ctm2_620
crossref_primary_10_3389_fcell_2021_754580
crossref_primary_10_3389_fonc_2021_640272
crossref_primary_10_1016_j_wneu_2021_12_070
crossref_primary_10_3389_fonc_2024_1374696
crossref_primary_10_3389_fimmu_2023_1102281
crossref_primary_10_1186_s12885_022_09983_6
crossref_primary_10_3389_fgene_2022_844604
crossref_primary_10_3389_fimmu_2022_960906
crossref_primary_10_3390_jpm12060902
crossref_primary_10_1007_s12672_023_00819_8
crossref_primary_10_1155_2022_2906049
crossref_primary_10_3390_cancers14010237
crossref_primary_10_3390_biomedicines13030690
crossref_primary_10_1080_19396368_2025_2499475
crossref_primary_10_1038_s41467_021_20907_z
crossref_primary_10_3389_fimmu_2022_998140
crossref_primary_10_3389_fimmu_2024_1517312
crossref_primary_10_1007_s12672_025_02351_3
crossref_primary_10_3389_fimmu_2025_1542669
crossref_primary_10_3389_fonc_2021_620674
crossref_primary_10_1002_cam4_70584
crossref_primary_10_3389_fgene_2022_1068112
crossref_primary_10_1186_s41065_023_00265_0
crossref_primary_10_1126_sciimmunol_adl2171
crossref_primary_10_1177_11297298221102298
crossref_primary_10_2147_JIR_S490457
crossref_primary_10_1038_s41598_022_20409_y
crossref_primary_10_1186_s12964_024_01599_6
crossref_primary_10_2147_IJGM_S317405
crossref_primary_10_3389_fonc_2023_1170482
crossref_primary_10_3390_cells11233909
crossref_primary_10_3389_fimmu_2023_1087293
crossref_primary_10_1016_j_scib_2025_02_043
crossref_primary_10_1016_j_compbiomed_2025_110021
crossref_primary_10_1093_nar_gkae888
crossref_primary_10_1007_s10495_024_01984_z
crossref_primary_10_1093_nar_gkac1006
crossref_primary_10_3389_fimmu_2022_830220
crossref_primary_10_3892_ijo_2022_5385
crossref_primary_10_3389_fgene_2022_979213
crossref_primary_10_1016_j_ygeno_2023_110778
crossref_primary_10_1002_jcb_30620
crossref_primary_10_1186_s12920_022_01259_z
crossref_primary_10_3390_genes13122400
crossref_primary_10_3389_fimmu_2021_623762
crossref_primary_10_3389_fimmu_2022_842439
crossref_primary_10_1038_s41416_022_01936_x
crossref_primary_10_1016_j_intimp_2024_113126
crossref_primary_10_1155_2022_5758601
crossref_primary_10_3389_fbioe_2022_820092
crossref_primary_10_1049_syb2_12097
crossref_primary_10_1097_MD_0000000000034126
crossref_primary_10_1111_jcmm_17749
crossref_primary_10_1186_s12916_022_02630_8
crossref_primary_10_1002_cam4_4776
crossref_primary_10_1038_s41419_023_05692_5
crossref_primary_10_1038_s41467_022_33946_x
crossref_primary_10_1158_0008_5472_CAN_24_2289
crossref_primary_10_3389_fimmu_2021_666137
crossref_primary_10_3389_fmolb_2021_587436
crossref_primary_10_1007_s10528_023_10646_9
crossref_primary_10_1007_s00262_025_04034_y
crossref_primary_10_1155_2022_6934744
crossref_primary_10_1016_j_gene_2022_146901
crossref_primary_10_3389_fimmu_2021_763760
crossref_primary_10_1007_s00262_024_03699_1
crossref_primary_10_3389_fonc_2022_954226
crossref_primary_10_1186_s12967_023_04704_4
crossref_primary_10_3892_ol_2025_14902
crossref_primary_10_2147_CMAR_S271807
crossref_primary_10_1016_j_csbj_2023_10_042
crossref_primary_10_3389_fendo_2023_1131693
crossref_primary_10_3389_fgene_2022_902329
crossref_primary_10_3389_fcell_2022_893546
crossref_primary_10_1080_15384101_2022_2049157
crossref_primary_10_3389_fimmu_2023_1162458
crossref_primary_10_1002_advs_202305913
crossref_primary_10_1097_MD_0000000000035311
crossref_primary_10_1093_nar_gkae993
crossref_primary_10_3389_fonc_2022_952290
crossref_primary_10_1002_ueg2_12650
crossref_primary_10_3390_cancers15010158
crossref_primary_10_4132_jptm_2025_05_23
crossref_primary_10_2147_JIR_S338053
crossref_primary_10_3389_fimmu_2021_747020
crossref_primary_10_1080_2162402X_2021_1933332
crossref_primary_10_3389_fmolb_2022_800888
crossref_primary_10_1136_jitc_2023_007146
crossref_primary_10_3389_fimmu_2022_922471
crossref_primary_10_1155_2021_3766685
crossref_primary_10_1111_jcmm_17962
crossref_primary_10_1038_s41389_020_00293_9
crossref_primary_10_1007_s10238_024_01397_x
crossref_primary_10_3389_fimmu_2023_1137025
crossref_primary_10_1038_s41401_022_01020_3
crossref_primary_10_3389_fimmu_2023_1287136
crossref_primary_10_1186_s12967_022_03513_5
crossref_primary_10_1038_s41467_023_42619_2
crossref_primary_10_1155_2020_3178037
crossref_primary_10_3389_fmolb_2020_576269
crossref_primary_10_1038_s41698_025_00893_x
crossref_primary_10_1097_HC9_0000000000000364
crossref_primary_10_3390_cancers14204970
crossref_primary_10_3389_fcell_2023_1170758
crossref_primary_10_3389_fonc_2022_978050
crossref_primary_10_1016_j_csbj_2021_03_033
crossref_primary_10_1016_j_heliyon_2023_e19680
crossref_primary_10_1371_journal_pone_0287574
crossref_primary_10_3389_fimmu_2023_1082087
crossref_primary_10_3389_fimmu_2025_1573365
crossref_primary_10_1002_ctm2_207
crossref_primary_10_1016_j_heliyon_2024_e28670
crossref_primary_10_3389_fimmu_2025_1617036
crossref_primary_10_1002_jcla_24015
crossref_primary_10_1016_j_gpb_2022_08_004
crossref_primary_10_1158_0008_5472_CAN_21_3717
crossref_primary_10_1007_s00432_023_04947_0
crossref_primary_10_1038_s41598_025_88657_2
crossref_primary_10_1177_15330338211036233
crossref_primary_10_1016_j_procs_2025_03_039
crossref_primary_10_3389_fimmu_2025_1553527
crossref_primary_10_1186_s12859_023_05299_9
crossref_primary_10_1038_s41598_023_49985_3
crossref_primary_10_1002_VIW_20220083
crossref_primary_10_3389_fimmu_2022_831101
crossref_primary_10_1007_s12672_024_00916_2
crossref_primary_10_3389_fimmu_2022_980378
crossref_primary_10_3389_fonc_2022_1010976
crossref_primary_10_3389_fphar_2022_1039857
crossref_primary_10_3389_fendo_2023_1247709
crossref_primary_10_3390_idr16050073
crossref_primary_10_1002_adtp_202100098
crossref_primary_10_1177_03946320221104548
crossref_primary_10_1111_jog_16044
crossref_primary_10_1186_s13059_023_03077_7
crossref_primary_10_1016_j_csbj_2023_07_030
crossref_primary_10_2147_IJGM_S449986
crossref_primary_10_3389_fneur_2024_1503632
crossref_primary_10_3389_fgene_2022_1038222
crossref_primary_10_1002_advs_202203040
crossref_primary_10_3389_fcell_2021_719011
crossref_primary_10_1080_15384101_2023_2205204
crossref_primary_10_3390_genes14010044
crossref_primary_10_1016_j_ebiom_2023_104515
crossref_primary_10_3389_fimmu_2022_949509
crossref_primary_10_3389_fcell_2020_590898
crossref_primary_10_3389_fonc_2022_821578
crossref_primary_10_1186_s13048_024_01518_w
crossref_primary_10_3389_fimmu_2022_858972
crossref_primary_10_3389_fimmu_2023_1199465
crossref_primary_10_1038_s41598_025_10416_0
crossref_primary_10_1136_jitc_2020_001703
crossref_primary_10_1038_s41598_025_89072_3
crossref_primary_10_1186_s12885_022_09617_x
crossref_primary_10_1038_s41598_022_13013_7
crossref_primary_10_3390_ijms26052311
crossref_primary_10_1089_cbr_2025_0060
crossref_primary_10_1007_s12672_023_00669_4
crossref_primary_10_1097_MPA_0000000000002229
crossref_primary_10_3389_fphar_2023_1190660
crossref_primary_10_1038_s41467_023_41737_1
crossref_primary_10_1155_2020_8827920
crossref_primary_10_3389_fimmu_2024_1460607
crossref_primary_10_1016_j_omto_2021_12_007
crossref_primary_10_1136_jitc_2024_010363
crossref_primary_10_3389_fimmu_2023_1049351
crossref_primary_10_3389_fmolb_2021_636991
crossref_primary_10_3389_fcell_2021_707143
crossref_primary_10_3389_fphar_2021_711772
crossref_primary_10_1186_s12967_021_02804_7
crossref_primary_10_2147_JIR_S472213
crossref_primary_10_3389_fimmu_2022_869993
crossref_primary_10_3389_fimmu_2022_940801
crossref_primary_10_3389_fimmu_2021_672031
crossref_primary_10_1007_s00432_022_04325_2
crossref_primary_10_1177_17588359231189436
crossref_primary_10_3389_fcell_2021_595331
crossref_primary_10_1007_s10142_023_01122_z
crossref_primary_10_1111_imm_13465
crossref_primary_10_1016_j_lfs_2021_119151
crossref_primary_10_1093_bib_bbad074
crossref_primary_10_1093_gpbjnl_qzae060
crossref_primary_10_1016_j_ebiom_2022_104016
crossref_primary_10_1111_1440_1681_70031
crossref_primary_10_3390_genes13091656
crossref_primary_10_1136_jitc_2022_004880
crossref_primary_10_2147_COPD_S316304
crossref_primary_10_3389_fimmu_2022_784479
crossref_primary_10_7717_peerj_14506
crossref_primary_10_1016_j_intimp_2023_109956
crossref_primary_10_1111_jcmm_16368
crossref_primary_10_1186_s12967_023_04478_9
crossref_primary_10_1038_s44321_024_00068_4
crossref_primary_10_1016_j_biochi_2023_01_003
crossref_primary_10_3389_fgene_2022_901734
crossref_primary_10_1136_jitc_2023_008040
crossref_primary_10_3389_fncel_2023_1132015
crossref_primary_10_1038_s41598_024_83455_8
crossref_primary_10_3389_fgene_2021_741226
crossref_primary_10_3389_fendo_2021_646793
crossref_primary_10_1093_nar_gkab1041
crossref_primary_10_3389_fimmu_2022_878997
crossref_primary_10_1002_advs_202308242
crossref_primary_10_1002_mc_23535
crossref_primary_10_3389_fimmu_2023_1187574
crossref_primary_10_1016_j_fmre_2025_08_009
crossref_primary_10_1016_j_apsb_2023_10_010
crossref_primary_10_3389_fimmu_2025_1574003
crossref_primary_10_3389_fimmu_2022_992266
crossref_primary_10_1038_s41598_022_25745_7
crossref_primary_10_1038_s43018_023_00572_5
crossref_primary_10_2147_JHC_S395563
crossref_primary_10_3389_fimmu_2021_729359
crossref_primary_10_1155_2022_6184802
crossref_primary_10_3390_biom12091276
crossref_primary_10_1186_s12920_023_01521_y
crossref_primary_10_1111_odi_14828
crossref_primary_10_3389_fmolb_2021_625858
crossref_primary_10_1016_j_compbiomed_2023_107779
crossref_primary_10_1007_s11427_024_2622_1
crossref_primary_10_3389_fonc_2022_924239
crossref_primary_10_1186_s12964_024_01622_w
crossref_primary_10_3390_bioengineering8070090
crossref_primary_10_3389_fimmu_2021_649061
crossref_primary_10_1093_nar_gkae267
crossref_primary_10_1080_13685538_2023_2183947
crossref_primary_10_4049_jimmunol_2300736
crossref_primary_10_1038_s41598_022_12531_8
crossref_primary_10_3389_fimmu_2022_900755
crossref_primary_10_1038_s41598_022_17735_6
crossref_primary_10_3389_fimmu_2025_1568825
crossref_primary_10_1186_s12885_021_08548_3
crossref_primary_10_3389_fmolb_2022_942966
crossref_primary_10_1186_s40364_024_00660_3
crossref_primary_10_1136_jitc_2021_003490
crossref_primary_10_1016_j_intimp_2022_109335
crossref_primary_10_3389_fendo_2022_1056310
crossref_primary_10_3389_fonc_2020_579868
crossref_primary_10_1038_s41540_023_00267_8
crossref_primary_10_1371_journal_pone_0324438
crossref_primary_10_1002_cam4_3986
crossref_primary_10_3390_cells11182802
crossref_primary_10_1186_s10020_024_00849_0
crossref_primary_10_1038_s41467_025_56347_2
crossref_primary_10_1002_ijc_34481
crossref_primary_10_1016_j_ygeno_2022_110303
crossref_primary_10_3389_fgene_2022_935749
crossref_primary_10_1002_ctm2_317
crossref_primary_10_1136_jitc_2024_009345
crossref_primary_10_1007_s00262_020_02687_5
crossref_primary_10_3389_fimmu_2023_1112704
crossref_primary_10_1016_j_bbrc_2023_149388
crossref_primary_10_1186_s12885_022_10175_5
crossref_primary_10_1186_s12859_023_05328_7
crossref_primary_10_1111_aji_13672
crossref_primary_10_2147_IJGM_S354195
crossref_primary_10_3390_genes13060951
crossref_primary_10_3389_fonc_2023_1123455
crossref_primary_10_1007_s00210_025_04479_z
crossref_primary_10_1007_s00432_023_05209_9
crossref_primary_10_3389_fonc_2022_962540
crossref_primary_10_1007_s10238_025_01760_6
crossref_primary_10_1186_s40001_023_01091_w
crossref_primary_10_1097_MD_0000000000033990
crossref_primary_10_1093_nar_gkaf388
crossref_primary_10_1016_j_gene_2022_147001
crossref_primary_10_1080_07357907_2024_2405184
crossref_primary_10_2147_JIR_S440425
crossref_primary_10_1093_bib_bbac291
crossref_primary_10_3389_fonc_2021_685515
crossref_primary_10_1002_mgg3_1384
crossref_primary_10_1186_s12967_020_02691_4
crossref_primary_10_1080_21655979_2021_1922330
crossref_primary_10_2147_CMAR_S335543
crossref_primary_10_1016_j_heliyon_2024_e24103
crossref_primary_10_3389_fimmu_2022_1028785
crossref_primary_10_3389_fcell_2021_735013
crossref_primary_10_1038_s41379_022_01086_8
crossref_primary_10_1007_s10157_023_02422_1
crossref_primary_10_1038_s41598_021_97102_z
crossref_primary_10_3389_fimmu_2024_1381765
crossref_primary_10_1016_j_omtn_2022_12_012
crossref_primary_10_3389_fcell_2021_671736
crossref_primary_10_3389_fcell_2022_800925
crossref_primary_10_3390_cancers17132139
crossref_primary_10_3389_fimmu_2022_994594
crossref_primary_10_1038_s41598_022_15534_7
crossref_primary_10_1136_jitc_2022_006243
crossref_primary_10_1002_ctm2_187
crossref_primary_10_1093_bib_bbae261
crossref_primary_10_1155_2021_6653295
crossref_primary_10_1186_s12885_024_11878_7
crossref_primary_10_3389_fgene_2020_593273
crossref_primary_10_1186_s12943_022_01706_6
crossref_primary_10_3390_ijms26157145
crossref_primary_10_1128_spectrum_04104_23
crossref_primary_10_3389_fonc_2021_670047
crossref_primary_10_1016_j_bbrc_2023_149217
crossref_primary_10_3389_fimmu_2022_853074
crossref_primary_10_3389_fonc_2025_1535966
crossref_primary_10_1097_HC9_0000000000000298
crossref_primary_10_3389_fonc_2021_761030
crossref_primary_10_2147_JIR_S361634
crossref_primary_10_1016_j_omtn_2021_10_014
crossref_primary_10_3389_fgene_2021_697524
crossref_primary_10_3389_fcell_2023_1247632
crossref_primary_10_3389_fphar_2023_1202823
crossref_primary_10_1016_j_csbj_2023_12_001
crossref_primary_10_1080_21655979_2021_1972081
crossref_primary_10_2147_JHC_S446313
crossref_primary_10_3390_cancers17030559
crossref_primary_10_1016_j_intimp_2023_111463
crossref_primary_10_3389_fimmu_2024_1421942
crossref_primary_10_1002_ijc_34045
crossref_primary_10_1186_s12967_024_05702_w
crossref_primary_10_1016_j_bbadis_2025_167905
crossref_primary_10_1016_j_bbcan_2021_188585
crossref_primary_10_3389_fimmu_2023_1119139
crossref_primary_10_3389_fphar_2022_1025921
crossref_primary_10_1155_2023_3407313
crossref_primary_10_1158_2326_6066_CIR_22_0249
crossref_primary_10_1007_s10815_022_02573_2
crossref_primary_10_1016_j_heliyon_2023_e18503
crossref_primary_10_1002_advs_202502271
crossref_primary_10_1002_cnr2_70030
crossref_primary_10_1007_s00277_024_05882_x
crossref_primary_10_1186_s40001_025_02554_y
crossref_primary_10_31083_j_fbl2909318
crossref_primary_10_1093_nar_gkab931
crossref_primary_10_1186_s13073_024_01367_8
crossref_primary_10_1111_jcmm_18392
crossref_primary_10_3389_fgene_2021_771830
crossref_primary_10_1002_advs_202408007
crossref_primary_10_1016_j_canlet_2022_01_026
crossref_primary_10_7717_peerj_15554
crossref_primary_10_3389_fcell_2022_887693
crossref_primary_10_1016_j_phymed_2025_157085
crossref_primary_10_1080_15257770_2024_2310044
crossref_primary_10_3390_ijms26136501
crossref_primary_10_1002_1878_0261_13203
crossref_primary_10_3389_fimmu_2022_955800
crossref_primary_10_1159_000529861
crossref_primary_10_1155_2021_7404927
crossref_primary_10_1155_2022_9412119
crossref_primary_10_1007_s10753_023_01815_4
crossref_primary_10_1038_s42003_024_06453_6
crossref_primary_10_1007_s13167_021_00268_9
crossref_primary_10_1093_bib_bbaa075
crossref_primary_10_3390_ijms24010549
crossref_primary_10_1038_s41590_024_01789_x
crossref_primary_10_3389_fimmu_2022_824586
crossref_primary_10_1097_CM9_0000000000003254
crossref_primary_10_1097_MD_0000000000041216
crossref_primary_10_3389_fonc_2022_973402
crossref_primary_10_1097_MD_0000000000042665
crossref_primary_10_3390_cells13100821
crossref_primary_10_1136_jitc_2021_004095
crossref_primary_10_3389_fonc_2021_690188
crossref_primary_10_3389_fcimb_2022_833080
crossref_primary_10_3389_fimmu_2021_729085
crossref_primary_10_3389_fonc_2021_629868
crossref_primary_10_3390_cancers14194943
crossref_primary_10_3389_fcvm_2022_971543
crossref_primary_10_1177_11795549231199915
crossref_primary_10_1371_journal_pone_0320343
crossref_primary_10_1016_j_csbj_2022_05_019
crossref_primary_10_1186_s12967_021_03083_y
crossref_primary_10_1210_clinem_dgaa449
crossref_primary_10_1186_s13058_024_01876_9
crossref_primary_10_3389_fimmu_2022_964622
crossref_primary_10_1007_s10238_022_00815_2
crossref_primary_10_3389_fonc_2020_01198
crossref_primary_10_1159_000529963
crossref_primary_10_1042_BSR20202063
crossref_primary_10_3389_fgene_2021_684002
crossref_primary_10_1016_j_jtos_2024_12_001
crossref_primary_10_1155_2023_9998927
crossref_primary_10_1186_s12885_024_12874_7
crossref_primary_10_2147_JIR_S475639
crossref_primary_10_3389_fgene_2020_617174
crossref_primary_10_1155_2022_8655343
crossref_primary_10_3389_fimmu_2020_01900
crossref_primary_10_1089_hum_2022_185
crossref_primary_10_1016_j_prp_2022_154092
crossref_primary_10_1038_s41467_024_52170_3
crossref_primary_10_1007_s00262_025_03988_3
crossref_primary_10_1016_j_tranon_2023_101700
crossref_primary_10_1080_21655979_2021_1945894
crossref_primary_10_1016_j_csbj_2021_10_013
crossref_primary_10_3389_fimmu_2022_888176
crossref_primary_10_1016_j_tranon_2021_101109
crossref_primary_10_1111_jre_13159
crossref_primary_10_3389_fcell_2022_901207
crossref_primary_10_1186_s13578_023_01087_3
crossref_primary_10_1177_11769351221139252
crossref_primary_10_3389_fimmu_2022_975762
crossref_primary_10_3389_fimmu_2023_1097788
crossref_primary_10_3390_jcm12041286
crossref_primary_10_3390_ijms24098216
crossref_primary_10_1016_j_intimp_2020_106651
crossref_primary_10_3389_fgene_2022_1024096
Cites_doi 10.1038/s41591-018-0157-9
10.1016/j.ccell.2018.03.012
10.1186/1471-2105-14-7
10.1093/annonc/mds256
10.7554/eLife.26476
10.1084/jem.20130579
10.1016/j.cell.2017.05.035
10.1158/2326-6066.CIR-18-0054
10.1186/s13059-016-1070-5
10.1016/j.cell.2014.12.033
10.1016/j.coi.2014.01.004
10.1158/1078-0432.CCR-15-0685
10.1038/s41467-017-02289-3
10.1155/2016/4273943
10.1093/biostatistics/kxp059
10.3324/haematol.2014.104968
10.1016/j.cell.2017.01.010
10.1038/s41588-018-0200-2
10.1200/JCO.2014.56.2025
10.3389/fimmu.2013.00190
10.3389/fimmu.2017.00761
10.1016/j.tig.2013.05.010
10.1093/bioinformatics/btt090
10.1126/science.aad0501
10.1038/ni.3775
10.1038/nature08460
10.1158/0008-5472.CAN-15-0255
10.1038/ni.2703
10.1038/nmeth.3337
10.1016/j.cell.2017.09.028
10.1155/2012/925135
10.1186/s13059-017-1349-1
10.21037/jgo.2018.01.17
10.1038/s41591-018-0045-3
10.1038/s41419-017-0061-0
10.1038/nri1961
10.1038/nri.2016.125
10.1073/pnas.1705327114
10.1038/s41591-018-0101-z
10.1158/1538-7445.AM2017-108
10.1038/s41540-017-0045-9
10.1038/nrc3239
10.1016/j.jaci.2009.12.980
10.1038/s41591-018-0136-1
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201902880
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library (subscription)
Science Database (subscription)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_407372ffcceb439cb75c58e8f63570e1
PMC7141005
32274301
10_1002_advs_201902880
ADVS1603
Genre article
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2018M632830; 2017M622455; 2019T120664
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0700403
– fundername: National Natural Science Foundation of China
  funderid: 31822030; 31801113; 31771458
– fundername: ;
  grantid: 2017YFA0700403
– fundername: ;
  grantid: 2018M632830; 2017M622455; 2019T120664
– fundername: ;
  grantid: 31822030; 31801113; 31771458
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IAO
IGS
ITC
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5293-5a23110dd5c71fed1a65fbe8a92a31b9b2124a4ca8b61f0eddb2e4a45d6f68963
IEDL.DBID 24P
ISICitedReferencesCount 719
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512457400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Fri Oct 03 12:53:39 EDT 2025
Tue Nov 04 01:46:42 EST 2025
Thu Sep 04 17:03:14 EDT 2025
Sun Nov 09 07:05:26 EST 2025
Wed Feb 19 02:30:08 EST 2025
Sat Nov 29 07:24:12 EST 2025
Tue Nov 18 21:49:14 EST 2025
Wed Jan 22 16:33:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords immune cells
cancer
T‐cell subsets
immunotherapy
Language English
License Attribution
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5293-5a23110dd5c71fed1a65fbe8a92a31b9b2124a4ca8b61f0eddb2e4a45d6f68963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1982-3141
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201902880
PMID 32274301
PQID 2390196042
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_407372ffcceb439cb75c58e8f63570e1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7141005
proquest_miscellaneous_2388827395
proquest_journals_2390196042
pubmed_primary_32274301
crossref_citationtrail_10_1002_advs_201902880
crossref_primary_10_1002_advs_201902880
wiley_primary_10_1002_advs_201902880_ADVS1603
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 12
2017; 6
2013; 29
2019; 7
2010; 11
2015; 160
2017; 8
2012; 2012
2013; 4
2010; 125
2015; 75
2015; 33
2014; 27
2017; 171
2006; 6
2016; 2016
2016; 17
2012; 12
2017; 114
2018; 24
2018; 9
2013; 14
2018; 4
2017; 17
2017; 77
2015; 21
2009; 462
2013; 210
2016; 352
2017; 18
2018; 50
2018; 33
2017; 168
2012; 23
2017; 169
2014; 99
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 8
  year: 2017
  publication-title: Front. Immunol.
– volume: 24
  start-page: 978
  year: 2018
  publication-title: Nat. Med.
– volume: 125
  start-page: S3
  year: 2010
  publication-title: J. Allergy Clin. Immunol.
– volume: 75
  start-page: 2139
  year: 2015
  publication-title: Cancer Res.
– volume: 12
  start-page: 453
  year: 2015
  publication-title: Nat. Methods
– volume: 77
  year: 2017
  publication-title: Cancer Res.
– volume: 352
  start-page: 189
  year: 2016
  publication-title: Science
– volume: 114
  start-page: 4993
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 168
  start-page: 542
  year: 2017
  publication-title: Cell
– volume: 12
  start-page: 252
  year: 2012
  publication-title: Nat. Rev. Cancer
– volume: 9
  start-page: 115
  year: 2018
  publication-title: Cell Death Dis.
– volume: 14
  start-page: 7
  year: 2013
  publication-title: BMC Bioinformatics
– volume: 4
  start-page: 9
  year: 2018
  publication-title: npj Syst. Biol. Appl.
– volume: 33
  start-page: 547
  year: 2018
  publication-title: Cancer Cell
– volume: 14
  start-page: 1014
  year: 2013
  publication-title: Nat. Immunol.
– volume: 169
  start-page: 1342
  year: 2017
  publication-title: Cell
– volume: 18
  start-page: 940
  year: 2017
  publication-title: Nat. Immunol.
– volume: 11
  start-page: 242
  year: 2010
  publication-title: Biostatistics
– volume: 210
  start-page: 1695
  year: 2013
  publication-title: J. Exp. Med.
– volume: 50
  start-page: 1271
  year: 2018
  publication-title: Nat. Genet.
– volume: 29
  start-page: 569
  year: 2013
  publication-title: Trends Genet.
– volume: 24
  start-page: 1550
  year: 2018
  publication-title: Nat. Med.
– volume: 8
  start-page: 2032
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  start-page: 510
  year: 2019
  publication-title: Cancer Immunol. Res.
– volume: 4
  start-page: 190
  year: 2013
  publication-title: Front. Immunol.
– volume: 17
  start-page: 21
  year: 2017
  publication-title: Nat. Rev. Immunol.
– volume: 24
  start-page: 1449
  year: 2018
  publication-title: Nat. Med.
– volume: 6
  start-page: 836
  year: 2006
  publication-title: Nat. Rev. Immunol.
– volume: 21
  start-page: 5047
  year: 2015
  publication-title: Clin. Cancer Res.
– volume: 9
  start-page: 160
  year: 2018
  publication-title: J. Gastrointest. Oncol.
– volume: 29
  start-page: 1083
  year: 2013
  publication-title: Bioinformatics
– volume: 2016
  start-page: 1
  year: 2016
  publication-title: J. Immunol. Res.
– volume: 18
  start-page: 220
  year: 2017
  publication-title: Genome Biol.
– volume: 160
  start-page: 48
  year: 2015
  publication-title: Cell
– volume: 2012
  start-page: 1
  year: 2012
  publication-title: Clin. Dev. Immunol.
– volume: 24
  start-page: 1545
  year: 2018
  publication-title: Nat. Med.
– volume: 27
  start-page: 16
  year: 2014
  publication-title: Curr. Opin. Immunol.
– volume: 17
  start-page: 218
  year: 2016
  publication-title: Genome Biol.
– volume: 99
  start-page: 599
  year: 2014
  publication-title: Haematologica
– volume: 6
  year: 2017
  publication-title: eLife
– volume: 171
  start-page: 934
  year: 2017
  publication-title: Cell
– volume: 23
  year: 2012
  publication-title: Ann. Oncol.
– volume: 33
  start-page: 540
  year: 2015
  publication-title: J. Clin. Oncol.
– volume: 462
  start-page: 108
  year: 2009
  publication-title: Nature
– ident: e_1_2_8_23_1
  doi: 10.1038/s41591-018-0157-9
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ccell.2018.03.012
– ident: e_1_2_8_42_1
  doi: 10.1186/1471-2105-14-7
– ident: e_1_2_8_39_1
  doi: 10.1093/annonc/mds256
– ident: e_1_2_8_13_1
  doi: 10.7554/eLife.26476
– ident: e_1_2_8_9_1
  doi: 10.1084/jem.20130579
– ident: e_1_2_8_18_1
  doi: 10.1016/j.cell.2017.05.035
– ident: e_1_2_8_38_1
  doi: 10.1158/2326-6066.CIR-18-0054
– ident: e_1_2_8_15_1
  doi: 10.1186/s13059-016-1070-5
– ident: e_1_2_8_40_1
  doi: 10.1016/j.cell.2014.12.033
– ident: e_1_2_8_10_1
  doi: 10.1016/j.coi.2014.01.004
– ident: e_1_2_8_35_1
  doi: 10.1158/1078-0432.CCR-15-0685
– ident: e_1_2_8_43_1
  doi: 10.1038/s41467-017-02289-3
– ident: e_1_2_8_5_1
  doi: 10.1155/2016/4273943
– ident: e_1_2_8_41_1
  doi: 10.1093/biostatistics/kxp059
– ident: e_1_2_8_26_1
  doi: 10.3324/haematol.2014.104968
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cell.2017.01.010
– ident: e_1_2_8_25_1
  doi: 10.1038/s41588-018-0200-2
– ident: e_1_2_8_6_1
  doi: 10.1200/JCO.2014.56.2025
– ident: e_1_2_8_30_1
  doi: 10.3389/fimmu.2013.00190
– ident: e_1_2_8_36_1
  doi: 10.3389/fimmu.2017.00761
– ident: e_1_2_8_44_1
  doi: 10.1016/j.tig.2013.05.010
– ident: e_1_2_8_16_1
  doi: 10.1093/bioinformatics/btt090
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aad0501
– ident: e_1_2_8_32_1
  doi: 10.1038/ni.3775
– ident: e_1_2_8_17_1
  doi: 10.1038/nature08460
– ident: e_1_2_8_34_1
  doi: 10.1158/0008-5472.CAN-15-0255
– ident: e_1_2_8_4_1
  doi: 10.1038/ni.2703
– ident: e_1_2_8_12_1
  doi: 10.1038/nmeth.3337
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cell.2017.09.028
– ident: e_1_2_8_7_1
  doi: 10.1155/2012/925135
– ident: e_1_2_8_11_1
  doi: 10.1186/s13059-017-1349-1
– ident: e_1_2_8_27_1
  doi: 10.21037/jgo.2018.01.17
– ident: e_1_2_8_19_1
  doi: 10.1038/s41591-018-0045-3
– ident: e_1_2_8_28_1
  doi: 10.1038/s41419-017-0061-0
– ident: e_1_2_8_3_1
  doi: 10.1038/nri1961
– ident: e_1_2_8_2_1
  doi: 10.1038/nri.2016.125
– ident: e_1_2_8_8_1
  doi: 10.1073/pnas.1705327114
– ident: e_1_2_8_24_1
  doi: 10.1038/s41591-018-0101-z
– ident: e_1_2_8_14_1
  doi: 10.1158/1538-7445.AM2017-108
– ident: e_1_2_8_29_1
  doi: 10.1038/s41540-017-0045-9
– ident: e_1_2_8_33_1
  doi: 10.1038/nrc3239
– ident: e_1_2_8_1_1
  doi: 10.1016/j.jaci.2009.12.980
– ident: e_1_2_8_37_1
  doi: 10.1038/s41591-018-0136-1
SSID ssj0001537418
Score 2.6464124
Snippet The distribution and abundance of immune cells, particularly T‐cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets...
The distribution and abundance of immune cells, particularly T-cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many subsets...
Abstract The distribution and abundance of immune cells, particularly T‐cell subsets, play pivotal roles in cancer immunology and therapy. T cells have many...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1902880
SubjectTerms Algorithms
Cancer
Datasets
Flow cytometry
Gene expression
immune cells
Immune system
Immunotherapy
Lymphocytes
Melanoma
Methods
Neutrophils
Performance evaluation
T‐cell subsets
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQxaEXRGmBQEGuVAk4WE2cOHa4LatW9NCqEq3UW-RfdaVtirK7lTi1j8Az8iTMONmwK0C99BpPHMsz4_kcj78hZF9ynsKaVzBXZRUrAGEzFaqS6VyF3HIRUmdjsQl5eqouL6uzlVJfmBPW0QN3E3cAG45c8hCs9QaCpzVSWKG8Ckiklvq48QHUs7KZ6u4H50jLsmRpTPmBdrfIzp0hWwlyQK5EoUjW_y-E-Xei5CqAjRHo6Dl51kNHOuqGvEWe-OYF2eqdc0Y_9gzSn7bJ3fH19WLsp9PR8Wc6oheRpJWexGLRFFAqxVWg9Vdd8jo9_3X_E6UpriJ-PqMjg_dDoFd61uJBDiqP6sbRCTb-OfKmk4aOUa6l-MWmv831Y4dcHB2ej7-yvtICswLiPRMaYF6WOieszIJ3mS5FMF7pius8M5WBAFfowmplyiyk3jnDPTwQrgylAh9-STaam8a_JtQF7R1oRnFpCwWvWhsshErLvSikyRPCljNf256GHKthTOuOQJnXqKl60FRCPgzy3zsCjv9KfkFFDlJInB0fgDnVvTnVD5lTQnaXZlD33gyfwB9DyGLDE7I3NIMf4uGKbvzNAmUUbFbw2DMhrzqrGUYCiyYAtRQ6l2v2tDbU9ZZmchW5viXm4abQJ4uW98AU1IBlvmHh8DePMRdvySbHvwsxT2mXbMzbhX9Hntrb-WTWvo8O9xtxlDDD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4ELUJ6BgoyEBByiJk4cO1zQdtWKHlitoJV6ixw_6ErbbMnuVuIEP4HfyC9hxvGmXfE6cI0nfsTj8WfP5BtCXgjGErB5eWzKtIxzQNixdGURq0y6TDPuEqN9sgkxHsuTk3ISLtwWIaxybRO9oTZzjXfkuwwP58gkwt6ef44xaxR6V0MKjetkC5nK8gHZ2tsfTz5c3rLwDOlZ1myNCdtV5gJZulNkLUEuyCu7kSft_x3S_DVg8iqQ9TvRwe3_HcMdcitgUDrslGabXLPNXbIdVvmCvgpU1K_vka-HZ2erkZ3Nhodv6JAee7ZX-t5nnaYAdymak9aedlHw9OjHt-8oTdEc2eWCDmv80QRqpZMWPUKoBVQ1hk6x8NJ3TqcNHaFcS7HFJvwW9uU-OT7YPxq9i0PKhlhzAA4xV4AX08QYrkXqrElVwV1tpSqZytK6rGGnzFWulayL1CXWmJpZeMBN4QoJxuABGTTzxj4i1DhlDRcAUYTOJbyqtdOw52pmeS7qLCLxeuoqHfjMMa3GrOqYmFmFU131Ux2Rl738ecfk8UfJPdSEXgoZuP2DefupCgu6goNwJphzWtsaQJ2uBddcWumQ4C-xaUR21jpQBbMATfQKEJHnfTEsaPTSqMbOVygj4dSD_tOIPOzUru8JWF9AfAlULjYUcqOrmyXN9NSThgsM6E2gztir7j8-QQWg6CNmIH_892E8ITcZXkD4UKYdMli2K_uU3NAXy-mifRZW40-A0z_n
  priority: 102
  providerName: ProQuest
Title ImmuCellAI: A Unique Method for Comprehensive T‐Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201902880
https://www.ncbi.nlm.nih.gov/pubmed/32274301
https://www.proquest.com/docview/2390196042
https://www.proquest.com/docview/2388827395
https://pubmed.ncbi.nlm.nih.gov/PMC7141005
https://doaj.org/article/407372ffcceb439cb75c58e8f63570e1
Volume 7
WOSCitedRecordID wos000512457400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (subscription)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELbQlgMXYPktLJWRkIBDtIkT1w63brUremiJYFeUU-T4Z7dSN0VpuxIneASekSdhxknTrQAhxMVS44mTOjPjz2P7G0JeCMZC8HlJYNIoDRJA2IF0aT9QsXSxZtyFRvtkE2IykdNpml07xV_zQ7QBN7QM76_RwFWxPNyShipzhXTbEdKPSJi0d6Iolpi8gSXZNsrCY6RnwQxzMLsOYpkkG-bGkB3uNrEzMnkC_9-hzl83T14HtX5UOrnz___nLrndIFI6qFVon9yw5T2y39j8kr5qiKlf3ydfR5eX66GdzwejN3RAzzz3Kx37HNQUwC9F51LZi3pPPD398e07SlN0Tna1pIMCj51AqzSrcH0IdYKq0tAZVm5X0umspEOUqyg-sWwOiX15QM5Ojk-Hb4MmgUOgOcCIgCtAj1FoDNcictZEqs9dYaVKmYqjIi1g3ExUopUs-pELrTEFs3CBm77rS3AND8leuSjtY0KNU9ZwAYBF6ETCrVo7DSOwZpYnooi7JNh8vFw37OaYZGOe17zMLMf-zdv-7ZKXrfznmtfjj5JHqAutFPJx-wuL6jxvzDuHaXEsmHNa2wIgni4E11xa6ZDuL7RRlxxsNClvnAQ8AuNNSI7DuuR5Ww3mjWs2qrSLNcpImAPhamqXPKoVr30T8MWA_0JoXOyo5M6r7taUswtPIS5we28IbQZeJf_SBTlApA-Yj_zJP8o_JbcYxif8TqcDsreq1vYZuamvVrNl1fOmCqWYyh7pHB1Psvc9HxOBcsze-RLqO9lonH2CXx9Hk58UUkmd
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRJsgPIMFBgkELCwao_teIyEUAhUjdpEkWilsjLjedBIqVOcpKgr-AS-hI_iS7jXrzbiteqCred6bI_P3Dkzc-dcgMcR5y76vMDRsRc7ATJsR9i440hfWF_x0LpaFckmouFQ7O_HoxX4Xp-FobDK2icWjlpPFa2Rb3CanJOSCH919MmhrFG0u1qn0ChhsW1OPuOUbfay_wb_7xPON9_u9racKquAo0Ic25xQIqXxXK1DFXnWaE92QpsaIWMufS-NU3TmgQyUFGnHs67ROuUGL4S6YzsC8Yr1XoDVAMEuWrA66g9G709XdUKf5GBqdUiXb0h9TKrgHqmkkPbkmdGvSBLwO2b7a4DmWeJcjHybV_-3NrsGVyqOzbplp1iDFZNdh7XKi83Ys0pq-_kN-NI_PFz0zGTS7b9gXbZXqNmyQZFVmyGdZ-Quc3NQRvmz3R9fv5E1I3dr5jPWTekgDdbKRjnteBHKmcw0G1PhaWwAG2esR3Y5oydm1bG3k5uwdy4NcQta2TQzd4BpK40OI6RgkQoE3qqUVcgpFDdhEKV-G5waKomq9NopbcgkKZWmeULQShpoteFpY39UKpX80fI1Ia-xIoXx4sI0_5hUDivBib4fcWuVMimSVpVGoQqFEZYEDF3jtWG9xlxSuT18RAO4NjxqitFh0S6UzMx0QTYCZ3W0P9yG2yXMmzfB0QUZrYuVR0sdYOlVl0uy8UEhih5RwLKLdTpFV_lHEyRI-t5RhvW7f_-Mh3Bpa3ewk-z0h9v34DKnxZYibGsdWvN8Ye7DRXU8H8_yB5UnYPDhvDvSTzU7nfo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIgXYNxWGGAkEOwhauLEdYKEUOmoqMaqSmzS3oLjy1apS0faDu0JfgK_h5_DL-Ec57JV3J72wGty6iTuOZ8_28ffIeSpYMwHzIs8nQSJFwHD9mKbdDwZxjZUjFtfK1dsQgyH8f5-Mloh3-uzMJhWWWOiA2o9VbhG3mY4OUclEda2VVrEaKv_-viThxWkcKe1LqdRusi2Of0M07fZq8EW_NfPGOu_3e2986oKA57iMM55XAK9CXytuRKBNTqQHW4zE8uEyTDIkgyAPZKRknHWCaxvtM6YgQtcd2wnBt-Fdi-RyyLiHKNrh43O1nd4iMIwtU6kz9pSn6A-eIB6KahCeW4cdOUCfsdxf03VPE-h3RjYv_E_995Ncr1i3rRbhsoaWTH5LbJWYduMvqgEuDdvky-Do6NFz0wm3cFL2qV7TuOW7rha2xRIPkUQLcxhmftPd398_YbWFEHYzGe0m-HxGmiVjgrcB0PfpzLXdIw3zzIG6DinPbQrKD4xrw7Dnd4hexfSEXfJaj7NzTqh2kqjuQBiJlQUw0-VsgqYhmKGRyILW8Sr3SZVlYo7FhOZpKX-NEvRzdLGzVrkeWN_XOqX_NHyDXphY4W64-7CtDhIKxhLYfofCmatUiYDKqsywRWPTWxR1tA3QYts1P6XVmAIj2icr0WeNLcBxnBvSuZmukCbGOZ6uGvcIvdKl2_eBMYc4Lk-NC6WgmHpVZfv5ONDJ5UuMI3ZhzY9Fzb_6IIUqOAHrLt-_--f8ZhchehJ3w-G2w_INYYrMC6Xa4OszouFeUiuqJP5eFY8cpBAyceLjqKfTnOlOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ImmuCellAI%3A+A+Unique+Method+for+Comprehensive+T%E2%80%90Cell+Subsets+Abundance+Prediction+and+its+Application+in+Cancer+Immunotherapy&rft.jtitle=Advanced+science&rft.au=Miao%2C+Ya%E2%80%90Ru&rft.au=Zhang%2C+Qiong&rft.au=Lei%2C+Qian&rft.au=Luo%2C+Mei&rft.date=2020-04-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.201902880&rft.externalDBID=10.1002%252Fadvs.201902880&rft.externalDocID=ADVS1603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon