Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram
Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death. This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG). A convolutional neural network (CNN) was trained and validated using dig...
Saved in:
| Published in: | Journal of the American College of Cardiology Vol. 75; no. 7; p. 722 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
25.02.2020
|
| Subjects: | |
| ISSN: | 1558-3597, 1558-3597 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.
This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).
A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.
In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.
ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening. |
|---|---|
| AbstractList | Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.
This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).
A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.
In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.
ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening. Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.BACKGROUNDHypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.This study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).OBJECTIVESThis study sought to develop an artificial intelligence approach for the detection of HCM based on 12-lead electrocardiography (ECG).A convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.METHODSA convolutional neural network (CNN) was trained and validated using digital 12-lead ECG from 2,448 patients with a verified HCM diagnosis and 51,153 non-HCM age- and sex-matched control subjects. The ability of the CNN to detect HCM was then tested on a different dataset of 612 HCM and 12,788 control subjects.In the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.RESULTSIn the combined datasets, mean age was 54.8 ± 15.9 years for the HCM group and 57.5 ± 15.5 years for the control group. After training and validation, the area under the curve (AUC) of the CNN in the validation dataset was 0.95 (95% confidence interval [CI]: 0.94 to 0.97) at the optimal probability threshold of 11% for having HCM. When applying this probability threshold to the testing dataset, the CNN's AUC was 0.96 (95% CI: 0.95 to 0.96) with sensitivity 87% and specificity 90%. In subgroup analyses, the AUC was 0.95 (95% CI: 0.94 to 0.97) among patients with left ventricular hypertrophy by ECG criteria and 0.95 (95% CI: 0.90 to 1.00) among patients with a normal ECG. The model performed particularly well in younger patients (sensitivity 95%, specificity 92%). In patients with HCM with and without sarcomeric mutations, the model-derived median probabilities for having HCM were 97% and 96%, respectively.ECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening.CONCLUSIONSECG-based detection of HCM by an artificial intelligence algorithm can be achieved with high diagnostic performance, particularly in younger patients. This model requires further refinement and external validation, but it may hold promise for HCM screening. |
| Author | Arruda-Olson, Adelaide M Ko, Wei-Yin Demuth, Steven J Attia, Zachi I Nishimura, Rick A Asirvatham, Samuel J Gersh, Bernard J Kapa, Suraj Siontis, Konstantinos C Ommen, Steve R Ackerman, Michael J Lopez-Jimenez, Francisco Friedman, Paul A Geske, Jeffrey B Noseworthy, Peter A Carter, Rickey E |
| Author_xml | – sequence: 1 givenname: Wei-Yin surname: Ko fullname: Ko, Wei-Yin organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 2 givenname: Konstantinos C surname: Siontis fullname: Siontis, Konstantinos C organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 3 givenname: Zachi I surname: Attia fullname: Attia, Zachi I organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 4 givenname: Rickey E surname: Carter fullname: Carter, Rickey E organization: Health Sciences Research, Mayo Clinic College of Medicine, Jacksonville, Florida – sequence: 5 givenname: Suraj surname: Kapa fullname: Kapa, Suraj organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 6 givenname: Steve R surname: Ommen fullname: Ommen, Steve R organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 7 givenname: Steven J surname: Demuth fullname: Demuth, Steven J organization: Information Technology, Mayo Clinic, Rochester, Minnesota – sequence: 8 givenname: Michael J surname: Ackerman fullname: Ackerman, Michael J organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 9 givenname: Bernard J surname: Gersh fullname: Gersh, Bernard J organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 10 givenname: Adelaide M surname: Arruda-Olson fullname: Arruda-Olson, Adelaide M organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 11 givenname: Jeffrey B surname: Geske fullname: Geske, Jeffrey B organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 12 givenname: Samuel J surname: Asirvatham fullname: Asirvatham, Samuel J organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 13 givenname: Francisco surname: Lopez-Jimenez fullname: Lopez-Jimenez, Francisco organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 14 givenname: Rick A surname: Nishimura fullname: Nishimura, Rick A organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 15 givenname: Paul A surname: Friedman fullname: Friedman, Paul A organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota – sequence: 16 givenname: Peter A surname: Noseworthy fullname: Noseworthy, Peter A email: Noseworthy.Peter@mayo.edu organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota. Electronic address: Noseworthy.Peter@mayo.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32081280$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkD1PwzAYhC1URD_gDzAgjywJthPnY0ShUKQKFjpHb5w3bYpjBycB5d9TSpFY7m64e4abk4mxBgm55sznjEd3e38PSvmC8dTnwmcBOyMzLmXiBTKNJ__ylMy7bs8YixKeXpBpIFjCRcJmZPuAPaq-tobaiq7GFl3vbLurFc3AlbVtRttCvxvppqvNlgLNrPm0eviZgKYvOLij9V_WvXtLA4XGki71AeqsOiK2DppLcl6B7vDq5AuyeVy-ZStv_fr0nN2vPSVF0ntRxVhYIhSSFQGqMkDJw6QSIUqMQWFYYFQqwSFBqDDmEpSMUbKwOmxEFYsFuf3lts5-DNj1eVN3CrUGg3bochFyKVKeHnRBbk7VoWiwzFtXN-DG_O8c8Q3Tf2yV |
| CitedBy_id | crossref_primary_10_1016_j_atherosclerosis_2023_01_003 crossref_primary_10_1542_pir_2023_005975 crossref_primary_10_1016_j_cpcardiol_2023_101750 crossref_primary_10_1016_j_jcmg_2021_01_014 crossref_primary_10_1016_j_cjca_2024_05_027 crossref_primary_10_1016_j_echo_2024_10_001 crossref_primary_10_1016_j_jacc_2024_07_064 crossref_primary_10_1038_s41746_024_01130_8 crossref_primary_10_1016_j_atherosclerosis_2023_117238 crossref_primary_10_1016_j_jacep_2022_07_012 crossref_primary_10_1016_j_hrthm_2024_05_040 crossref_primary_10_3390_diagnostics13142345 crossref_primary_10_1002_joa3_13037 crossref_primary_10_1016_j_artmed_2022_102342 crossref_primary_10_1055_s_0045_1809615 crossref_primary_10_1016_j_ccep_2021_04_011 crossref_primary_10_1097_MBP_0000000000000503 crossref_primary_10_1093_eurheartj_ehab649 crossref_primary_10_1016_j_hrthm_2020_08_021 crossref_primary_10_1097_TP_0000000000005023 crossref_primary_10_1016_j_cmpb_2024_108097 crossref_primary_10_1016_j_cpcardiol_2025_103004 crossref_primary_10_1038_s41598_025_08824_3 crossref_primary_10_1038_s41591_022_02053_1 crossref_primary_10_2174_0126662558348090241210063629 crossref_primary_10_3390_jcm11133910 crossref_primary_10_1016_j_jacep_2025_02_024 crossref_primary_10_3389_fpubh_2023_1328918 crossref_primary_10_3389_fcvm_2022_809027 crossref_primary_10_1161_CIRCEP_119_007952 crossref_primary_10_3390_bioengineering12030250 crossref_primary_10_1016_j_acvd_2025_07_012 crossref_primary_10_1002_joa3_13052 crossref_primary_10_3390_jpm12050700 crossref_primary_10_1093_eurheartj_ehae148 crossref_primary_10_1016_j_compbiomed_2024_108207 crossref_primary_10_1016_j_cjca_2024_02_030 crossref_primary_10_1016_j_cpcardiol_2024_102786 crossref_primary_10_1016_j_annemergmed_2024_06_004 crossref_primary_10_3390_diagnostics14070767 crossref_primary_10_1016_j_hrtlng_2025_09_012 crossref_primary_10_1016_j_ejim_2025_106441 crossref_primary_10_1016_j_cvdhj_2023_03_001 crossref_primary_10_1038_s41598_022_10346_1 crossref_primary_10_1016_j_tcm_2022_01_011 crossref_primary_10_1007_s11886_020_01317_x crossref_primary_10_1002_j_2040_4603_2022_tb00218_x crossref_primary_10_1016_j_compbiomed_2025_110674 crossref_primary_10_1093_eurheartj_ehab544 crossref_primary_10_3390_s22208002 crossref_primary_10_1111_jce_15440 crossref_primary_10_1038_s41746_024_01234_1 crossref_primary_10_1007_s10554_023_02973_0 crossref_primary_10_1016_j_ebiom_2021_103613 crossref_primary_10_4103_jpbs_jpbs_557_25 crossref_primary_10_1002_joa3_70031 crossref_primary_10_1161_CIRCULATIONAHA_120_051968 crossref_primary_10_3390_diagnostics11091523 crossref_primary_10_1186_s12938_025_01349_w crossref_primary_10_1016_j_jjcc_2023_07_017 crossref_primary_10_1007_s11897_024_00688_4 crossref_primary_10_1007_s11886_025_02250_7 crossref_primary_10_3390_diagnostics14111103 crossref_primary_10_1093_ehjdh_ztaf086 crossref_primary_10_7759_cureus_55869 crossref_primary_10_1016_j_mayocpiqo_2025_100657 crossref_primary_10_1007_s00399_022_00855_x crossref_primary_10_1016_j_medengphy_2023_103964 crossref_primary_10_1136_heartjnl_2020_316646 crossref_primary_10_1161_CIRCOUTCOMES_121_008360 crossref_primary_10_1016_j_cjca_2024_04_014 crossref_primary_10_1186_s12933_024_02141_1 crossref_primary_10_1038_s41586_025_09227_0 crossref_primary_10_3389_fphys_2022_864747 crossref_primary_10_1016_j_landig_2024_12_006 crossref_primary_10_3390_bioengineering11030219 crossref_primary_10_1038_s43856_024_00451_9 crossref_primary_10_1007_s12170_023_00723_4 crossref_primary_10_3389_fcvm_2023_1279324 crossref_primary_10_1136_openhrt_2023_002414 crossref_primary_10_1111_jce_14936 crossref_primary_10_1016_j_jelectrocard_2023_04_004 crossref_primary_10_1038_s41598_024_78268_8 crossref_primary_10_1016_j_mayocp_2020_09_020 crossref_primary_10_1038_s44161_025_00685_3 crossref_primary_10_1016_j_mayocp_2021_06_024 crossref_primary_10_1016_j_jacc_2022_05_029 crossref_primary_10_1016_j_jelectrocard_2024_01_008 crossref_primary_10_1016_j_jelectrocard_2024_01_006 crossref_primary_10_1016_j_rccl_2025_07_001 crossref_primary_10_1016_j_cjca_2021_09_016 crossref_primary_10_1016_j_pcad_2023_08_001 crossref_primary_10_1016_j_pcad_2023_08_005 crossref_primary_10_1016_j_heliyon_2025_e42968 crossref_primary_10_1161_CIRCRESAHA_121_319876 crossref_primary_10_3389_fcvm_2023_1104947 crossref_primary_10_1016_j_jelectrocard_2025_153888 crossref_primary_10_1007_s11936_023_01032_0 crossref_primary_10_1016_j_hroo_2025_08_040 crossref_primary_10_1016_j_cgh_2024_08_009 crossref_primary_10_1016_j_jjcc_2023_04_020 crossref_primary_10_1016_j_jacc_2021_08_043 crossref_primary_10_1016_j_hrthm_2024_08_030 crossref_primary_10_1016_j_cvdhj_2021_12_003 crossref_primary_10_1007_s11936_023_01029_9 crossref_primary_10_1016_j_jacc_2025_01_030 crossref_primary_10_1007_s12204_023_2628_5 crossref_primary_10_1016_j_mayocp_2024_07_016 crossref_primary_10_1161_CIRCULATIONAHA_123_067750 crossref_primary_10_1016_j_cpcardiol_2024_102877 crossref_primary_10_1016_j_ijcard_2020_11_003 crossref_primary_10_1161_CIRCEP_124_013695 crossref_primary_10_3748_wjg_v27_i40_6825 crossref_primary_10_1007_s11886_024_02062_1 crossref_primary_10_1093_eurjpc_zwae008 crossref_primary_10_1016_j_jjcc_2021_11_017 crossref_primary_10_1136_heartjnl_2023_323822 crossref_primary_10_1161_CIRCULATIONAHA_121_058696 crossref_primary_10_1161_JAHA_120_016193 crossref_primary_10_1016_j_csm_2022_02_004 crossref_primary_10_1016_j_echo_2022_12_014 crossref_primary_10_1161_JAHA_122_026974 crossref_primary_10_1016_j_ijcard_2021_09_048 crossref_primary_10_1093_ajh_hpaa092 crossref_primary_10_1186_s40001_023_01065_y crossref_primary_10_1016_j_jelectrocard_2023_07_002 crossref_primary_10_1038_s41598_022_25284_1 crossref_primary_10_1155_2021_4367875 crossref_primary_10_1007_s13755_023_00237_8 crossref_primary_10_3390_s21072539 crossref_primary_10_1111_anec_12998 crossref_primary_10_1016_j_jacadv_2025_101746 crossref_primary_10_1038_s41591_024_03243_9 crossref_primary_10_1093_ehjdh_ztaf025 crossref_primary_10_1093_jamia_ocac122 crossref_primary_10_1080_21681163_2021_1894486 crossref_primary_10_3389_fphys_2023_1118360 crossref_primary_10_1016_j_ijcard_2021_05_017 crossref_primary_10_2147_VHRM_S279337 crossref_primary_10_1097_CRD_0000000000001014 crossref_primary_10_1136_heartjnl_2024_325608 crossref_primary_10_1016_j_acvd_2025_06_078 crossref_primary_10_1080_1061186X_2024_2448711 crossref_primary_10_1111_eci_70002 crossref_primary_10_1016_j_echo_2024_04_017 crossref_primary_10_1016_j_cjca_2024_07_026 crossref_primary_10_1016_j_ejim_2025_04_036 crossref_primary_10_1016_j_ccep_2021_10_013 crossref_primary_10_1016_j_jaccas_2024_103228 crossref_primary_10_3390_jcdd11090290 crossref_primary_10_3390_biomedicines13051019 crossref_primary_10_1038_s41569_020_00503_2 crossref_primary_10_1016_j_cardfail_2022_12_016 crossref_primary_10_2215_CJN_0000000000000483 crossref_primary_10_1007_s42114_024_00906_6 crossref_primary_10_1016_j_jacadv_2025_102139 crossref_primary_10_1002_ccd_70041 crossref_primary_10_1161_CIRCULATIONAHA_120_050231 crossref_primary_10_3390_bioengineering8120193 crossref_primary_10_1016_j_jacc_2019_12_028 crossref_primary_10_1016_j_cvdhj_2020_11_006 crossref_primary_10_14309_ajg_0000000000001617 crossref_primary_10_1007_s11886_022_01776_4 crossref_primary_10_1016_j_pop_2025_07_007 crossref_primary_10_3390_jcm11237072 crossref_primary_10_1016_j_cpcardiol_2023_102097 crossref_primary_10_1093_eurheartj_ehaf073 crossref_primary_10_1016_j_ijcard_2021_08_026 crossref_primary_10_1016_j_asoc_2025_113655 crossref_primary_10_1016_j_ijcard_2021_01_012 crossref_primary_10_3390_jcm11185408 crossref_primary_10_1016_j_amjcard_2024_11_028 crossref_primary_10_1016_j_cvdhj_2022_10_002 crossref_primary_10_1111_jce_16373 crossref_primary_10_1136_bmjmed_2022_000193 crossref_primary_10_18043_001c_91424 crossref_primary_10_3390_diagnostics14171839 crossref_primary_10_3390_life13010171 crossref_primary_10_1007_s00380_024_02367_9 crossref_primary_10_1016_j_ijcard_2021_10_013 crossref_primary_10_1016_j_repc_2024_08_009 crossref_primary_10_3389_fcvm_2022_889523 crossref_primary_10_1016_j_jacadv_2023_100582 crossref_primary_10_1016_j_measurement_2023_113856 crossref_primary_10_1016_j_jelectrocard_2025_153900 crossref_primary_10_3390_jcm12082828 crossref_primary_10_1016_j_jacc_2024_03_400 crossref_primary_10_1016_j_mayocp_2021_04_023 crossref_primary_10_1038_s44222_023_00102_z crossref_primary_10_1093_ehjdh_ztaf073 crossref_primary_10_4103_heartviews_heartviews_103_24 crossref_primary_10_1186_s12872_022_03028_3 crossref_primary_10_1038_s41746_023_00993_7 crossref_primary_10_1093_eurheartjsupp_suad074 crossref_primary_10_1016_j_jscai_2024_102494 crossref_primary_10_12677_acm_2025_153593 crossref_primary_10_1016_j_cmpb_2023_107359 crossref_primary_10_1016_j_jacc_2025_07_031 crossref_primary_10_1016_j_jcmg_2021_04_030 crossref_primary_10_1038_s41440_023_01469_7 crossref_primary_10_1109_ACCESS_2021_3098039 crossref_primary_10_3390_app12031605 crossref_primary_10_1016_j_jacc_2022_01_005 crossref_primary_10_1038_s41746_024_01410_3 crossref_primary_10_1093_ehjdh_ztaf067 crossref_primary_10_1016_j_jacadv_2023_100686 crossref_primary_10_1093_ehjdh_ztaf061 crossref_primary_10_1161_CIRCEP_120_009056 crossref_primary_10_3390_jcm14134718 crossref_primary_10_2196_52073 crossref_primary_10_3389_fphys_2022_1089343 crossref_primary_10_3390_cells10061532 crossref_primary_10_3390_jpm14040367 crossref_primary_10_1038_s41746_024_01407_y crossref_primary_10_1016_j_mayocp_2024_11_001 crossref_primary_10_3390_jcm13041033 crossref_primary_10_1016_j_bspc_2021_102742 crossref_primary_10_1093_ehjdh_ztaf054 crossref_primary_10_5334_gh_1250 crossref_primary_10_1016_j_cjca_2021_07_016 crossref_primary_10_1016_j_compbiomed_2021_105041 crossref_primary_10_1016_j_jhepr_2025_101356 crossref_primary_10_1161_CIRCHEARTFAILURE_124_012667 crossref_primary_10_3389_fcvm_2021_654515 crossref_primary_10_1093_ehjcr_ytad010 crossref_primary_10_1016_j_tcm_2024_08_002 crossref_primary_10_1007_s13534_025_00492_6 crossref_primary_10_1038_s41440_024_01938_7 crossref_primary_10_3390_ijms24065680 crossref_primary_10_1161_JAHA_120_016598 crossref_primary_10_1007_s10620_023_07928_y crossref_primary_10_1183_13993003_00192_2024 crossref_primary_10_1016_j_jacc_2021_11_012 crossref_primary_10_1016_j_imavis_2025_105427 crossref_primary_10_1016_j_hrthm_2024_01_031 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
| DBID | NPM 7X8 |
| DOI | 10.1016/j.jacc.2019.12.030 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1558-3597 |
| ExternalDocumentID | 32081280 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 0SF 18M 1B1 1P~ 1~. 1~5 2WC 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ AABNK AABVL AACTN AAEDT AAEDW AAFTH AAIKJ AAKUH AALRI AAOAW AAQFI AAQQT AAXUO ABBQC ABFNM ABFRF ABLJU ABMAC ABMZM ABOCM ABVKL ACGFO ACGFS ACIUM ACJTP ACPRK ADBBV ADEZE ADVLN AEFWE AEKER AENEX AEVXI AEXQZ AFCTW AFETI AFRAH AFRHN AFTJW AGYEJ AHMBA AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ BAWUL BLXMC CS3 DIK DU5 E3Z EBS EO8 EO9 EP2 EP3 F5P FDB FEDTE FNPLU G-Q GBLVA GX1 HVGLF IHE IXB J1W K-O KQ8 L7B MO0 N9A NCXOZ NPM O-L O9- OA. OAUVE OK1 OL~ OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SCC SDF SDG SDP SES SSZ T5K TR2 UNMZH UV1 W8F WH7 WOQ WOW YYM YZZ Z5R 7X8 ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c528t-6f004deab50b3ecd3e5148f24e5e7ace4be6dc21a8eafe715ac57e504feab2f72 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 268 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516833900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1558-3597 |
| IngestDate | Sat Sep 27 21:48:07 EDT 2025 Wed Feb 19 02:31:25 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | electrocardiogram diagnostic performance hypertrophic cardiomyopathy artificial intelligence |
| Language | English |
| License | Copyright © 2020 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c528t-6f004deab50b3ecd3e5148f24e5e7ace4be6dc21a8eafe715ac57e504feab2f72 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://www.clinicalkey.com/#!/content/1-s2.0-S0735109720300036 |
| PMID | 32081280 |
| PQID | 2415291915 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2415291915 pubmed_primary_32081280 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-25 |
| PublicationDateYYYYMMDD | 2020-02-25 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American College of Cardiology |
| PublicationTitleAlternate | J Am Coll Cardiol |
| PublicationYear | 2020 |
| SSID | ssj0006819 |
| Score | 2.6894732 |
| Snippet | Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.
This study sought to develop an artificial intelligence approach... Hypertrophic cardiomyopathy (HCM) is an uncommon but important cause of sudden cardiac death.BACKGROUNDHypertrophic cardiomyopathy (HCM) is an uncommon but... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 722 |
| Title | Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32081280 https://www.proquest.com/docview/2415291915 |
| Volume | 75 |
| WOSCitedRecordID | wos000516833900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qRbz4ftQXEbwG22Szmz2J1JYebOlBobeSTSZawd3a1kL_vZPslp4EwcvuXhKWZJL5ZuabGULuFM98prJkwjbRQHHSMSVUxCCLMpM4wO9QxPU56ffVcJgOKofbrKJVru7EcFHbwngf-X3QNClaF_Jh8sV81ygfXa1aaGySmkAo46U6Ga6rhccqNPZAlamYQORcJc2U_K4PbXwJw2Ya3IGi8TvEDKqms__fnzwgexXIpI-lVBySDciPyE6vCqMfk7cnmAcKVk4LR7toik7n02LyPja0Ffipn8vCtype0sAooJq2inxRCSlO7Ct6hFegkLN2yL-ytF221DFhCs_6OiGvnfZLq8uqjgvMSK7mLHZ4ZizoTDYyAcYKQDylHI9AQqINRBnE1vCmVqAdJE2pjUxANiKHY7hL-CnZyosczgnNlEpdItG8kVGEpm_GYwNOWy6E1daIOrldLeEIJdqHKXQOxfdstF7EOjkr92E0KUtvjARHCMNV4-IPoy_JLvfGsc8_l1ek5vA8wzXZNov5eDa9CaKCz_6g9wNSM8tN |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Hypertrophic+Cardiomyopathy+Using+a+Convolutional+Neural+Network-Enabled+Electrocardiogram&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Ko%2C+Wei-Yin&rft.au=Siontis%2C+Konstantinos+C&rft.au=Attia%2C+Zachi+I&rft.au=Carter%2C+Rickey+E&rft.date=2020-02-25&rft.issn=1558-3597&rft.eissn=1558-3597&rft.volume=75&rft.issue=7&rft.spage=722&rft_id=info:doi/10.1016%2Fj.jacc.2019.12.030&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-3597&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-3597&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-3597&client=summon |