3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network

We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in neuroinformatics Vol. 15; p. 641600
Main Authors: Boutinaud, Philippe, Tsuchida, Ami, Laurent, Alexandre, Adonias, Filipa, Hanifehlou, Zahra, Nozais, Victor, Verrecchia, Violaine, Lampe, Leonie, Zhang, Junyi, Zhu, Yi-Cheng, Tzourio, Christophe, Mazoyer, Bernard, Joliot, Marc
Format: Journal Article
Language:English
Published: Switzerland Frontiers Research Foundation 18.06.2021
Frontiers Media
Frontiers Media S.A
Subjects:
ISSN:1662-5196, 1662-5196
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all “visible” PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm 3 and 0.95 for PVSs larger than 15 mm 3 . We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.
AbstractList We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all “visible” PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm3 and 0.95 for PVSs larger than 15 mm3. We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.
We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all “visible” PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm 3 and 0.95 for PVSs larger than 15 mm 3 . We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.
We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all "visible" PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm(3) and 0.95 for PVSs larger than 15 mm(3). We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.
We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all "visible" PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm3 and 0.95 for PVSs larger than 15 mm3. We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all "visible" PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm3 and 0.95 for PVSs larger than 15 mm3. We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.
We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all "visible" PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm and 0.95 for PVSs larger than 15 mm . We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.
Author Hanifehlou, Zahra
Mazoyer, Bernard
Joliot, Marc
Laurent, Alexandre
Zhu, Yi-Cheng
Boutinaud, Philippe
Verrecchia, Violaine
Nozais, Victor
Tsuchida, Ami
Lampe, Leonie
Tzourio, Christophe
Adonias, Filipa
Zhang, Junyi
AuthorAffiliation 6 Faculty of Computer Engineering, University of Isfahan , Isfahan , Iran
10 Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
5 UMR 5293, GIN, IMN, CEA , Bordeaux , France
4 UMR 5293, GIN, IMN, CNRS , Bordeaux , France
8 Department of Neurology, Peking Union Medical College Hospital , Beijing , China
3 UMR 5293, GIN, IMN, Univ. Bordeaux , Bordeaux , France
7 Integrative Model-based Cognitive Neuroscience Research Unit Universiteit van Amsterdam, Amsterdam, Netherlands & Max Planck Institute for Human Cognitive and Brain Sciences Leipzig , Germany
9 U1219, INSERM, Bordeaux Population Health, University Bordeaux , Bordeaux , France
1 Genesislab , Bordeaux , France
2 Fealinx , Lyon , France
AuthorAffiliation_xml – name: 6 Faculty of Computer Engineering, University of Isfahan , Isfahan , Iran
– name: 2 Fealinx , Lyon , France
– name: 1 Genesislab , Bordeaux , France
– name: 8 Department of Neurology, Peking Union Medical College Hospital , Beijing , China
– name: 7 Integrative Model-based Cognitive Neuroscience Research Unit Universiteit van Amsterdam, Amsterdam, Netherlands & Max Planck Institute for Human Cognitive and Brain Sciences Leipzig , Germany
– name: 9 U1219, INSERM, Bordeaux Population Health, University Bordeaux , Bordeaux , France
– name: 3 UMR 5293, GIN, IMN, Univ. Bordeaux , Bordeaux , France
– name: 10 Centre Hospitalier Universitaire de Bordeaux , Bordeaux , France
– name: 5 UMR 5293, GIN, IMN, CEA , Bordeaux , France
– name: 4 UMR 5293, GIN, IMN, CNRS , Bordeaux , France
Author_xml – sequence: 1
  givenname: Philippe
  surname: Boutinaud
  fullname: Boutinaud, Philippe
– sequence: 2
  givenname: Ami
  surname: Tsuchida
  fullname: Tsuchida, Ami
– sequence: 3
  givenname: Alexandre
  surname: Laurent
  fullname: Laurent, Alexandre
– sequence: 4
  givenname: Filipa
  surname: Adonias
  fullname: Adonias, Filipa
– sequence: 5
  givenname: Zahra
  surname: Hanifehlou
  fullname: Hanifehlou, Zahra
– sequence: 6
  givenname: Victor
  surname: Nozais
  fullname: Nozais, Victor
– sequence: 7
  givenname: Violaine
  surname: Verrecchia
  fullname: Verrecchia, Violaine
– sequence: 8
  givenname: Leonie
  surname: Lampe
  fullname: Lampe, Leonie
– sequence: 9
  givenname: Junyi
  surname: Zhang
  fullname: Zhang, Junyi
– sequence: 10
  givenname: Yi-Cheng
  surname: Zhu
  fullname: Zhu, Yi-Cheng
– sequence: 11
  givenname: Christophe
  surname: Tzourio
  fullname: Tzourio, Christophe
– sequence: 12
  givenname: Bernard
  surname: Mazoyer
  fullname: Mazoyer, Bernard
– sequence: 13
  givenname: Marc
  surname: Joliot
  fullname: Joliot, Marc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34262443$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03327352$$DView record in HAL
BookMark eNp9kk2P0zAQhiO0iP2AH8AFWeIChxR_xHFyQarKx1YqC6JFe7QcZ9y6pHHXTor4A_xunM2y2u2Bk0czz7xjj9_z5KR1LSTJS4InjBXlO9Pa1kwopmSSZyTH-ElyRvKcppyU-cmD-DQ5D2GLcU5zLp4lpyyjOc0ydpb8YR_QEtY7aDvVWdciZ9A38Paggu4b5dFyrzQEFCsrkl6DXW86qBFDKwiNQl--o_lOrSNwbbsNUmjm2oNr-kFKNWjadw5a7WrwSLV1rP9Ilxu1jwpX0PtIXEH3y_mfz5OnRjUBXtydF8nq08fV7DJdfP08n00XqeZUdGnNNMsFZkIpyATBwhS4oBUlQmtlSlMpwqA2jCqaGcGFUKyiBZAYEs4Nu0jmo2zt1Fbuvd0p_1s6ZeVtwvm1VL6zugEJNWM51kVGcZmRShQEF3HDGqoqA6NZ1Ho_au37age1jhuMD3ok-rjS2o1cu4MsqGAlEVHg7SiwOWq7nC7kkMOMRZTTA4nsm7th3t30EDq5s0FD06gWXB8k5ZxiXlI8oK-P0K3rffyNgcoYL0SR8Ui9enj7-_n_nBEBMgLauxA8mHuEYDm4T966Tw7uk6P7Yo846tF2tFVcgG3-0_kX9HfeMw
CitedBy_id crossref_primary_10_3389_fnins_2022_1021311
crossref_primary_10_1002_jmri_70023
crossref_primary_10_1038_s41591_023_02269_9
crossref_primary_10_1002_alz_70196
crossref_primary_10_1097_RLI_0000000000001077
crossref_primary_10_3389_fnins_2023_1038011
crossref_primary_10_1002_jmri_28369
crossref_primary_10_1016_j_neuroimage_2022_119528
crossref_primary_10_3390_life13101955
crossref_primary_10_1016_j_jneumeth_2023_110037
crossref_primary_10_1177_13872877251372926
crossref_primary_10_1186_s40035_023_00359_9
crossref_primary_10_1212_WNL_0000000000013077
crossref_primary_10_1038_s41598_023_34850_0
crossref_primary_10_1212_WNL_0000000000209306
crossref_primary_10_1016_j_neuroimage_2024_120803
crossref_primary_10_1016_j_ynirp_2023_100162
crossref_primary_10_1002_dad2_12578
crossref_primary_10_3389_fneur_2022_889884
crossref_primary_10_1016_j_parkreldis_2024_107089
crossref_primary_10_1016_j_mri_2022_07_016
crossref_primary_10_1016_j_neuroimage_2024_120685
crossref_primary_10_1186_s10194_025_02070_8
crossref_primary_10_3389_fnagi_2024_1457405
crossref_primary_10_1038_s41598_024_81870_5
crossref_primary_10_1007_s11357_025_01880_7
crossref_primary_10_1097_RCT_0000000000001720
crossref_primary_10_1093_cvr_cvae165
crossref_primary_10_3389_fneur_2025_1504645
crossref_primary_10_1002_hbm_26548
crossref_primary_10_1016_j_arr_2023_102042
crossref_primary_10_1016_j_neuroscience_2025_07_022
crossref_primary_10_1162_imag_a_00497
crossref_primary_10_3389_fnins_2025_1526897
crossref_primary_10_1002_alz_70212
crossref_primary_10_1016_j_cccb_2025_100396
Cites_doi 10.1016/j.neuroimage.2019.116126
10.1148/radiol.2017170205
10.1161/STROKEAHA.117.019309
10.1145/1656274.1656280
10.3174/ajnr.A2366
10.1109/TBME.2016.2638918
10.1161/STROKEAHA.109.564914
10.1161/STROKEAHA.110.591586
10.1212/WNL.0000000000001054
10.1212/WNL.0000000000007124
10.1097/NEN.0b013e31823ac627
10.1016/j.neuroimage.2015.02.071
10.1016/j.neuroimage.2015.10.078
10.1177/1747493019830321
10.1161/STROKEAHA.111.000620
10.1136/jnnp.2003.030858
10.1159/000375153
10.1038/s41598-018-19781-5
10.1016/j.neuroimage.2018.10.026
10.1038/s42256-019-0018-3
10.1109/34.232073
10.1001/jamaneurol.2018.3122
10.1038/s41592-020-01008-z
10.1101/2020.06.17.154666
10.1016/j.jneumeth.2015.09.010
10.1038/s41598-019-48910-x
10.1016/j.media.2020.101767
10.1001/jamaneurol.2017.1397
10.1084/jem.46.4.615
10.1016/S1474-4422(13)70124-8
10.1016/j.media.2020.101840
10.3233/JAD-2010-100378
10.1212/wnl.53.1.132
10.1042/CS20170051
10.1007/s10571-016-0343-6
10.1016/S1474-4422(07)70291-0
10.1109/ACCESS.2019.2896911
10.1016/j.media.2018.02.009
10.1109/TMI.2019.2959609
ContentType Journal Article
Copyright Copyright © 2021 Boutinaud, Tsuchida, Laurent, Adonias, Hanifehlou, Nozais, Verrecchia, Lampe, Zhang, Zhu, Tzourio, Mazoyer and Joliot.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright © 2021 Boutinaud, Tsuchida, Laurent, Adonias, Hanifehlou, Nozais, Verrecchia, Lampe, Zhang, Zhu, Tzourio, Mazoyer and Joliot. 2021 Boutinaud, Tsuchida, Laurent, Adonias, Hanifehlou, Nozais, Verrecchia, Lampe, Zhang, Zhu, Tzourio, Mazoyer and Joliot
Copyright_xml – notice: Copyright © 2021 Boutinaud, Tsuchida, Laurent, Adonias, Hanifehlou, Nozais, Verrecchia, Lampe, Zhang, Zhu, Tzourio, Mazoyer and Joliot.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: Copyright © 2021 Boutinaud, Tsuchida, Laurent, Adonias, Hanifehlou, Nozais, Verrecchia, Lampe, Zhang, Zhu, Tzourio, Mazoyer and Joliot. 2021 Boutinaud, Tsuchida, Laurent, Adonias, Hanifehlou, Nozais, Verrecchia, Lampe, Zhang, Zhu, Tzourio, Mazoyer and Joliot
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fninf.2021.641600
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_ed3360c8420941b78108600cebb4efc3
PMC8273917
oai:HAL:hal-03327352v1
34262443
10_3389_fninf_2021_641600
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c527t-d3c367037aae47107f8082b217ccaf9fba13edf32a24f7577a3b28e1757155f3
IEDL.DBID DOA
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671899100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-5196
IngestDate Mon Nov 10 04:31:16 EST 2025
Tue Nov 04 02:01:15 EST 2025
Tue Oct 14 20:48:13 EDT 2025
Sun Nov 09 10:09:51 EST 2025
Fri Jul 25 11:58:42 EDT 2025
Mon Jul 21 06:04:39 EDT 2025
Sat Nov 29 02:31:32 EST 2025
Tue Nov 18 22:10:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords perivascular space
deep learning
segmentation
brain cohort
MRI
U-net
Deep learning
Brain cohort
Segmentation
Perivascular space
Language English
License Copyright © 2021 Boutinaud, Tsuchida, Laurent, Adonias, Hanifehlou, Nozais, Verrecchia, Lampe, Zhang, Zhu, Tzourio, Mazoyer and Joliot.
Attribution: http://creativecommons.org/licenses/by
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-d3c367037aae47107f8082b217ccaf9fba13edf32a24f7577a3b28e1757155f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Xiaoying Tang, Southern University of Science and Technology, China; Florian Dubost, Erasmus Medical Center, Netherlands
Edited by: Sean L. Hill, Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Canada
ORCID 0000-0001-5160-6203
0000-0001-7792-308X
0000-0003-0970-2837
0000-0002-2385-3079
0000-0003-1138-7063
0000-0001-5198-6955
0000-0003-2529-1839
0000-0002-6517-2984
OpenAccessLink https://doaj.org/article/ed3360c8420941b78108600cebb4efc3
PMID 34262443
PQID 2543587845
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_ed3360c8420941b78108600cebb4efc3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8273917
hal_primary_oai_HAL_hal_03327352v1
proquest_miscellaneous_2552059201
proquest_journals_2543587845
pubmed_primary_34262443
crossref_primary_10_3389_fninf_2021_641600
crossref_citationtrail_10_3389_fninf_2021_641600
PublicationCentury 2000
PublicationDate 2021-06-18
PublicationDateYYYYMMDD 2021-06-18
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-18
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media
– name: Frontiers Media S.A
References Glorot (B15) 2010
Zhu (B48) 2011; 32
Kingma (B21) 2013
Zhu (B50); 41
Zhou (B47) 2021; 67
Schwartz (B36) 2019; 202
Ronneberger (B34) 2015; 9351
Dubost (B11) 2020; 65
Milletari (B28) 2016
Tsuchida (B41) 2020
Pedregosa (B31) 2011; 12
Berthold (B5) 2009; 11
Schmidt (B35) 1999; 53
Seshadri (B38) 2007; 6
Jung (B20) 2019; 7
Ciresan (B7) 2011
Debette (B8) 2019; 76
Wang (B42) 2016; 257
Zhu (B49); 22
Adams (B2) 2013; 44
Lutnick (B24) 2019; 1
Lian (B23) 2018; 46
Sudre (B40) 2019; 102
Abadi (B1) 2016
Zhou (B46) 2020; 39
Potter (B32) 2015; 39
Huttenlocher (B17) 1993; 15
Lawrence (B22) 1927; 46
Sepehrband (B37) 2019; 9
Boespflug (B6) 2018; 286
Marin-Padilla (B26) 2011; 70
Isensee (B19) 2021; 18
Gonzalez-Castro (B16) 2017; 131
Zong (B51) 2016; 125
Srivastava (B39) 2014; 15
Duperron (B13) 2018; 49
Mazoyer (B27) 2016; 124
Dubost (B12) 2019; 185
Francis (B14) 2019; 14
Patek (B30) 1941; 38
Maclullich (B25) 2004; 75
Ramirez (B33) 2016; 36
Wardlaw (B43) 2013; 12
Passiak (B29) 2019; 92
Doubal (B10) 2010; 41
Yakushiji (B44) 2014; 83
Ding (B9) 2017; 74
Ballerini (B3) 2018; 8
Bergstra (B4) 2013
Ioffe (B18) 2015
Zhang (B45) 2017; 64
References_xml – start-page: 265
  year: 2016
  ident: B1
  article-title: TensorFlow: a system for large-scale machine learning
  publication-title: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16)
– volume: 202
  year: 2019
  ident: B36
  article-title: Autoidentification of perivascular spaces in white matter using clinical field strength T1 and FLAIR MR imaging.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116126
– volume: 286
  start-page: 632
  year: 2018
  ident: B6
  article-title: MR Imaging-based multimodal autoidentification of perivascular spaces (mMAPS): automated morphologic segmentation of enlarged perivascular spaces at clinical field strength.
  publication-title: Radiology
  doi: 10.1148/radiol.2017170205
– start-page: 115
  year: 2013
  ident: B4
  article-title: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures
  publication-title: Proceedings of the 30th International Conference on International Conference on Machine Learning
– volume: 49
  start-page: 282
  year: 2018
  ident: B13
  article-title: Burden of dilated perivascular spaces, an emerging marker of cerebral small vessel disease, is highly heritable.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019309
– volume: 11
  start-page: 26
  year: 2009
  ident: B5
  article-title: KNIME - the konstanz information miner: version 2.0 and beyond.
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656280
– volume: 32
  start-page: 709
  year: 2011
  ident: B48
  article-title: Frequency and location of dilated virchow-robin spaces in elderly people: a population-based 3D MR imaging study.
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2366
– volume: 64
  start-page: 2803
  year: 2017
  ident: B45
  article-title: Structured learning for 3-D perivascular space segmentation using vascular features.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2638918
– volume: 41
  start-page: 450
  year: 2010
  ident: B10
  article-title: Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.564914
– volume: 41
  start-page: 2483
  ident: B50
  article-title: Severity of dilated virchow-robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: a population-based study.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.591586
– start-page: 1237
  year: 2011
  ident: B7
  article-title: Flexible, high performance convolutional neural networks for image classification
  publication-title: Proceedings of the 22nd International Joint Conference on Artificial Intelligence
– year: 2015
  ident: B18
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd International Conference on International Conference on Machine Learning
– volume: 83
  start-page: 2116
  year: 2014
  ident: B44
  article-title: Topography and associations of perivascular spaces in healthy adults: the Kashima scan study.
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001054
– volume: 92
  start-page: e1309
  year: 2019
  ident: B29
  article-title: Perivascular spaces contribute to cognition beyond other small vessel disease markers.
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000007124
– volume: 70
  start-page: 1060
  year: 2011
  ident: B26
  article-title: Developmental aspects of the intracerebral microvasculature and perivascular spaces: insights into brain response to late-life diseases.
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0b013e31823ac627
– volume: 124
  start-page: 1225
  year: 2016
  ident: B27
  article-title: BIL&GIN: a neuroimaging, cognitive, behavioral, and genetic database for the study of human brain lateralization.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.071
– year: 2016
  ident: B28
  article-title: V-net: fully convolutional neural networks for volumetricmedical image segmentation
  publication-title: Proceedings of the 4th International Conference on 3D Vision
– volume: 125
  start-page: 895
  year: 2016
  ident: B51
  article-title: Visualization of perivascular spaces in the human brain at 7 T: sequence optimization and morphology characterization.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.10.078
– volume: 14
  start-page: 359
  year: 2019
  ident: B14
  article-title: Perivascular spaces and their associations with risk factors, clinical disorders and neuroimaging features: a systematic review and meta-analysis.
  publication-title: Int. J. Stroke
  doi: 10.1177/1747493019830321
– volume: 12
  start-page: 2825
  year: 2011
  ident: B31
  article-title: Scikit-learn: machine learning in python.
  publication-title: J. Mach. Learn. Res.
– volume: 44
  start-page: 1732
  year: 2013
  ident: B2
  article-title: Rating method for dilated virchow-robin spaces on magnetic resonance imaging.
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.000620
– volume: 75
  start-page: 1519
  year: 2004
  ident: B25
  article-title: Enlarged perivascular spaces are associated with cognitive function in healthy elderly men.
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2003.030858
– volume: 39
  start-page: 224
  year: 2015
  ident: B32
  article-title: Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability.
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000375153
– volume: 102
  start-page: 447
  year: 2019
  ident: B40
  article-title: 3D multirater RCNN for multimodal multiclass detection and characterisation of extremely small objects.
  publication-title: Procc. Mach. Learn. Res.
– year: 2010
  ident: B15
  article-title: Understanding the difficulty of training deep forward neural networks
  publication-title: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics
– volume: 8
  year: 2018
  ident: B3
  article-title: Perivascular spaces segmentation in brain MRI using optimal 3D filtering.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19781-5
– volume: 185
  start-page: 534
  year: 2019
  ident: B12
  article-title: Enlarged perivascular spaces in brain MRI: automated quantification in four regions.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.026
– year: 2013
  ident: B21
  article-title: Auto-encoding variational bayes
  publication-title: Proceedings of the 2nd International Conference on Learning Representations (ICLR)
– volume: 15
  start-page: 1929
  year: 2014
  ident: B39
  article-title: Dropout: a simple way to prevent neural networks from overfitting.
  publication-title: J. Mach. Learn. Res.
– volume: 1
  start-page: 112
  year: 2019
  ident: B24
  article-title: An integrated iterative annotation technique for easing neural network training in medical image analysis.
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0018-3
– volume: 15
  start-page: 850
  year: 1993
  ident: B17
  article-title: Comparing images using the Hausdorff distance.
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.232073
– volume: 76
  start-page: 81
  year: 2019
  ident: B8
  article-title: Clinical Significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis.
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2018.3122
– volume: 18
  start-page: 203
  year: 2021
  ident: B19
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– year: 2020
  ident: B41
  article-title: The MRi-Share database: brain imaging in a cross-sectional cohort of 1,870 university students.
  publication-title: bioRxiv
  doi: 10.1101/2020.06.17.154666
– volume: 257
  start-page: 34
  year: 2016
  ident: B42
  article-title: Development and initial evaluation of a semi-automatic approach to assess perivascular spaces on conventional magnetic resonance images.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.09.010
– volume: 9
  year: 2019
  ident: B37
  article-title: Image processing approaches to enhance perivascular space visibility and quantification using MRI.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48910-x
– volume: 65
  year: 2020
  ident: B11
  article-title: Weakly supervised object detection with 2D and 3D regression neural networks.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101767
– volume: 74
  start-page: 1105
  year: 2017
  ident: B9
  article-title: Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia. The Age, Gene/Environment Susceptibility-Reykjavik Study.
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2017.1397
– volume: 46
  start-page: 615
  year: 1927
  ident: B22
  article-title: A study of the perivascular tissues of the central nervous system with the supravital technique.
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.46.4.615
– volume: 12
  start-page: 822
  year: 2013
  ident: B43
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70124-8
– volume: 67
  year: 2021
  ident: B47
  article-title: Models genesis.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101840
– volume: 22
  start-page: 663
  ident: B49
  article-title: High degree of dilated virchow-robin spaces on MRI is associated with increased risk of dementia.
  publication-title: J. Alzheimers Dis
  doi: 10.3233/JAD-2010-100378
– volume: 53
  start-page: 132
  year: 1999
  ident: B35
  article-title: MRI white matter hyperintensities: three-year follow-up of the austrian stroke prevention study.
  publication-title: Neurology
  doi: 10.1212/wnl.53.1.132
– volume: 131
  start-page: 1465
  year: 2017
  ident: B16
  article-title: Reliability of an automatic classifier for brain enlarged perivascular spaces burden and comparison with human performance.
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20170051
– volume: 38
  start-page: 1
  year: 1941
  ident: B30
  article-title: The perivascular spaces of the mammalian brain.
  publication-title: Anat. Rec.
– volume: 36
  start-page: 289
  year: 2016
  ident: B33
  article-title: Imaging the perivascular space as a potential biomarker of neurovascular and neurodegenerative diseases.
  publication-title: Cell Mol. Neurobiol.
  doi: 10.1007/s10571-016-0343-6
– volume: 6
  start-page: 1106
  year: 2007
  ident: B38
  article-title: Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study.
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(07)70291-0
– volume: 9351
  start-page: 234
  year: 2015
  ident: B34
  article-title: U-net: Convolutional networks for biomedical image segmentation.
  publication-title: Med. Image Comput. Comp. Assist. Interv.
– volume: 7
  start-page: 18382
  year: 2019
  ident: B20
  article-title: Enhancement of perivascular spaces using densely connected deep convolutional neural network.
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896911
– volume: 46
  start-page: 106
  year: 2018
  ident: B23
  article-title: Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.02.009
– volume: 39
  start-page: 1856
  year: 2020
  ident: B46
  article-title: U-net++: redesigning skip connections to exploit multiscale features in image segmentation.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
SSID ssj0062657
Score 2.4386082
Snippet We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 641600
SubjectTerms Algorithms
Basal ganglia
brain cohort
Brain research
Cognitive ability
Deep learning
Dementia
Life Sciences
Magnetic resonance imaging
Medical imaging
Medical research
MRI
Neural networks
Neuroscience
Performance evaluation
perivascular space
Santé publique et épidémiologie
Segmentation
Substantia alba
Traumatic brain injury
U-net
Young adults
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdg8MALX4MRGMggxANSWGInsfOEymAaEqsqWrS9RbZjr5WoU9q0Ev8Afzd3-SgrSHvhNXbTU-7nu9_Z5ztCXpcl1-CYXehyp8LERDxULJOhEqk2LJeZzlzTbEIMh_LiIh91G26rLq2yt4mNoS4rg3vkR3hpO5VCJun7xY8Qu0bh6WrXQuMmuQXMJsaUrjM26i0xcPVUtCeZEIjlR86D0iAkZPG7DHgIXmq74ouakv3gYaaYEPkv2_w7afKKFzq597_y3yd3O_5JBy1gHpAb1j8k-wMPsff8J31Dm4zQZqt9n_ziH-nYXs6760meVo6OALF99iodLzChi8LIJA7Pm01WW1JOJxaARs--0s9zMFcrej6rp1TR48pvOqSjCOu6wiqapV1S5UsY_xaOp2oBb8CKITBj2KaoPyKTk0-T49Ow69sQmpSJOiy5wbJwXChlwfdFwkkgGhqCH4ALYEKrmNvScaZY4kQqhOKaSQtERgC7cfwx2fOVt08IjTJnJM-0FIYlWeK04cBwhUqtznnCRUCiXoGF6WqaY2uN7wXENqjzotF5gTovWp0H5O32J4u2oMd1kz8gKrYTsRZ386BaXhbd0i5syXkWGZkwCJVjLSQ2r4oiY7VOrDM8IK8AUzvvOB18KfBZxDnQx5Rt4oAc9rApOiuyKv5gJiAvt8Ow_vFQR3lbrXFOyoAiA48LyEGL0O1fcWw3kCQggdjB7o4suyN-Nm1qjEuQCyL5p9eL9Yzcwa-FqXOxPCR79XJtn5PbZlPPVssXzWL8Da2-Pgs
  priority: 102
  providerName: ProQuest
Title 3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network
URI https://www.ncbi.nlm.nih.gov/pubmed/34262443
https://www.proquest.com/docview/2543587845
https://www.proquest.com/docview/2552059201
https://hal.science/hal-03327352
https://pubmed.ncbi.nlm.nih.gov/PMC8273917
https://doaj.org/article/ed3360c8420941b78108600cebb4efc3
Volume 15
WOSCitedRecordID wos000671899100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M7P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: PIMPY
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M2P
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4cAFAQtsYKkMQhyQwiZ2EjvH7tLVrkSraFu05RTZjk0r0aTql8SFI7-bmSStWpDgwsWHjJOMPOPMm2TyhpC3RcE1BGbnu9QpPzIB9xVLpK9ErA1LZaITVzebEIOBHI_TbK_VF9aENfTAzcKd2YLzJDAyYpCIhFpIbA0UBMZqHVlnap7PQKTbZKp5BgNKj0XzDRNSsPTMlWAuSAZZ-CEBBIK_s-1FoZqsH2LLBEsh_8SZv5dL7sWfy0fkYQscabdR-DG5Y8sn5LhbQtI8-07f0bqUs35Hfkx-8o90aL_O2v-KSlo5moGrbctO6XCOlVgUJKPQv63fjtqCcjqy4CG0f0OvZ_CcWdLb6WpCFb2oyk3roqjCelUh_WVhF1SVBcg_-8OJmsMVkOoDZgya2vKnZHTZG11c-W3DBd_ETKz8ghvkc-NCKQtBKxBOAkLQkLWAncGYWoXcFo4zxSInYiEU10xaQCACYInjz8hRWZX2hNAgcUbyREthWJREThsO0FSo2OqUR1x4JNiuf25aMnLsifEth6QETZbXJsvRZHljMo-8350yb5g4_jb5HI26m4gk2vUBcK28da38X67lkTfgEgfXuOp-yvFYwDngvphtQo-cbj0mb7f_MkeGgVgKGcUeeb0Tw8bFrzGqtNUa58QMsC0AMI88bxxsdyuOfQKiCDQQB653oMuhpJxOanJwCXpBCv7ifyzAS_IA1xQr40J5So5Wi7V9Re6bzWq6XHTIXTGWHXLvvDfIbjr1_oOxzzIcRT3-6IE8u-5nX34Bx1A2zQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGQIIXbuMSGGAQ8IAUlthJ7DwgVDamVuuqihZtb5Hj2GslmpTe0P4A_4b_yDm5lBWkve2B19h1T93v3OLP5xDyOst4Co7Zuja2yg20x13FIukqEaaaxTJKI1s2mxC9njw9jftb5FdzFwZplY1NLA11Vmh8R76Hl7ZDKWQQfpx-d7FrFJ6uNi00KlgcmfMfkLLNP3QO4P99w9jh5-F-2627Crg6ZGLhZlxj0TIulDJgmT1hJbjBFEJz-DEgcap8bjLLmWKBFaEQiqdMGnCzAnyv5bDsNXI9wMJiyBRk_cbwQ2oQiurgFPK-eM_mgBHIQJn_PoKwB-_QXXB9ZYcAcGgj5F_-G9z-zdG84PQO7_xn23WX3K6ja9qq1OEe2TL5fbLTytWimJzTt7Tku5YHCTvkJz-gA3M2qS9f5bSwtA_62HBz6WCKdDUKI0PfPSlfIZuMcjo0oEb0-AvtTMAYz-nJeDGiiu4X-arWYxRhuSiwRmhmZlTlGYx_dQcjNYUVsB4KzOhVBPwHZHgVG_KQbOdFbh4T6kVWSx6lUmgWRIFNNYf4XajQpDEPuHCI1-Al0XXFdmwc8i2BzA0hlpQQSxBiSQUxh7xbf2RalSu5bPInBOF6IlYaLx8Us7OkNlyJyTiPPC0D5sWBnwqJrbk8T5s0DYzV3CGvAMIba7Rb3QSfeZxDcByyle-Q3QalSW0j58kfiDrk5XoYrBseWancFEucEzJIACBKdcijSiHWX8WxmUIQgARiQ1U2ZNkcycejsoK6BLliXzy5XKwX5GZ7eNxNup3e0VNyC3cOSYK-3CXbi9nSPCM39Goxns-el3aAkuSKFek3Mn-ZZw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhxAv3MYlMMAg4AEpNLGd2HlAqKxUq7ZVFSvaeIocx14r0aS0adH-AP-Jf8dxLmUFaW974DV23VP3O7f48zkIvUpTmoBjNq6JjHSZ8qgrSShcyYNEkUiESWjKZhN8MBCnp9FwC_1q7sJYWmVjE0tDnebKviNv20vbgeCCBW1T0yKG3d6H2XfXdpCyJ61NO40KIgf6_Aekb4v3_S78168J6X0a7e27dYcBVwWEF25KlS1gRrmUGqy0x40Al5hAmA4_DKRPpE91aiiRhBkecC5pQoQGl8vBDxsKy15D2xCRM9JC28P-0fBr4wYgUQh4dYwKWWDUNhkgBvJR4r8LIQiyN-ouOMKyXwC4t7FlY_4b6v7N2LzgAnu3_-PNu4Nu1XE37lSKchdt6ewe2ulkssin5_gNLpmw5RHDDvpJu_hYn03ra1kZzg0egqY2rF18PLNENgwjI989KV8u6xRTPNKgYPjoM-5PwUwv8MmkGGOJ9_JsVWu4FWFZ5LZ6aKrnWGYpjH9xj8dyBivYSikwY1BR8--j0VVsyAPUyvJMP0LYC40SNEwEV4SFzCSKQmTPZaCTiDLKHeQ12IlVXcvdthT5FkNOZ-EWl3CLLdziCm4Oerv-yKwqZHLZ5I8WkOuJtgZ5-SCfn8W1SYt1SmnoKcGIFzE_4cI27fI8pZOEaaOog14CnDfW2O8cxvaZRymEzQFZ-Q7abRAb19ZzEf-Bq4NerIfB7tnDLJnpfGnnBARSA4hfHfSwUo71V1HbZoExkIBvqM2GLJsj2WRc1lYXIFfk88eXi_Uc3QD9iQ_7g4Mn6KbdOMse9MUuahXzpX6KrqtVMVnMn9VGAaP4ijXpN-svo7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Segmentation+of+Perivascular+Spaces+on+T1-Weighted+3+Tesla+MR+Images+With+a+Convolutional+Autoencoder+and+a+U-Shaped+Neural+Network&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Boutinaud%2C+Philippe&rft.au=Tsuchida%2C+Ami&rft.au=Laurent%2C+Alexandre&rft.au=Adonias%2C+Filipa&rft.date=2021-06-18&rft.pub=Frontiers+Media&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=15&rft_id=info:doi/10.3389%2Ffninf.2021.641600&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03327352v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon