Multi-parameter adjustment for high-precision azimuthal intersection positioning

The traditional azimuthal intersection method is viable for situations with only two control stations but a simple height averaging is not rigorous because the intersections vary in their distances from the two stations. In order to obtain the high-precision azimuthal intersections, this study prese...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:MethodsX Ročník 7; s. 100968
Hlavní autoři: Ai, Songtao, Wang, Shansi, Li, Yuansheng, Liu, Leibao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2020
Elsevier
Témata:
ISSN:2215-0161, 2215-0161
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The traditional azimuthal intersection method is viable for situations with only two control stations but a simple height averaging is not rigorous because the intersections vary in their distances from the two stations. In order to obtain the high-precision azimuthal intersections, this study presented a multi-parameter adjustment method, together with the Earth curvature correction and the atmospheric refraction correction models. This method is robust with varied distances between the control stations and the targeted intersections, without limitation of station quantity.•Based on the traditional space intersection, a multi-parameter adjustment model is added into the data processing for high-precision 3D positioning.•Both the Earth curvature error correction model and the atmospheric error correction model are included in the multi-parameter adjustment model, so the intersected points are more accurate than traditional intersections. [Display omitted]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2215-0161
2215-0161
DOI:10.1016/j.mex.2020.100968