Oxidation modification of chitosan-based mesoporous carbon by soft template method and the adsorption and release properties of hydroxycamptothecin

Spray drying and a direct carbonization technology were coupled to prepare nitrogen-doped mesoporous carbon nanoparticles (NMCs) using chitosan as a carbon source and nitrogen source precursor and a triblock amphiphilic copolymer (F127) as a soft template, then oxidative modification was performed b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 10; číslo 1; s. 15772
Hlavní autoři: Wang, Xianshu, Lin, Qian, Pan, Hongyan, Jia, Shuangzhu, Wu, Hong, Shi, Yongyong, Wang, Zhuhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 25.09.2020
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Spray drying and a direct carbonization technology were coupled to prepare nitrogen-doped mesoporous carbon nanoparticles (NMCs) using chitosan as a carbon source and nitrogen source precursor and a triblock amphiphilic copolymer (F127) as a soft template, then oxidative modification was performed by ammonium persulfate (APS) to prepare oxidized mesoporous carbon nanoparticles (O-NMCs). The pore structure, chemical composition and wettability of the mesoporous materials were studied before and after oxidative modification, the microscopic morphology, structure, composition and wetting performance of the mesoporous carbon were characterized by transmission electron microscopy (TEM), an X-ray diffractometer (XRD), N 2 adsorption–desorption instrument, X-ray photoelectron spectroscopy (XPS), contact angle tests and other analyses, meanwhile influences of the mesoporous carbon material on adsorption and release performance of a poorly-soluble antitumor drug hydroxycamptothecin (HCPT) were investigated. It was demonstrated from results that the surface wettability of the oxidatively-modified mesoporous carbon material was improved, the contact angle of the mesoporous carbon materials was reduced from 133.4° to 58.2° and the saturated adsorption capacity of HCPT was 676.97 mg/g and 647.20 mg/g respectively. The dissolution rate of the raw material hydroxycamptothecin was improved due to the nanopore structure of the mesoporous carbon material, the dissolution rate of mesoporous carbon material-loaded hydroxycamptothecin was increased from 22.7% to respective 83.40% and 81.11%.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-72933-4