Redox phospholipidomics discovers pro-ferroptotic death signals in A375 melanoma cells in vitro and in vivo
Growing cancer cells effectively evade most programs of regulated cell death, particularly apoptosis. This necessitates a search for alternative therapeutic modalities to cause cancer cell's demise, among them – ferroptosis. One of the obstacles to using pro-ferroptotic agents to treat cancer i...
Uložené v:
| Vydané v: | Redox biology Ročník 61; s. 102650 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.05.2023
Elsevier |
| Predmet: | |
| ISSN: | 2213-2317, 2213-2317 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Growing cancer cells effectively evade most programs of regulated cell death, particularly apoptosis. This necessitates a search for alternative therapeutic modalities to cause cancer cell's demise, among them – ferroptosis. One of the obstacles to using pro-ferroptotic agents to treat cancer is the lack of adequate biomarkers of ferroptosis. Ferroptosis is accompanied by peroxidation of polyunsaturated species of phosphatidylethanolamine (PE) to hydroperoxy- (-OOH) derivatives, which act as death signals. We demonstrate that RSL3-induced death of A375 melanoma cells in vitro was fully preventable by ferrostatin-1, suggesting their high susceptibility to ferroptosis. Treatment of A375 cells with RSL3 caused a significant accumulation of PE-(18:0/20:4-OOH) and PE-(18:0/22:4-OOH), the biomarkers of ferroptosis, as well as oxidatively truncated products - PE-(18:0/hydroxy-8-oxo-oct-6-enoic acid (HOOA) and PC-(18:0/HOOA). A significant suppressive effect of RSL3 on melanoma growth was observed in vivo (utilizing a xenograft model of inoculation of GFP-labeled A375 cells into immune-deficient athymic nude mice). Redox phospholipidomics revealed elevated levels of 18:0/20:4-OOH in RSL3-treated group vs controls. In addition, PE-(18:0/20:4-OOH) species were identified as major contributors to the separation of control and RSL3-treated groups, with the highest variable importance in projection predictive score. Pearson correlation analysis revealed an association between tumor weight and contents of PE-(18:0/20:4-OOH) (r = −0.505), PE-18:0/HOOA (r = −0.547) and PE 16:0-HOOA (r = −0.503). Thus, LC-MS/MS based redox lipidomics is a sensitive and precise approach for the detection and characterization of phospholipid biomarkers of ferroptosis induced in cancer cells by radio- and chemotherapy. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 2213-2317 2213-2317 |
| DOI: | 10.1016/j.redox.2023.102650 |