Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli
The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the ge...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 37; p. 14841 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
11.09.2012
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins. |
|---|---|
| AbstractList | The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins. The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins.The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins. |
| Author | Chatterjee, Abhishek Schultz, Peter G Xiao, Han |
| Author_xml | – sequence: 1 givenname: Abhishek surname: Chatterjee fullname: Chatterjee, Abhishek organization: Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 2 givenname: Han surname: Xiao fullname: Xiao, Han – sequence: 3 givenname: Peter G surname: Schultz fullname: Schultz, Peter G |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22927411$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLAzEUhYNU7EPX7iRLF06bx7yyLKU-oCiIrsttkulEMsk4yQj9Af5vR63g5txz4OPAPVM0ct5phC4pmVNS8EXrIMwpoyzNUkrECZoMSpM8FWT0z4_RNIQ3QojISnKGxowJVqSUTtDn-sPbPhrvsK9w09toWqtvBhd7sPaAfRdrv_cOLG47bw82ic-PSxwOLtY6QtCLn9yC6QKufId75yD23cBDY5zHII36roO9djqYgI3D6yBr3RlZG8DSW3OOTiuwQV8c7wy93q5fVvfJ5unuYbXcJDJjWUy4glJRxTSXqYJcCKUZKwrFeCXyXGSKVHlVcZVLQnY835UVgyIrCNEguaAFm6Hr397hlfdeh7htTJDaWnDa92FLCRc8TYsyG9CrI9rvGq22bWca6A7bv-nYFzKodXk |
| CitedBy_id | crossref_primary_10_1016_j_chempr_2020_07_013 crossref_primary_10_3389_fmicb_2018_01688 crossref_primary_10_1038_s41467_019_11427_y crossref_primary_10_1002_cbic_202400366 crossref_primary_10_1016_j_jmb_2021_167346 crossref_primary_10_1021_jacs_0c02263 crossref_primary_10_1016_j_cbpa_2013_04_017 crossref_primary_10_1002_cbic_202300565 crossref_primary_10_3389_fbioe_2020_569191 crossref_primary_10_1038_s41557_023_01232_y crossref_primary_10_1016_j_bmc_2020_115662 crossref_primary_10_1146_annurev_biochem_060713_035737 crossref_primary_10_1016_j_sbi_2013_06_009 crossref_primary_10_1038_s41467_024_44901_3 crossref_primary_10_1007_s00253_015_6557_6 crossref_primary_10_1371_journal_pone_0158579 crossref_primary_10_1002_ange_201301094 crossref_primary_10_1002_cbic_201402104 crossref_primary_10_1093_nar_gkz1011 crossref_primary_10_1002_anie_202316428 crossref_primary_10_1002_cbic_201900583 crossref_primary_10_1002_chem_202403718 crossref_primary_10_3389_fbioe_2020_00863 crossref_primary_10_3389_fgene_2024_1436860 crossref_primary_10_1021_acs_chemrev_3c00878 crossref_primary_10_1038_s41598_019_39484_9 crossref_primary_10_1146_annurev_biophys_070323_024308 crossref_primary_10_1021_acs_accounts_4c00320 crossref_primary_10_1016_j_copbio_2013_02_027 crossref_primary_10_1021_acscentsci_1c01465 crossref_primary_10_3389_fmolb_2022_851646 crossref_primary_10_1021_acscentsci_3c01557 crossref_primary_10_1038_s41557_018_0115_7 crossref_primary_10_1038_nature24031 crossref_primary_10_1038_s41467_023_41491_4 crossref_primary_10_3390_ijms20010092 crossref_primary_10_1002_ange_202316428 crossref_primary_10_1007_s00253_019_09690_6 crossref_primary_10_1038_srep33447 crossref_primary_10_3389_fchem_2014_00034 crossref_primary_10_1002_pro_4559 crossref_primary_10_1074_jbc_M116_761015 crossref_primary_10_1002_cbic_201402159 crossref_primary_10_1073_pnas_1302094110 crossref_primary_10_3390_genes9110537 crossref_primary_10_1016_j_jmb_2015_09_003 crossref_primary_10_1002_anie_201301094 crossref_primary_10_3389_fgene_2024_1373250 crossref_primary_10_1021_acs_chemrev_4c00730 crossref_primary_10_1038_s41557_020_0472_x crossref_primary_10_1002_cbic_201402033 crossref_primary_10_1016_j_biortech_2025_132691 crossref_primary_10_1016_j_tim_2023_09_002 crossref_primary_10_1038_s41557_018_0052_5 crossref_primary_10_1038_s41589_024_01782_3 crossref_primary_10_3390_biom9070255 crossref_primary_10_1038_nchembio_2312 crossref_primary_10_1038_nchembio_2554 crossref_primary_10_3389_fgene_2024_1420331 crossref_primary_10_1016_j_bbagen_2017_03_003 crossref_primary_10_1038_nchembio_1823 crossref_primary_10_1038_s41576_020_00307_7 crossref_primary_10_3389_fmolb_2014_00027 crossref_primary_10_1016_j_biotechadv_2021_107767 crossref_primary_10_1016_j_chempr_2021_09_014 crossref_primary_10_1002_bit_26239 crossref_primary_10_1038_s41587_024_02385_y crossref_primary_10_1038_s41587_020_0479_2 crossref_primary_10_1038_s41592_022_01706_w crossref_primary_10_1146_annurev_chembioeng_061312_103351 crossref_primary_10_3390_ijms23020938 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1212454109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22927411 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c525t-3da8d1d2e3c4da699de2277d23f96695d0f6ff3d6c00b36b8f2a75700eac39172 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 93 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309208000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 11:26:42 EDT 2025 Mon Jul 21 06:05:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 37 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-3da8d1d2e3c4da699de2277d23f96695d0f6ff3d6c00b36b8f2a75700eac39172 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/37/14841.full.pdf |
| PMID | 22927411 |
| PQID | 1039344785 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1039344785 pubmed_primary_22927411 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-09-11 |
| PublicationDateYYYYMMDD | 2012-09-11 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 14627803 - Nucleic Acids Res. 2003 Dec 1;31(23):6700-9 8381183 - J Med Chem. 1993 Feb 5;36(3):363-9 19852970 - J Mol Biol. 2010 Jan 15;395(2):361-74 11564556 - Chem Biol. 2001 Sep;8(9):883-90 17360621 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3141-6 14510473 - Nucleic Acids Res Suppl. 2003;(3):247-8 11880038 - Chem Biol. 2002 Feb;9(2):237-44 7401103 - J Med Chem. 1980 Jul;23(7):758-63 12244330 - Nat Biotechnol. 2002 Oct;20(10):1044-8 11273699 - J Mol Biol. 2001 Mar 30;307(3):755-69 9493271 - Structure. 1998 Jan 15;6(1):101-8 21404373 - Angew Chem Int Ed Engl. 2011 Mar 21;50(13):2896-902 20340150 - Angew Chem Int Ed Engl. 2010 Apr 19;49(18):3211-4 18988020 - Methods Mol Biol. 2009;498:91-103 11313494 - Science. 2001 Apr 20;292(5516):498-500 10970866 - EMBO J. 2000 Sep 1;19(17):4745-58 12911301 - Biochemistry. 2003 Aug 19;42(32):9598-608 20154731 - Nature. 2010 Mar 18;464(7287):441-4 20121121 - J Am Chem Soc. 2010 Feb 24;132(7):2142-4 19856359 - Angew Chem Int Ed Engl. 2009;48(48):9148-51 19398201 - Bioorg Med Chem Lett. 2009 Jul 15;19(14):3845-7 11342535 - J Biol Chem. 2001 Jun 8;276(23):20286-91 12754495 - Nat Struct Biol. 2003 Jun;10(6):425-32 18636716 - Acc Chem Res. 2008 Oct;41(10):1331-42 9294168 - Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10092-7 20571084 - Nucleic Acids Res. 2010 Oct;38(19):6813-30 12578991 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1673-8 20307192 - Annu Rev Biochem. 2010;79:413-44 15138302 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7566-71 18646869 - Acc Chem Res. 2008 Oct;41(10):1241-51 20347317 - Bioorg Med Chem. 2010 Apr 15;18(8):2976-85 |
| References_xml | – reference: 20347317 - Bioorg Med Chem. 2010 Apr 15;18(8):2976-85 – reference: 12911301 - Biochemistry. 2003 Aug 19;42(32):9598-608 – reference: 9493271 - Structure. 1998 Jan 15;6(1):101-8 – reference: 11564556 - Chem Biol. 2001 Sep;8(9):883-90 – reference: 19852970 - J Mol Biol. 2010 Jan 15;395(2):361-74 – reference: 17360621 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3141-6 – reference: 20154731 - Nature. 2010 Mar 18;464(7287):441-4 – reference: 12754495 - Nat Struct Biol. 2003 Jun;10(6):425-32 – reference: 19856359 - Angew Chem Int Ed Engl. 2009;48(48):9148-51 – reference: 8381183 - J Med Chem. 1993 Feb 5;36(3):363-9 – reference: 18988020 - Methods Mol Biol. 2009;498:91-103 – reference: 12244330 - Nat Biotechnol. 2002 Oct;20(10):1044-8 – reference: 21404373 - Angew Chem Int Ed Engl. 2011 Mar 21;50(13):2896-902 – reference: 20121121 - J Am Chem Soc. 2010 Feb 24;132(7):2142-4 – reference: 7401103 - J Med Chem. 1980 Jul;23(7):758-63 – reference: 18646869 - Acc Chem Res. 2008 Oct;41(10):1241-51 – reference: 10970866 - EMBO J. 2000 Sep 1;19(17):4745-58 – reference: 11880038 - Chem Biol. 2002 Feb;9(2):237-44 – reference: 20571084 - Nucleic Acids Res. 2010 Oct;38(19):6813-30 – reference: 14627803 - Nucleic Acids Res. 2003 Dec 1;31(23):6700-9 – reference: 9294168 - Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10092-7 – reference: 11273699 - J Mol Biol. 2001 Mar 30;307(3):755-69 – reference: 15138302 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7566-71 – reference: 18636716 - Acc Chem Res. 2008 Oct;41(10):1331-42 – reference: 14510473 - Nucleic Acids Res Suppl. 2003;(3):247-8 – reference: 19398201 - Bioorg Med Chem Lett. 2009 Jul 15;19(14):3845-7 – reference: 20340150 - Angew Chem Int Ed Engl. 2010 Apr 19;49(18):3211-4 – reference: 20307192 - Annu Rev Biochem. 2010;79:413-44 – reference: 12578991 - Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1673-8 – reference: 11342535 - J Biol Chem. 2001 Jun 8;276(23):20286-91 – reference: 11313494 - Science. 2001 Apr 20;292(5516):498-500 |
| SSID | ssj0009580 |
| Score | 2.4058812 |
| Snippet | The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 14841 |
| SubjectTerms | Amino Acids - metabolism Amino Acyl-tRNA Synthetases - genetics Archaeoglobus fulgidus - genetics Cloning, Molecular Escherichia coli Evolution, Molecular Gene Library Mutagenesis, Site-Directed - methods Plasmids - genetics Protein Engineering - methods Pyrococcus horikoshii - genetics RNA, Transfer - genetics RNA, Transfer - metabolism |
| Title | Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22927411 https://www.proquest.com/docview/1039344785 |
| Volume | 109 |
| WOSCitedRecordID | wos000309208000034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA7qPHhR58_5iwgeFAxr07RNTiKy4UHHEJXdRpo0UpjttHOwP8D_2_e6Dr0IgpfSHlpC8r2X7-W9fo-Qs1SlEMr6hiljBBNWaKY45lwBO0lipUiq9m3Pd3GvJwcD1a8P3Mq6rHLhEytHbQuDZ-RtTFmiOp0Mr8ZvDLtGYXa1bqGxTBoBUBks6YoH8oforpyrESifRUJ5C2mfOGiPc12isgIXoaiqEX_jl9U-09347wg3yXrNMOn1HBJNspTmW6RZ23BJz2uh6Ytt8tmZ1sCjhaOL0sJLuMOfSkYzijmd4gW5OoWxjGYjNnnoXdNylgNtnMD-166ex5gTosB-KbBhXQl5UP2a5QXVJrP4OXBa4FKzkmY57ZSIkwxrrCmgMNshT93O480tq9syMBPycMICq6X1LU8DI6yOlLIp53FseeAgdlKh9VzkXGAj43lJECXScR2jjD74-ACiQ75LVvIiT_cJdWDzJjJhGAsngKhJ8J--p622iVYysS1yupjqIcAecxk6T4uPcvg92S2yN1-v4XiuzzHkXKEoj3_wh7cPyRpQII4VIL5_RBoOjD49JqtmOsnK95MKT3Dt9e-_AJ2G17s |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+multiple%2C+mutually+orthogonal+prolyl-tRNA+synthetase%2FtRNA+pairs+for+unnatural+amino+acid+mutagenesis+in+Escherichia+coli&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Chatterjee%2C+Abhishek&rft.au=Xiao%2C+Han&rft.au=Schultz%2C+Peter+G&rft.date=2012-09-11&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=109&rft.issue=37&rft.spage=14841&rft_id=info:doi/10.1073%2Fpnas.1212454109&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |