Verification and Validation of Hybridspectral Radiometry Obtained from an Unmanned Surface Vessel (USV) in the Open and Coastal Oceans

The hardware and software capabilities of the compact-profiling hybrid instrumentation for radiometry and ecology (C-PHIRE) instruments on an unmanned surface vessel (USV) are evaluated. Both the radiometers and USV are commercial-off-the-shelf (COTS) products, with the latter being only minimally m...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 14; no. 5; p. 1084
Main Authors: Hooker, Stanford B., Houskeeper, Henry F., Lind, Randall N., Kudela, Raphael M., Suzuki, Koji
Format: Journal Article
Language:English
Published: Goddard Space Flight Center MDPI 23.02.2022
MDPI AG
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The hardware and software capabilities of the compact-profiling hybrid instrumentation for radiometry and ecology (C-PHIRE) instruments on an unmanned surface vessel (USV) are evaluated. Both the radiometers and USV are commercial-off-the-shelf (COTS) products, with the latter being only minimally modified to deploy the C-PHIRE instruments. The hybridspectral C-PHIRE instruments consist of an array of 18 multispectral microradiometers with 10 nm wavebands spanning 320–875 nm plus a hyperspectral compact grating spectrometer (CGS) with 2048 pixels spanning 190–1000 nm. The C-PHIRE data were acquired and processed using two architecturally linked software packages, thereby allowing lessons learned in one to be applied to the other. Using standard data products and unbiased statistics, the C-PHIRE data were validated with those from the well-established compact-optical profiling system (C-OPS) and verified with the marine optical buoy (MOBY). Agreement between algorithm variables used to estimate colored dissolved organic matter (CDOM) absorption and chlorophyll a concentration were also validated. Developing and operating novel technologies, such as the C-PHIRE series of instruments, deployed on a USV increase the frequency and coverage of optical observations, which are required to fully support the present and next-generation validation exercises in radiometric remote sensing of aquatic ecosystems.
Bibliography:GSFC
Goddard Space Flight Center
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14051084