Multiscale reconstruction for MR fingerprinting

Purpose To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative‐denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel‐wise f...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine Vol. 75; no. 6; pp. 2481 - 2492
Main Authors: Pierre, Eric Y., Ma, Dan, Chen, Yong, Badve, Chaitra, Griswold, Mark A.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Subjects:
ISSN:0740-3194, 1522-2594, 1522-2594
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative‐denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel‐wise fidelity to the best‐matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable‐density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. Results The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three‐fold reduction in acquisition time. Conclusion The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481–2492, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting.PURPOSETo reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting.An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method.METHODSAn iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method.The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time.RESULTSThe proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time.The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc.CONCLUSIONThe proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc.
Purpose To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. Results The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. Conclusion The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc.
To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc.
Purpose To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. Results The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B sub(0) field variations in the brain was achieved in vivo for a 256 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. Conclusion The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016.
Purpose To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative‐denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel‐wise fidelity to the best‐matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable‐density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. Results The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three‐fold reduction in acquisition time. Conclusion The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481–2492, 2016. © 2015 Wiley Periodicals, Inc.
Author Ma, Dan
Badve, Chaitra
Pierre, Eric Y.
Griswold, Mark A.
Chen, Yong
Author_xml – sequence: 1
  givenname: Eric Y.
  surname: Pierre
  fullname: Pierre, Eric Y.
  organization: Department of Biomedical Engineering, Case Western Reserve University, Ohio, Cleveland, USA
– sequence: 2
  givenname: Dan
  surname: Ma
  fullname: Ma, Dan
  organization: Department of Biomedical Engineering, Case Western Reserve University, Ohio, Cleveland, USA
– sequence: 3
  givenname: Yong
  surname: Chen
  fullname: Chen, Yong
  organization: Department of Radiology, Case Western Reserve University & University Hospitals, Ohio, Cleveland, USA
– sequence: 4
  givenname: Chaitra
  surname: Badve
  fullname: Badve, Chaitra
  organization: Department of Radiology, Case Western Reserve University & University Hospitals, Ohio, Cleveland, USA
– sequence: 5
  givenname: Mark A.
  surname: Griswold
  fullname: Griswold, Mark A.
  email: mark.griswold@case.edu
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26132462$$D View this record in MEDLINE/PubMed
BookMark eNqNkctOwzAQRS0EglJY8AOoEhtYhPrteIkqoIgWBOK1s5xkggJ5FDsR9O9JaMsCgcTKszjnyjN3G62XVQkI7RF8TDCmw8IVx1QoJddQjwhKAyo0X0c9rDgOGNF8C217_4Ix1lrxTbRFJWGUS9pDw2mT15mPbQ4DB3FV-to1cZ1V5SCt3GB6O0iz8hnczGVl3U47aCO1uYfd5dtH92end6NxMLk-vxidTIJYUCEDjqUFHEkbhoxKqzDwRDBuOY0SYYkGmSiwiRApAxaCVZGwmmkZk0gJnHDWR4eL3Jmr3hrwtSnaX0Ke2xKqxhuiNNYSC83-gYYaMxbyLvXgB_pSNa5sF-mokFKiBWmp_SXVRAUkpt29sG5uVldrgeECiF3lvYPUxFltu6PVzma5Idh0vZi2F_PVS2sc_TBWob-xy_T3LIf536CZ3k5XRrAwMl_Dx7dh3auRiilhHq_Ozc0Tebh8IKEZs09wf6ks
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_hbm_25232
crossref_primary_10_1002_mrm_29194
crossref_primary_10_1016_j_mri_2017_02_007
crossref_primary_10_1016_j_jcmg_2018_08_028
crossref_primary_10_1016_j_mri_2018_03_011
crossref_primary_10_1038_s41598_018_24920_z
crossref_primary_10_1109_TMI_2021_3100293
crossref_primary_10_1002_mp_13885
crossref_primary_10_1109_TRPMS_2019_2897425
crossref_primary_10_1002_mrm_28301
crossref_primary_10_1109_JPROC_2019_2936998
crossref_primary_10_1002_mrm_26521
crossref_primary_10_1016_j_cobme_2017_11_001
crossref_primary_10_1109_TMI_2019_2899328
crossref_primary_10_1049_ipr2_12526
crossref_primary_10_1016_j_mri_2017_06_015
crossref_primary_10_1016_j_mri_2017_02_010
crossref_primary_10_1148_radiol_2021202302
crossref_primary_10_1109_TBME_2018_2874992
crossref_primary_10_1002_nbm_4082
crossref_primary_10_1016_j_neuroimage_2019_116329
crossref_primary_10_1002_mp_15254
crossref_primary_10_3389_fcvm_2022_928546
crossref_primary_10_1002_jmri_29206
crossref_primary_10_1002_mrm_28096
crossref_primary_10_1371_journal_pone_0201808
crossref_primary_10_1080_17474124_2017_1271710
crossref_primary_10_1002_mrm_27448
crossref_primary_10_1007_s10334_022_01012_8
crossref_primary_10_1002_mrm_27403
crossref_primary_10_1002_mrm_28136
crossref_primary_10_1088_1361_6420_ab356d
crossref_primary_10_1088_1361_6560_ac101f
crossref_primary_10_3390_cancers14030723
crossref_primary_10_1002_mrm_27126
crossref_primary_10_1007_s11051_016_3718_1
crossref_primary_10_3389_fcvm_2023_1160183
crossref_primary_10_1002_mrm_27726
crossref_primary_10_1038_s41598_020_70789_2
crossref_primary_10_1016_j_media_2020_101741
crossref_primary_10_1007_s11886_019_1181_1
crossref_primary_10_1002_mrm_27198
crossref_primary_10_1002_mrm_27594
crossref_primary_10_1002_mrm_27558
crossref_primary_10_1002_mrm_28404
crossref_primary_10_1002_mrm_26701
crossref_primary_10_1137_18M1222211
crossref_primary_10_1002_mrm_26102
crossref_primary_10_1002_mrm_26587
crossref_primary_10_1002_jmri_27134
crossref_primary_10_1002_mrm_25818
crossref_primary_10_1097_RLI_0000000000000738
crossref_primary_10_1016_j_mri_2017_04_002
crossref_primary_10_1002_jmri_26877
crossref_primary_10_1007_s10334_025_01262_2
crossref_primary_10_1002_mrm_26572
crossref_primary_10_1002_mrm_29442
crossref_primary_10_1016_j_mri_2019_01_011
crossref_primary_10_1016_j_nicl_2018_101648
crossref_primary_10_1002_mrm_26216
crossref_primary_10_1002_mrm_27227
crossref_primary_10_1002_mrm_27502
crossref_primary_10_1109_TMI_2018_2873704
crossref_primary_10_1016_j_mri_2021_06_009
crossref_primary_10_1002_mrm_27543
crossref_primary_10_1016_j_mri_2018_11_001
crossref_primary_10_1002_mrm_27665
crossref_primary_10_1002_mrm_29721
crossref_primary_10_1002_mrm_27628
crossref_primary_10_1002_mrm_27947
Cites_doi 10.1097/00004728-199803000-00032
10.1109/TMI.2009.2023119
10.1109/ISBI.2007.357020
10.1109/TSP.2006.881199
10.1002/mrm.23128
10.1109/IEMBS.2010.5627889
10.1093/biomet/81.3.425
10.2307/2532051
10.1016/0005-1098(75)90044-8
10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
10.1038/nature11971
10.1109/MSP.2007.914728
10.1016/j.mri.2014.02.022
10.1016/j.neuroimage.2006.03.052
10.1002/mrm.10658
10.1002/mrm.22483
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25776
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1
MEDLINE
Engineering Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2492
ExternalDocumentID 4052693261
26132462
10_1002_mrm_25776
MRM25776
ark_67375_WNG_QX1VKV18_H
Genre article
Journal Article
GrantInformation_xml – fundername: NIH, 1R01EB016728
– fundername: Siemens Healthcare
– fundername: NIBIB NIH HHS
  grantid: R01 EB016728
– fundername: NHLBI NIH HHS
  grantid: R01 HL094557
– fundername: NIBIB NIH HHS
  grantid: R01 EB017219
– fundername: NCATS NIH HHS
  grantid: UL1 TR000439
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c5256-406ae0b6a88326a70e4d534a42bd5a19e6d7ead55f3e38ea7b5a9396c1b750d43
IEDL.DBID WIN
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384994700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Tue Oct 07 09:31:36 EDT 2025
Thu Oct 02 09:24:25 EDT 2025
Sat Nov 29 14:31:01 EST 2025
Mon Jul 21 06:03:38 EDT 2025
Tue Nov 18 20:36:48 EST 2025
Sat Nov 29 02:37:38 EST 2025
Wed Jan 22 16:25:03 EST 2025
Sun Sep 21 06:17:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Parameter Mapping
Fingerprinting
Multiscale Image Reconstruction
Compressed Sensing
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5256-406ae0b6a88326a70e4d534a42bd5a19e6d7ead55f3e38ea7b5a9396c1b750d43
Notes NIH, 1R01EB016728
istex:12BC54D658D7D98318A36937937ADCC1191FF6EF
ark:/67375/WNG-QX1VKV18-H
ArticleID:MRM25776
Siemens Healthcare
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25776
PMID 26132462
PQID 1788221951
PQPubID 1016391
PageCount 12
ParticipantIDs proquest_miscellaneous_1790960593
proquest_miscellaneous_1789033844
proquest_journals_1788221951
pubmed_primary_26132462
crossref_citationtrail_10_1002_mrm_25776
crossref_primary_10_1002_mrm_25776
wiley_primary_10_1002_mrm_25776_MRM25776
istex_primary_ark_67375_WNG_QX1VKV18_H
PublicationCentury 2000
PublicationDate June 2016
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Doneva M, Börnert P, Eggers H, Stehning C, Sénégas J, Mertins A. Compressed sensing reconstruction for magnetic resonance parameter mapping. Magn Reson Med 2010;64:1114-1120.
Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 2006;54:4311-4322.
Huang C, Graff CG, Clarkson EW, Bilgin A, Altbach MI. T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing. Magn Reson Med 2012;67:1355-1366.
Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature 2013;495:187-192.
Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 1998;22:324-333.
Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:355-368.
Donoho DL, Johnstone IM. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994;81:425-455.
Aubert-Broche B, Evans AC, Collins L. A new improved version of the realistic digital brain phantom. Neuroimage 2006;32:138-145.
Saybasili H, Herzka DA, Seiberlich N, Griswold MA. Real-time imaging with radial GRAPPA: implementation on a heterogeneous architecture for low-latency reconstructions. Magn Reson Imaging 2014;32:747-758.
Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag 2008;25:72-82.
Hennig J, Weigel M, Scheffler K. Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG)-algorithm: principles and applications to hyperecho and TRAPS sequences. Magn Reson Med 2004;51:68-80.
Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000;43:682-690.
Otsu N. A tlreshold selection method from gray-level histograms. Automatica 1975;11:285-296.
Block KT, Uecker M, Frahm J. Model-based iterative reconstruction for radial fast spin-echo MRI. IEEE Trans Med Imaging 2009;28:1759-1769.
2010; 64
2004; 51
1989; 45
2010
2006; 54
2006; 32
2000; 43
2008; 25
2007
2013; 495
1975; 11
2014
1994; 81
2012; 67
1998; 22
2014; 32
2009; 28
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
References_xml – reference: Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature 2013;495:187-192.
– reference: Doneva M, Börnert P, Eggers H, Stehning C, Sénégas J, Mertins A. Compressed sensing reconstruction for magnetic resonance parameter mapping. Magn Reson Med 2010;64:1114-1120.
– reference: Saybasili H, Herzka DA, Seiberlich N, Griswold MA. Real-time imaging with radial GRAPPA: implementation on a heterogeneous architecture for low-latency reconstructions. Magn Reson Imaging 2014;32:747-758.
– reference: Huang C, Graff CG, Clarkson EW, Bilgin A, Altbach MI. T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing. Magn Reson Med 2012;67:1355-1366.
– reference: Donoho DL, Johnstone IM. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994;81:425-455.
– reference: Lin L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:355-368.
– reference: Hennig J, Weigel M, Scheffler K. Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG)-algorithm: principles and applications to hyperecho and TRAPS sequences. Magn Reson Med 2004;51:68-80.
– reference: Block KT, Uecker M, Frahm J. Model-based iterative reconstruction for radial fast spin-echo MRI. IEEE Trans Med Imaging 2009;28:1759-1769.
– reference: Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 1998;22:324-333.
– reference: Otsu N. A tlreshold selection method from gray-level histograms. Automatica 1975;11:285-296.
– reference: Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag 2008;25:72-82.
– reference: Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000;43:682-690.
– reference: Aubert-Broche B, Evans AC, Collins L. A new improved version of the realistic digital brain phantom. Neuroimage 2006;32:138-145.
– reference: Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 2006;54:4311-4322.
– volume: 25
  start-page: 72
  year: 2008
  end-page: 82
  article-title: Compressed sensing MRI
  publication-title: IEEE Signal Process Mag
– volume: 11
  start-page: 285
  year: 1975
  end-page: 296
  article-title: A tlreshold selection method from gray‐level histograms
  publication-title: Automatica
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 22
  start-page: 324
  year: 1998
  end-page: 333
  article-title: Enhancement of MR images using registration for signal averaging
  publication-title: J Comput Assist Tomogr
– year: 2007
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  article-title: SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Signal Process
– volume: 45
  start-page: 355
  year: 1989
  end-page: 368
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 32
  start-page: 747
  year: 2014
  end-page: 758
  article-title: Real‐time imaging with radial GRAPPA: implementation on a heterogeneous architecture for low‐latency reconstructions
  publication-title: Magn Reson Imaging
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– start-page: 871
  year: 2010
  end-page: 874
– volume: 32
  start-page: 138
  year: 2006
  end-page: 145
  article-title: A new improved version of the realistic digital brain phantom
  publication-title: Neuroimage
– volume: 43
  start-page: 682
  year: 2000
  end-page: 690
  article-title: Adaptive reconstruction of phased array MR imagery
  publication-title: Magn Reson Med
– volume: 64
  start-page: 1114
  year: 2010
  end-page: 1120
  article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1355
  year: 2012
  end-page: 1366
  article-title: T2 mapping from highly undersampled data by reconstruction of principal component coefficient maps using compressed sensing
  publication-title: Magn Reson Med
– volume: 51
  start-page: 68
  year: 2004
  end-page: 80
  article-title: Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG)‐algorithm: principles and applications to hyperecho and TRAPS sequences
  publication-title: Magn Reson Med
– volume: 28
  start-page: 1759
  year: 2009
  end-page: 1769
  article-title: Model‐based iterative reconstruction for radial fast spin‐echo MRI
  publication-title: IEEE Trans Med Imaging
– year: 2014
– ident: e_1_2_7_12_1
  doi: 10.1097/00004728-199803000-00032
– ident: e_1_2_7_6_1
  doi: 10.1109/TMI.2009.2023119
– ident: e_1_2_7_7_1
  doi: 10.1109/ISBI.2007.357020
– ident: e_1_2_7_9_1
  doi: 10.1109/TSP.2006.881199
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.23128
– ident: e_1_2_7_8_1
  doi: 10.1109/IEMBS.2010.5627889
– ident: e_1_2_7_10_1
  doi: 10.1093/biomet/81.3.425
– ident: e_1_2_7_14_1
– ident: e_1_2_7_17_1
  doi: 10.2307/2532051
– ident: e_1_2_7_19_1
– ident: e_1_2_7_16_1
  doi: 10.1016/0005-1098(75)90044-8
– ident: e_1_2_7_15_1
  doi: 10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
– ident: e_1_2_7_2_1
  doi: 10.1038/nature11971
– ident: e_1_2_7_11_1
  doi: 10.1109/MSP.2007.914728
– ident: e_1_2_7_18_1
  doi: 10.1016/j.mri.2014.02.022
– ident: e_1_2_7_13_1
  doi: 10.1016/j.neuroimage.2006.03.052
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.10658
– ident: e_1_2_7_4_1
  doi: 10.1002/mrm.22483
SSID ssj0009974
Score 2.4970944
Snippet Purpose To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative‐denoising...
To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. An iterative-denoising algorithm is...
Purpose To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative-denoising...
To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting.PURPOSETo reduce the acquisition time needed to...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2481
SubjectTerms Algorithms
Brain - diagnostic imaging
Compressed Sensing
Fingerprinting
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Multiscale Image Reconstruction
Parameter Mapping
Phantoms, Imaging
Title Multiscale reconstruction for MR fingerprinting
URI https://api.istex.fr/ark:/67375/WNG-QX1VKV18-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25776
https://www.ncbi.nlm.nih.gov/pubmed/26132462
https://www.proquest.com/docview/1788221951
https://www.proquest.com/docview/1789033844
https://www.proquest.com/docview/1790960593
Volume 75
WOSCitedRecordID wos000384994700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5xlIqXUo7CtnQVKoR4CZvDp_pUAVsq2FW74tg3y46dF2BBuwLx8xk72SAkipB4i5SJ5Izn83zj4zPAtsUKx0qNQCqpi0lpsthwTuPSFNaItHCMVJdN8H5fDIfy7wz8nJ6FqfQhmgk3j4wwXnuAazPpPImGXo-v9zDeuJfbTkkA5cWf_pPgrqwUmDnx44wkU1WhJOs0Xz7LRfPerQ8vEc3nvDUknu7Su5r8GT7VfDP6VQXIMsy40Qp87NUr6iuwELaAFpNV6ISzuBPsMxeFMrmRlo2Q2Ea9QVSGKUA_E-j3Sq_BWffwdP8orq9TiAuKxAYrRaZdYpgWiGKmeeKIpTnRJDOW6lQ6ZjnGFaVl7nLhNDdUy1yyIjVIKyzJv8Dc6GbkNiDyFXUhCLEk0ZgFmaAIZWQGCbXCYuJrwe7Usaqotcb9lRdXqlJJzhS6QgVXtOBHY3pbCWy8ZLQTeqex0ONLvyONU3XR_63-DdPz4_NUqKMWbE67T9VgnKgUy_wMR2aK7dpqXiOM_NqIHrmbu2AjEyzXCXnNRvqCj8q8BetVaDQNwkIUqSnL8M9DBPz_X1Rv0AsPX99u-g0WkaixaovaJsxh_7vv8KG4x7AYt2GWD0Ub5g8G3bOTdoDBI0tZBNc
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BO9he-GYrHyNDCPESmg9_xBIvaKN0oqlYRaFvlhM7L4wytRriz9_ZSYOQGELiLVIuknO-8_3ufP4Z4EBjhqOFQkcqqPFJkUV-xjn1iyzXWRLmhpHysgne7yejkbicg5PZWZiSH6IuuFnPcOu1dXBbkG4_sYbeTe6O0eA4m4cmQTOiDWj-GHSGvSfSXVGyMHNi1xpBZsxCQdSuP34Wj5pWtY8vgc3n2NUFn87y-4a9AksV6PROSytZhTkzXoPFtNpWX4MF1weaT9eh7Q7kTnHijOdy5Zpf1kN066UDr3B1QFsOtA3TGzDsnF197_rVnQp-ThHdYLrIlAkyphJ0ZaZ4YIimMVEkyjRVoTBMczQuSovYxIlRPKNKxILlYYbYQpN4Exrj-7H5Ap5Nq_OEEE0ChaGQJRT9GeFBQHWiMfq14GimWZlXhOP23ovfsqRKjiSqQjpVtGC_Fv1Tsmy8JHTopqeWUJNb25bGqbzpn8tfo_D64jpMZLcFO7P5k5VHTmWIuX6EyzPFcX2rX6Mv2Q0SNTb3f52MCDBnJ-Q1GWGzPiriFnwubaMeEGajiE9ZhH_uTOD__yLTQeoett4uugcfu1dpT_Z-9i-24RMiN1b2rO1AA23B7MKH_AFNZPK18oN_eAUHmw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6lhEZcKNACKQEMqqpeTPzYh1fqpSoEECSiEYTcVmvv-gJ5KBGIn9_ZtWOEBFUlbpY8ltaz8-18s49vAb5prHC0UAiknBqf5Gnkp5xTP08znSZhZhgpLpvgvV4yHIqrGvxcnIUp9CGqCTeLDDdeW4Cbqc7bz6qho9noCAOOsw9QJ1QwhGX9uN-5uXwW3RWFCjMndqwRZKEsFETt6uMX-ahuXfv0Gtl8yV1d8ul8el-z12C1JJ3eryJK1qFmxhvQ6JbL6hvw0e0Dzeafoe0O5M6x44znauVKX9ZDdut1-17u5gHtdKDdMP0Fbjon17_P_PJOBT-jyG6wXGTKBClTCUKZKR4YomlMFIlSTVUoDNMcg4vSPDZxYhRPqRKxYFmYIrfQJN6EpfFkbLbBs2V1lhCiSaAwFbKEIp6RHgRUJxqzXxN-LDwrs1Jw3N57cS8LqeRIoiukc0UTDivTaaGy8ZrRd9c9lYWa3dltaZzK296p_DMMBxeDMJFnTWgt-k-WiJzLEGv9CIdniu06qF4jluwCiRqbyYOzEQHW7IT8y0bYqo-KuAlbRWxUDcJqFPkpi_DPXQi8_S-y2--6h6__b7oPjavjjrw8713swAoSN1ZsWWvBEoaC2YXl7BEjZLZXwuAv90MHFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+reconstruction+for+MR+fingerprinting&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pierre%2C+Eric+Y&rft.au=Ma%2C+Dan&rft.au=Chen%2C+Yong&rft.au=Badve%2C+Chaitra&rft.date=2016-06-01&rft.eissn=1522-2594&rft.volume=75&rft.issue=6&rft.spage=2481&rft_id=info:doi/10.1002%2Fmrm.25776&rft_id=info%3Apmid%2F26132462&rft.externalDocID=26132462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon