MEC-A Near-Optimal Online Reinforcement Learning Algorithm for Continuous Deterministic Systems
In this paper, the first probably approximately correct (PAC) algorithm for continuous deterministic systems without relying on any system dynamics is proposed. It combines the state aggregation technique and the efficient exploration principle, and makes high utilization of online observed samples....
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 26; číslo 2; s. 346 - 356 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!