MEC-A Near-Optimal Online Reinforcement Learning Algorithm for Continuous Deterministic Systems

In this paper, the first probably approximately correct (PAC) algorithm for continuous deterministic systems without relying on any system dynamics is proposed. It combines the state aggregation technique and the efficient exploration principle, and makes high utilization of online observed samples....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 26; H. 2; S. 346 - 356
Hauptverfasser: Zhao, Dongbin, Zhu, Yuanheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!