An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation

This paper proposes a methodology for combining satellite images with advection-diffusion models for interpolation and prediction of environmental processes. We propose a dynamic state-space model and an ensemble Kalman filter and smoothing algorithm for on-line and retrospective state estimation. O...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 105; číslo 491; s. 978 - 990
Hlavní autori: Stroud, Jonathan R., Stein, Michael L., Lesht, Barry M., Schwab, David J., Beletsky, Dmitry
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria, VA Taylor & Francis 01.09.2010
American Statistical Association
Assoc
Taylor & Francis Ltd
Predmet:
ISSN:0162-1459, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes a methodology for combining satellite images with advection-diffusion models for interpolation and prediction of environmental processes. We propose a dynamic state-space model and an ensemble Kalman filter and smoothing algorithm for on-line and retrospective state estimation. Our approach addresses the high dimensionality, measurement bias, and nonlinearities inherent in satellite data. We apply the method to a sequence of SeaWiFS satellite images in Lake Michigan from March 1998, when a large sediment plume was observed in the images following a major storm event. Using our approach, we combine the images with a sediment transport model to produce maps of sediment concentrations and uncertainties over space and time. We show that our approach improves out-of-sample RMSE by 20%-30% relative to standard approaches. This article has supplementary material online.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
ISSN:0162-1459
1537-274X
DOI:10.1198/jasa.2010.ap07636