Interactive evolutionary multi-objective optimization for quasi-concave preference functions

We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preferen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 206; H. 2; S. 417 - 425
Hauptverfasser: Fowler, John W., Gel, Esma S., Köksalan, Murat M., Korhonen, Pekka, Marquis, Jon L., Wallenius, Jyrki
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.10.2010
Elsevier
Elsevier Sequoia S.A
Schriftenreihe:European Journal of Operational Research
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2010.02.027