Interactive evolutionary multi-objective optimization for quasi-concave preference functions

We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preferen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 206; číslo 2; s. 417 - 425
Hlavní autoři: Fowler, John W., Gel, Esma S., Köksalan, Murat M., Korhonen, Pekka, Marquis, Jon L., Wallenius, Jyrki
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 16.10.2010
Elsevier
Elsevier Sequoia S.A
Edice:European Journal of Operational Research
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2010.02.027