Interactive evolutionary multi-objective optimization for quasi-concave preference functions
We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preferen...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 206; H. 2; S. 417 - 425 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
16.10.2010
Elsevier Elsevier Sequoia S.A |
| Schriftenreihe: | European Journal of Operational Research |
| Schlagworte: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem. |
|---|---|
| AbstractList | We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem. [PUBLICATION ABSTRACT] We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem. |
| Author | Fowler, John W. Köksalan, Murat M. Gel, Esma S. Korhonen, Pekka Marquis, Jon L. Wallenius, Jyrki |
| Author_xml | – sequence: 1 givenname: John W. surname: Fowler fullname: Fowler, John W. organization: Arizona State University, P.O. Box 875906, Tempe, AZ 85287-5906, USA – sequence: 2 givenname: Esma S. surname: Gel fullname: Gel, Esma S. organization: Arizona State University, P.O. Box 875906, Tempe, AZ 85287-5906, USA – sequence: 3 givenname: Murat M. surname: Köksalan fullname: Köksalan, Murat M. organization: Middle East Technical University, 06531 Ankara, Turkey – sequence: 4 givenname: Pekka surname: Korhonen fullname: Korhonen, Pekka organization: Aalto University School of Economics, P.O. Box 21210, 00076 AALTO, Finland – sequence: 5 givenname: Jon L. surname: Marquis fullname: Marquis, Jon L. organization: Arizona State University, P.O. Box 875906, Tempe, AZ 85287-5906, USA – sequence: 6 givenname: Jyrki surname: Wallenius fullname: Wallenius, Jyrki email: Jyrki.Wallenius@hse.fi organization: Aalto University School of Economics, P.O. Box 21210, 00076 AALTO, Finland |
| BackLink | http://www.econis.eu/PPNSET?PPN=631118713$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22634699$$DView record in Pascal Francis http://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417-425.htm$$DView record in RePEc |
| BookMark | eNp9kU1r3DAQhkVJIZu0fyCXmkKP3kqyLNnQSwnNBw300t4KQiuPqIzXciR5If31Ga-XUHqIGH2geWY0mveCnI1hBEKuGN0yyuTnfgt9iFtO8YJyNPWGbFijeCkbSc_IhlZKlZwzdU4uUuoppaxm9Yb8vh8zRGOzP0ABhzDM2YfRxKdiPw_Zl2HXw-oMU_Z7_9cs_sKFWDzOJvnShtEadE8RHEQYLRRuHu1CpXfkrTNDgven_ZL8uvn28_qufPhxe3_99aG0NRe5rKSVvGNWGCmUpLK1AqRtqxqExVupnKykcKKRjje7WrXUqq6jbMdoUwvmqkvycc07xfA4Q8q6D3Mc8UnNqWCSiVYh9H2FIkxg9RT9Hr-pAQe2DpI-6MpwKnF9Op4Yxc0vR5wTTsGUFrzWf_Ies306PWmSNYOLZrQ-vWTlXFZCti1yH1YOsFH_ALJiDPVhFRJ8JWwMKWEXXxgsYBFX93qpUB8rohxt-UzzX5D1-ShNjsYPr4d-OVWEihw8RJ2sX3TrfESpdRf8a-HPLAzA8A |
| CODEN | EJORDT |
| CitedBy_id | crossref_primary_10_1007_s13042_019_01036_y crossref_primary_10_1007_s11573_019_00935_4 crossref_primary_10_1109_TCYB_2018_2859363 crossref_primary_10_1016_j_ejor_2015_10_027 crossref_primary_10_1016_j_cor_2018_02_015 crossref_primary_10_1016_j_eswa_2020_113563 crossref_primary_10_1109_TFUZZ_2018_2880700 crossref_primary_10_3390_mca28050100 crossref_primary_10_1109_TEVC_2014_2303783 crossref_primary_10_1016_j_ejor_2025_08_036 crossref_primary_10_1111_deci_12180 crossref_primary_10_1109_TEVC_2020_2987559 crossref_primary_10_3390_mca27060112 crossref_primary_10_1109_TEVC_2019_2915767 crossref_primary_10_1016_j_eswa_2023_122886 crossref_primary_10_1016_j_ejor_2024_07_038 crossref_primary_10_1016_j_omega_2016_07_003 crossref_primary_10_1016_j_asoc_2012_08_030 crossref_primary_10_1109_TEVC_2010_2064323 crossref_primary_10_1016_j_eswa_2015_05_038 crossref_primary_10_1016_j_cie_2020_106462 crossref_primary_10_1016_j_knosys_2012_02_003 crossref_primary_10_1016_j_swevo_2019_100602 crossref_primary_10_1016_j_ejor_2014_10_056 crossref_primary_10_1016_j_ins_2020_11_030 crossref_primary_10_1145_3448301 crossref_primary_10_1016_j_asoc_2016_10_037 crossref_primary_10_1016_j_ins_2015_05_027 crossref_primary_10_1016_j_ins_2013_01_020 crossref_primary_10_1080_0740817X_2014_882532 crossref_primary_10_1155_2016_9635912 crossref_primary_10_1016_j_ejor_2025_06_012 crossref_primary_10_1016_j_cor_2018_04_005 crossref_primary_10_1016_j_ejor_2013_08_046 crossref_primary_10_1109_ACCESS_2018_2856832 crossref_primary_10_1016_j_asoc_2024_111950 crossref_primary_10_3390_aerospace6040042 crossref_primary_10_1137_16M1107826 crossref_primary_10_3390_math9202621 crossref_primary_10_1016_j_ejor_2022_03_005 crossref_primary_10_1155_2017_9094514 crossref_primary_10_1109_TEVC_2023_3234269 crossref_primary_10_1007_s00500_016_2098_x crossref_primary_10_1016_j_trb_2025_103162 crossref_primary_10_1109_TEVC_2023_3269348 crossref_primary_10_1016_j_ejdp_2024_100047 |
| Cites_doi | 10.1002/(SICI)1520-6750(199609)43:6<929::AID-NAV9>3.0.CO;2-6 10.1109/CEC.2000.870272 10.1287/mnsc.22.6.652 10.1109/3468.650320 10.1287/mnsc.1070.0838 10.1109/ICEC.1994.350037 10.1007/978-3-540-24855-2_114 10.1109/4235.985691 10.1287/mnsc.38.5.645 10.1287/ijoc.1050.0170 10.1016/S0305-0548(99)00067-2 10.1287/mnsc.49.12.1726.25117 10.1145/1143997.1144112 10.1037/h0043158 10.1142/S0219622002000403 10.1162/evco.1994.2.3.221 10.1016/j.ejor.2008.07.015 10.1007/978-3-540-44511-1_21 10.1287/mnsc.30.11.1336 10.1287/mnsc.19.4.357 10.1016/S0965-9978(00)00105-8 10.1109/4235.996017 |
| ContentType | Journal Article |
| Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS Copyright Elsevier Sequoia S.A. Oct 16, 2010 |
| Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright Elsevier Sequoia S.A. Oct 16, 2010 |
| DBID | AAYXX CITATION OQ6 IQODW DKI X2L 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ejor.2010.02.027 |
| DatabaseName | CrossRef ECONIS Pascal-Francis RePEc IDEAS RePEc Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Applied Sciences |
| EISSN | 1872-6860 |
| EndPage | 425 |
| ExternalDocumentID | 2013818551 eeeejores_v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417_425_htm 22634699 631118713 10_1016_j_ejor_2010_02_027 S037722171000158X |
| Genre | Feature |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U VH1 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD OQ6 AFXIZ AGCQF AGRNS BNPGV IQODW SSH 02 08R 0R 1 41 6XO 8P AAPBV ABFLS ADALY DKI G- HZ IPNFZ K M MS PQEST STF X X2L 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c524t-36c62d1c4a6476069c4e6c935e4c1c467f6364f486f28b5790c7dd01b108541f3 |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000277873300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sun Nov 09 06:00:50 EST 2025 Wed Aug 18 03:50:56 EDT 2021 Mon Jul 21 09:15:08 EDT 2025 Sat Mar 08 16:21:54 EST 2025 Tue Nov 18 22:28:46 EST 2025 Sat Nov 29 08:16:29 EST 2025 Fri Feb 23 02:32:27 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Multi-objective optimization Interactive optimization Evolutionary optimization Knapsack problem Concave programming Cone Decision making Evolutionary algorithm Multiobjective programming Partial ordering Optimization Concave function Genetic algorithm Preference |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c524t-36c62d1c4a6476069c4e6c935e4c1c467f6364f486f28b5790c7dd01b108541f3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| OpenAccessLink | https://hdl.handle.net/11511/57452 |
| PQID | 204161497 |
| PQPubID | 45678 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_204161497 repec_primary_eeeejores_v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417_425_htm pascalfrancis_primary_22634699 econis_primary_631118713 crossref_primary_10_1016_j_ejor_2010_02_027 crossref_citationtrail_10_1016_j_ejor_2010_02_027 elsevier_sciencedirect_doi_10_1016_j_ejor_2010_02_027 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-10-16 |
| PublicationDateYYYYMMDD | 2010-10-16 |
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationSeriesTitle | European Journal of Operational Research |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2010 |
| Publisher | Elsevier B.V Elsevier Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: Elsevier Sequoia S.A |
| References | Horn, J., Nafploitis, N., Goldberg, D., 1995. A niched pareto genetic algorithm for multi-objective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 82–87. Kondakci, Azizoglu, Köksalan (bib17) 1996; 43 Geoffrion, Dyer, Feinberg (bib12) 1972; 19 (accessed 15.02.06). Branke, J., Deb, Kalyanmoy, 2004. Integrating user preferences into evolutionary multi-objective optimization. KanGal Report, Indian Institute of Technology, Kanpur, India. Kamalian, R., Takagi, H., Agogino, A., 2004. Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1030–1041. Wall, Matthew, 1995. Massachusetts Institute of Technology’s GAlib Library. Dyer, Fishburn, Steuer, Wallenius, Zionts (bib9) 1992; 38 Parmee, Cvetkovic, Bonham, Packahm (bib24) 2001; 32 Srinivas, Deb (bib28) 1994; 2 Korhonen, Wallenius, Zionts (bib18) 1984; 30 Poles, S., Vassileva, M., Sasaki, D., 2006. Multiobjective optimization software. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), Published as a Chapter in Springer State-of-the-Art Survey LNCS 5252 Multiobjective Optimization: Interactive and Evolutionary Approaches. Miller (bib21) 1956; 63 Deb, Kalyanmoy, Sundar, J., Uday, B.R.N., 2005. Reference point based multi-objective optimization using evolutionary algorithms. KanGal Report, Indian Institute of Technology, Kanpur, India. Hanne (bib13) 2005 Caballero, Luque, Molina, Ruiz (bib3) 2002; 1 Coello Coello, Carlos A., 2000. Handling preferences in evolutionary multiobjective optimization: A survey. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 30–37. Michalewicz (bib19) 1996 Ahuja, Orlin, Tiwari (bib1) 2000; 27 Köksalan, Phelps (bib16) 2007; 19 Fonseca, C.M., Fleming, P.J., 1993. Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. Schaffer, J.D., 1984. Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D. Thesis, Vanderbilt University, Nashville, Tennessee. Deb, Pratap, Agarwal, Meyarivan (bib7) 2002; 6 Miettinen (bib20) 1999 Myers, Montgomery (bib23) 2002 Zionts, Wallenius (bib31) 1976; 22 Wallenius, Dyer, Fishburn, Steuer, Zionts, Deb (bib30) 2008; 54 Phelps, Köksalan (bib25) 2003; 49 Cvetkovic, Parmee (bib5) 2002; 6 Fonseca, Fleming (bib11) 1998; 28 Molina, Santana, Hernandez-Diaz, Coello Coello, Caballero (bib22) 2009; 197 Deb (bib6) 2001 10.1016/j.ejor.2010.02.027_bib15 Molina (10.1016/j.ejor.2010.02.027_bib22) 2009; 197 Parmee (10.1016/j.ejor.2010.02.027_bib24) 2001; 32 Fonseca (10.1016/j.ejor.2010.02.027_bib11) 1998; 28 10.1016/j.ejor.2010.02.027_bib14 Srinivas (10.1016/j.ejor.2010.02.027_bib28) 1994; 2 Ahuja (10.1016/j.ejor.2010.02.027_bib1) 2000; 27 Phelps (10.1016/j.ejor.2010.02.027_bib25) 2003; 49 Zionts (10.1016/j.ejor.2010.02.027_bib31) 1976; 22 10.1016/j.ejor.2010.02.027_bib10 Korhonen (10.1016/j.ejor.2010.02.027_bib18) 1984; 30 Deb (10.1016/j.ejor.2010.02.027_bib7) 2002; 6 10.1016/j.ejor.2010.02.027_bib26 10.1016/j.ejor.2010.02.027_bib4 10.1016/j.ejor.2010.02.027_bib27 Kondakci (10.1016/j.ejor.2010.02.027_bib17) 1996; 43 10.1016/j.ejor.2010.02.027_bib29 10.1016/j.ejor.2010.02.027_bib2 Michalewicz (10.1016/j.ejor.2010.02.027_bib19) 1996 Wallenius (10.1016/j.ejor.2010.02.027_bib30) 2008; 54 10.1016/j.ejor.2010.02.027_bib8 Köksalan (10.1016/j.ejor.2010.02.027_bib16) 2007; 19 Deb (10.1016/j.ejor.2010.02.027_bib6) 2001 Miettinen (10.1016/j.ejor.2010.02.027_bib20) 1999 Dyer (10.1016/j.ejor.2010.02.027_bib9) 1992; 38 Myers (10.1016/j.ejor.2010.02.027_bib23) 2002 Hanne (10.1016/j.ejor.2010.02.027_bib13) 2005 Cvetkovic (10.1016/j.ejor.2010.02.027_bib5) 2002; 6 Geoffrion (10.1016/j.ejor.2010.02.027_bib12) 1972; 19 Miller (10.1016/j.ejor.2010.02.027_bib21) 1956; 63 Caballero (10.1016/j.ejor.2010.02.027_bib3) 2002; 1 |
| References_xml | – volume: 27 start-page: 917 year: 2000 end-page: 934 ident: bib1 article-title: A greedy genetic algorithm for the quadratic assignment problem publication-title: Computers and Operations Research – reference: Coello Coello, Carlos A., 2000. Handling preferences in evolutionary multiobjective optimization: A survey. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 30–37. – reference: Deb, Kalyanmoy, Sundar, J., Uday, B.R.N., 2005. Reference point based multi-objective optimization using evolutionary algorithms. KanGal Report, Indian Institute of Technology, Kanpur, India. – volume: 19 start-page: 683 year: 1972 end-page: 694 ident: bib12 article-title: An interactive approach for multicriterion optimization, with an application to the operation of an academic department publication-title: Management Science – year: 1996 ident: bib19 article-title: Genetic Algorithms – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: bib28 article-title: Multi-objective function optimization using non-dominated sorting genetic algorithms publication-title: Evolutionary Computation Journal – reference: Schaffer, J.D., 1984. Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D. Thesis, Vanderbilt University, Nashville, Tennessee. – volume: 6 start-page: 42 year: 2002 end-page: 57 ident: bib5 article-title: Preferences and their application in evolutionary multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation – reference: Kamalian, R., Takagi, H., Agogino, A., 2004. Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1030–1041. – volume: 38 start-page: 645 year: 1992 end-page: 654 ident: bib9 article-title: Multiple criteria decision making, multiattribute utility theory: The next ten years publication-title: Management Science – year: 1999 ident: bib20 article-title: Nonlinear Multiobjective Optimization – start-page: 761 year: 2005 end-page: 766 ident: bib13 article-title: Interactive decision support based on multiobjective evolutionary algorithms publication-title: Operations Research Proceedings (GOR) – volume: 49 start-page: 1726 year: 2003 end-page: 1738 ident: bib25 article-title: An interactive evolutionary metaheuristic for multiobjective combinatorial optimization publication-title: Management Science – volume: 28 start-page: 38 year: 1998 end-page: 47 ident: bib11 article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. Part II: Application example publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans – volume: 63 start-page: 81 year: 1956 end-page: 97 ident: bib21 article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information publication-title: The Psychological Review – reference: Horn, J., Nafploitis, N., Goldberg, D., 1995. A niched pareto genetic algorithm for multi-objective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 82–87. – reference: Wall, Matthew, 1995. Massachusetts Institute of Technology’s GAlib Library. < – volume: 54 start-page: 1336 year: 2008 end-page: 1349 ident: bib30 article-title: Multiple criteria decision making/multiattribute utility theory: Recent accomplishments and what lies ahead publication-title: Management Science – reference: Poles, S., Vassileva, M., Sasaki, D., 2006. Multiobjective optimization software. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), Published as a Chapter in Springer State-of-the-Art Survey LNCS 5252 Multiobjective Optimization: Interactive and Evolutionary Approaches. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib7 article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii publication-title: IEEE Transactions on Evolutionary Computation – reference: Branke, J., Deb, Kalyanmoy, 2004. Integrating user preferences into evolutionary multi-objective optimization. KanGal Report, Indian Institute of Technology, Kanpur, India. – volume: 30 start-page: 1336 year: 1984 end-page: 1345 ident: bib18 article-title: Solving the discrete multiple criteria problem using convex cones publication-title: Management Science – volume: 22 start-page: 652 year: 1976 end-page: 663 ident: bib31 article-title: An interactive programming method for solving the multiple criteria problem publication-title: Management Science – year: 2001 ident: bib6 article-title: Multi-Objective Optimization Using Evolutionary Algorithms – volume: 197 start-page: 685 year: 2009 end-page: 692 ident: bib22 article-title: G-dominance: Reference point based dominance for multiobjective metaheuristics publication-title: European Journal of Operational Research – volume: 32 start-page: 429 year: 2001 end-page: 441 ident: bib24 article-title: Introducing prototype interactive evolutionary systems for ill-defined multi-objective design environments publication-title: Advances in Engineering Software – volume: 19 start-page: 291 year: 2007 end-page: 301 ident: bib16 article-title: An evolutionary metaheuristic for approximating preference-nondominated solutions publication-title: INFORMS Journal on Computing – year: 2002 ident: bib23 article-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments – volume: 1 start-page: 635 year: 2002 end-page: 656 ident: bib3 article-title: Promoin: An interactive system for multiobjective programming publication-title: International Journal of Information Technology and Decision Making – volume: 43 start-page: 929 year: 1996 end-page: 936 ident: bib17 article-title: Note: Bicriteria scheduling minimizing flowtime and maximum tardiness publication-title: Naval Research Logistics – reference: > (accessed 15.02.06). – reference: Fonseca, C.M., Fleming, P.J., 1993. Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. – volume: 43 start-page: 929 year: 1996 ident: 10.1016/j.ejor.2010.02.027_bib17 article-title: Note: Bicriteria scheduling minimizing flowtime and maximum tardiness publication-title: Naval Research Logistics doi: 10.1002/(SICI)1520-6750(199609)43:6<929::AID-NAV9>3.0.CO;2-6 – ident: 10.1016/j.ejor.2010.02.027_bib4 doi: 10.1109/CEC.2000.870272 – volume: 22 start-page: 652 year: 1976 ident: 10.1016/j.ejor.2010.02.027_bib31 article-title: An interactive programming method for solving the multiple criteria problem publication-title: Management Science doi: 10.1287/mnsc.22.6.652 – volume: 28 start-page: 38 year: 1998 ident: 10.1016/j.ejor.2010.02.027_bib11 article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. Part II: Application example publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans doi: 10.1109/3468.650320 – volume: 54 start-page: 1336 year: 2008 ident: 10.1016/j.ejor.2010.02.027_bib30 article-title: Multiple criteria decision making/multiattribute utility theory: Recent accomplishments and what lies ahead publication-title: Management Science doi: 10.1287/mnsc.1070.0838 – ident: 10.1016/j.ejor.2010.02.027_bib14 doi: 10.1109/ICEC.1994.350037 – ident: 10.1016/j.ejor.2010.02.027_bib15 doi: 10.1007/978-3-540-24855-2_114 – volume: 6 start-page: 42 year: 2002 ident: 10.1016/j.ejor.2010.02.027_bib5 article-title: Preferences and their application in evolutionary multiobjective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.985691 – volume: 38 start-page: 645 year: 1992 ident: 10.1016/j.ejor.2010.02.027_bib9 article-title: Multiple criteria decision making, multiattribute utility theory: The next ten years publication-title: Management Science doi: 10.1287/mnsc.38.5.645 – year: 2002 ident: 10.1016/j.ejor.2010.02.027_bib23 – year: 1996 ident: 10.1016/j.ejor.2010.02.027_bib19 – volume: 19 start-page: 291 year: 2007 ident: 10.1016/j.ejor.2010.02.027_bib16 article-title: An evolutionary metaheuristic for approximating preference-nondominated solutions publication-title: INFORMS Journal on Computing doi: 10.1287/ijoc.1050.0170 – year: 1999 ident: 10.1016/j.ejor.2010.02.027_bib20 – volume: 27 start-page: 917 year: 2000 ident: 10.1016/j.ejor.2010.02.027_bib1 article-title: A greedy genetic algorithm for the quadratic assignment problem publication-title: Computers and Operations Research doi: 10.1016/S0305-0548(99)00067-2 – volume: 49 start-page: 1726 year: 2003 ident: 10.1016/j.ejor.2010.02.027_bib25 article-title: An interactive evolutionary metaheuristic for multiobjective combinatorial optimization publication-title: Management Science doi: 10.1287/mnsc.49.12.1726.25117 – ident: 10.1016/j.ejor.2010.02.027_bib8 doi: 10.1145/1143997.1144112 – volume: 63 start-page: 81 year: 1956 ident: 10.1016/j.ejor.2010.02.027_bib21 article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information publication-title: The Psychological Review doi: 10.1037/h0043158 – volume: 1 start-page: 635 year: 2002 ident: 10.1016/j.ejor.2010.02.027_bib3 article-title: Promoin: An interactive system for multiobjective programming publication-title: International Journal of Information Technology and Decision Making doi: 10.1142/S0219622002000403 – ident: 10.1016/j.ejor.2010.02.027_bib26 – start-page: 761 year: 2005 ident: 10.1016/j.ejor.2010.02.027_bib13 article-title: Interactive decision support based on multiobjective evolutionary algorithms publication-title: Operations Research Proceedings (GOR) – volume: 2 start-page: 221 year: 1994 ident: 10.1016/j.ejor.2010.02.027_bib28 article-title: Multi-objective function optimization using non-dominated sorting genetic algorithms publication-title: Evolutionary Computation Journal doi: 10.1162/evco.1994.2.3.221 – ident: 10.1016/j.ejor.2010.02.027_bib10 – volume: 197 start-page: 685 year: 2009 ident: 10.1016/j.ejor.2010.02.027_bib22 article-title: G-dominance: Reference point based dominance for multiobjective metaheuristics publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2008.07.015 – ident: 10.1016/j.ejor.2010.02.027_bib2 doi: 10.1007/978-3-540-44511-1_21 – volume: 30 start-page: 1336 year: 1984 ident: 10.1016/j.ejor.2010.02.027_bib18 article-title: Solving the discrete multiple criteria problem using convex cones publication-title: Management Science doi: 10.1287/mnsc.30.11.1336 – volume: 19 start-page: 683 year: 1972 ident: 10.1016/j.ejor.2010.02.027_bib12 article-title: An interactive approach for multicriterion optimization, with an application to the operation of an academic department publication-title: Management Science doi: 10.1287/mnsc.19.4.357 – volume: 32 start-page: 429 year: 2001 ident: 10.1016/j.ejor.2010.02.027_bib24 article-title: Introducing prototype interactive evolutionary systems for ill-defined multi-objective design environments publication-title: Advances in Engineering Software doi: 10.1016/S0965-9978(00)00105-8 – year: 2001 ident: 10.1016/j.ejor.2010.02.027_bib6 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.ejor.2010.02.027_bib7 article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – ident: 10.1016/j.ejor.2010.02.027_bib29 – ident: 10.1016/j.ejor.2010.02.027_bib27 |
| SSID | ssj0001515 |
| Score | 2.2873087 |
| Snippet | We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function... |
| SourceID | proquest repec pascalfrancis econis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 417 |
| SubjectTerms | Applied sciences Decision making models Decision theory. Utility theory Evolutionary optimization Exact sciences and technology Flows in networks. Combinatorial problems Genetic algorithms Interactive optimization Interactive optimization Multi-objective optimization Evolutionary optimization Knapsack problem Knapsack problem Multi-objective optimization Operational research and scientific management Operational research. Management science Optimization algorithms Preferences Studies |
| Title | Interactive evolutionary multi-objective optimization for quasi-concave preference functions |
| URI | https://dx.doi.org/10.1016/j.ejor.2010.02.027 http://www.econis.eu/PPNSET?PPN=631118713 http://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417-425.htm https://www.proquest.com/docview/204161497 |
| Volume | 206 |
| WOSCitedRecordID | wos000277873300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKOiEQ4lJAK4MpD7xVmVrbsePHAUVcp0kM1AekyHUd9bK2IWnL-E_8SI5j59ICE3ugSqPIcpw25ztXn2Mj9ByLUIPfEftYCQ0OCtd-KKT2pQKBaabNRF6V9uUDPz0NBwNx1mj8LGphNhd8sQgvL0XyX0kNbUBsUzp7DXKXg0IDXAPR4Qxkh_M_ET6P8clcjHX0xj3K5MbluYP-cji1Mq6zBGkxd2WYebbht7XMJj44yMpsSZSUO5B0jPKrAnt_iuM7mxYa0iK66JYRGld67rurOrTZOsdl6o9NFOhnc9n5VLa-N1P4L9gsM7mXedh2DUN3PlYdlul4ubBS80zPZrIewDDJIF3f1lcWhVuc-xjbEs5CKOMuq6EP10QsdR2ttqa2bPo3RWBjEtNjPV2mLoEPw8ErtVdM9e9owzJHsUh_m0ZmjMiMEXUxHPwGamIeCFADzZO3_cG7UvMb4zCftXJ_yBVp2XzC3V-yZQjtm-jHJNuyiO4kMgM-je0GK1seUDPViVY1Q-j8PrrrPBjvxCLvAWroRQvdLAooWuhesVGI5_RGC92urXr5EH2tIdSrI9TbQahXR6gHCPW2EOpVCPVKhD5Cn1_3z1--8d0mH74KMF35hCmGRz1FJaMcvGmhqGZKkEBTBa2Mx4wwGtOQxTgcBlx0FR-Nur2hKZuhvZg8RnsLQNsB8ogeSoGHoWRxQHlMRChHHFwIOcJESMXbqFe88Ui5FfDNRiwX0d9p3Uad8p7Erv9yZe8DS8iyLyNgTIS8R9ooKEgbOePWGq0RQPbKIY-2cFCODH4ToUyINjosgBE5hs9gABO4oAJuf5VjpbxNwwceobNoExEJbAbnH_kVPJLIibmEbwJf4LQI-Csar-ZPrvUaDtGtitGfor1VutbP0L7arCZZeuS45hddzfOY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+evolutionary+multi-objective+optimization+for+quasi-concave+preference+functions&rft.jtitle=European+journal+of+operational+research&rft.au=Fowler%2C+John+W.&rft.au=Gel%2C+Esma+S.&rft.au=K%C3%B6ksalan%2C+Murat+M.&rft.au=Korhonen%2C+Pekka&rft.date=2010-10-16&rft.issn=0377-2217&rft.volume=206&rft.issue=2&rft.spage=417&rft.epage=425&rft_id=info:doi/10.1016%2Fj.ejor.2010.02.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2010_02_027 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |