Interactive evolutionary multi-objective optimization for quasi-concave preference functions

We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preferen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 206; H. 2; S. 417 - 425
Hauptverfasser: Fowler, John W., Gel, Esma S., Köksalan, Murat M., Korhonen, Pekka, Marquis, Jon L., Wallenius, Jyrki
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.10.2010
Elsevier
Elsevier Sequoia S.A
Schriftenreihe:European Journal of Operational Research
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.
AbstractList We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem.
We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function in a customized genetic algorithm. We periodically send solutions to the decision maker (DM) for her evaluation and use the resulting preference information to form preference cones consisting of inferior solutions. The cones allow us to implicitly rank solutions that the DM has not considered. This technique avoids assuming an exact form for the preference function, but does assume that the preference function is quasi-concave. This paper describes the genetic algorithm and demonstrates its performance on the multi-objective knapsack problem. [PUBLICATION ABSTRACT]
Author Fowler, John W.
Köksalan, Murat M.
Gel, Esma S.
Korhonen, Pekka
Marquis, Jon L.
Wallenius, Jyrki
Author_xml – sequence: 1
  givenname: John W.
  surname: Fowler
  fullname: Fowler, John W.
  organization: Arizona State University, P.O. Box 875906, Tempe, AZ 85287-5906, USA
– sequence: 2
  givenname: Esma S.
  surname: Gel
  fullname: Gel, Esma S.
  organization: Arizona State University, P.O. Box 875906, Tempe, AZ 85287-5906, USA
– sequence: 3
  givenname: Murat M.
  surname: Köksalan
  fullname: Köksalan, Murat M.
  organization: Middle East Technical University, 06531 Ankara, Turkey
– sequence: 4
  givenname: Pekka
  surname: Korhonen
  fullname: Korhonen, Pekka
  organization: Aalto University School of Economics, P.O. Box 21210, 00076 AALTO, Finland
– sequence: 5
  givenname: Jon L.
  surname: Marquis
  fullname: Marquis, Jon L.
  organization: Arizona State University, P.O. Box 875906, Tempe, AZ 85287-5906, USA
– sequence: 6
  givenname: Jyrki
  surname: Wallenius
  fullname: Wallenius, Jyrki
  email: Jyrki.Wallenius@hse.fi
  organization: Aalto University School of Economics, P.O. Box 21210, 00076 AALTO, Finland
BackLink http://www.econis.eu/PPNSET?PPN=631118713$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22634699$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417-425.htm$$DView record in RePEc
BookMark eNp9kU1r3DAQhkVJIZu0fyCXmkKP3kqyLNnQSwnNBw300t4KQiuPqIzXciR5If31Ga-XUHqIGH2geWY0mveCnI1hBEKuGN0yyuTnfgt9iFtO8YJyNPWGbFijeCkbSc_IhlZKlZwzdU4uUuoppaxm9Yb8vh8zRGOzP0ABhzDM2YfRxKdiPw_Zl2HXw-oMU_Z7_9cs_sKFWDzOJvnShtEadE8RHEQYLRRuHu1CpXfkrTNDgven_ZL8uvn28_qufPhxe3_99aG0NRe5rKSVvGNWGCmUpLK1AqRtqxqExVupnKykcKKRjje7WrXUqq6jbMdoUwvmqkvycc07xfA4Q8q6D3Mc8UnNqWCSiVYh9H2FIkxg9RT9Hr-pAQe2DpI-6MpwKnF9Op4Yxc0vR5wTTsGUFrzWf_Ies306PWmSNYOLZrQ-vWTlXFZCti1yH1YOsFH_ALJiDPVhFRJ8JWwMKWEXXxgsYBFX93qpUB8rohxt-UzzX5D1-ShNjsYPr4d-OVWEihw8RJ2sX3TrfESpdRf8a-HPLAzA8A
CODEN EJORDT
CitedBy_id crossref_primary_10_1007_s13042_019_01036_y
crossref_primary_10_1007_s11573_019_00935_4
crossref_primary_10_1109_TCYB_2018_2859363
crossref_primary_10_1016_j_ejor_2015_10_027
crossref_primary_10_1016_j_cor_2018_02_015
crossref_primary_10_1016_j_eswa_2020_113563
crossref_primary_10_1109_TFUZZ_2018_2880700
crossref_primary_10_3390_mca28050100
crossref_primary_10_1109_TEVC_2014_2303783
crossref_primary_10_1016_j_ejor_2025_08_036
crossref_primary_10_1111_deci_12180
crossref_primary_10_1109_TEVC_2020_2987559
crossref_primary_10_3390_mca27060112
crossref_primary_10_1109_TEVC_2019_2915767
crossref_primary_10_1016_j_eswa_2023_122886
crossref_primary_10_1016_j_ejor_2024_07_038
crossref_primary_10_1016_j_omega_2016_07_003
crossref_primary_10_1016_j_asoc_2012_08_030
crossref_primary_10_1109_TEVC_2010_2064323
crossref_primary_10_1016_j_eswa_2015_05_038
crossref_primary_10_1016_j_cie_2020_106462
crossref_primary_10_1016_j_knosys_2012_02_003
crossref_primary_10_1016_j_swevo_2019_100602
crossref_primary_10_1016_j_ejor_2014_10_056
crossref_primary_10_1016_j_ins_2020_11_030
crossref_primary_10_1145_3448301
crossref_primary_10_1016_j_asoc_2016_10_037
crossref_primary_10_1016_j_ins_2015_05_027
crossref_primary_10_1016_j_ins_2013_01_020
crossref_primary_10_1080_0740817X_2014_882532
crossref_primary_10_1155_2016_9635912
crossref_primary_10_1016_j_ejor_2025_06_012
crossref_primary_10_1016_j_cor_2018_04_005
crossref_primary_10_1016_j_ejor_2013_08_046
crossref_primary_10_1109_ACCESS_2018_2856832
crossref_primary_10_1016_j_asoc_2024_111950
crossref_primary_10_3390_aerospace6040042
crossref_primary_10_1137_16M1107826
crossref_primary_10_3390_math9202621
crossref_primary_10_1016_j_ejor_2022_03_005
crossref_primary_10_1155_2017_9094514
crossref_primary_10_1109_TEVC_2023_3234269
crossref_primary_10_1007_s00500_016_2098_x
crossref_primary_10_1016_j_trb_2025_103162
crossref_primary_10_1109_TEVC_2023_3269348
crossref_primary_10_1016_j_ejdp_2024_100047
Cites_doi 10.1002/(SICI)1520-6750(199609)43:6<929::AID-NAV9>3.0.CO;2-6
10.1109/CEC.2000.870272
10.1287/mnsc.22.6.652
10.1109/3468.650320
10.1287/mnsc.1070.0838
10.1109/ICEC.1994.350037
10.1007/978-3-540-24855-2_114
10.1109/4235.985691
10.1287/mnsc.38.5.645
10.1287/ijoc.1050.0170
10.1016/S0305-0548(99)00067-2
10.1287/mnsc.49.12.1726.25117
10.1145/1143997.1144112
10.1037/h0043158
10.1142/S0219622002000403
10.1162/evco.1994.2.3.221
10.1016/j.ejor.2008.07.015
10.1007/978-3-540-44511-1_21
10.1287/mnsc.30.11.1336
10.1287/mnsc.19.4.357
10.1016/S0965-9978(00)00105-8
10.1109/4235.996017
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Oct 16, 2010
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Oct 16, 2010
DBID AAYXX
CITATION
OQ6
IQODW
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2010.02.027
DatabaseName CrossRef
ECONIS
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
EISSN 1872-6860
EndPage 425
ExternalDocumentID 2013818551
eeeejores_v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417_425_htm
22634699
631118713
10_1016_j_ejor_2010_02_027
S037722171000158X
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c524t-36c62d1c4a6476069c4e6c935e4c1c467f6364f486f28b5790c7dd01b108541f3
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000277873300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sun Nov 09 06:00:50 EST 2025
Wed Aug 18 03:50:56 EDT 2021
Mon Jul 21 09:15:08 EDT 2025
Sat Mar 08 16:21:54 EST 2025
Tue Nov 18 22:28:46 EST 2025
Sat Nov 29 08:16:29 EST 2025
Fri Feb 23 02:32:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multi-objective optimization
Interactive optimization
Evolutionary optimization
Knapsack problem
Concave programming
Cone
Decision making
Evolutionary algorithm
Multiobjective programming
Partial ordering
Optimization
Concave function
Genetic algorithm
Preference
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c524t-36c62d1c4a6476069c4e6c935e4c1c467f6364f486f28b5790c7dd01b108541f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://hdl.handle.net/11511/57452
PQID 204161497
PQPubID 45678
PageCount 9
ParticipantIDs proquest_journals_204161497
repec_primary_eeeejores_v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417_425_htm
pascalfrancis_primary_22634699
econis_primary_631118713
crossref_primary_10_1016_j_ejor_2010_02_027
crossref_citationtrail_10_1016_j_ejor_2010_02_027
elsevier_sciencedirect_doi_10_1016_j_ejor_2010_02_027
PublicationCentury 2000
PublicationDate 2010-10-16
PublicationDateYYYYMMDD 2010-10-16
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Horn, J., Nafploitis, N., Goldberg, D., 1995. A niched pareto genetic algorithm for multi-objective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 82–87.
Kondakci, Azizoglu, Köksalan (bib17) 1996; 43
Geoffrion, Dyer, Feinberg (bib12) 1972; 19
(accessed 15.02.06).
Branke, J., Deb, Kalyanmoy, 2004. Integrating user preferences into evolutionary multi-objective optimization. KanGal Report, Indian Institute of Technology, Kanpur, India.
Kamalian, R., Takagi, H., Agogino, A., 2004. Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1030–1041.
Wall, Matthew, 1995. Massachusetts Institute of Technology’s GAlib Library.
Dyer, Fishburn, Steuer, Wallenius, Zionts (bib9) 1992; 38
Parmee, Cvetkovic, Bonham, Packahm (bib24) 2001; 32
Srinivas, Deb (bib28) 1994; 2
Korhonen, Wallenius, Zionts (bib18) 1984; 30
Poles, S., Vassileva, M., Sasaki, D., 2006. Multiobjective optimization software. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), Published as a Chapter in Springer State-of-the-Art Survey LNCS 5252 Multiobjective Optimization: Interactive and Evolutionary Approaches.
Miller (bib21) 1956; 63
Deb, Kalyanmoy, Sundar, J., Uday, B.R.N., 2005. Reference point based multi-objective optimization using evolutionary algorithms. KanGal Report, Indian Institute of Technology, Kanpur, India.
Hanne (bib13) 2005
Caballero, Luque, Molina, Ruiz (bib3) 2002; 1
Coello Coello, Carlos A., 2000. Handling preferences in evolutionary multiobjective optimization: A survey. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 30–37.
Michalewicz (bib19) 1996
Ahuja, Orlin, Tiwari (bib1) 2000; 27
Köksalan, Phelps (bib16) 2007; 19
Fonseca, C.M., Fleming, P.J., 1993. Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423.
Schaffer, J.D., 1984. Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D. Thesis, Vanderbilt University, Nashville, Tennessee.
Deb, Pratap, Agarwal, Meyarivan (bib7) 2002; 6
Miettinen (bib20) 1999
Myers, Montgomery (bib23) 2002
Zionts, Wallenius (bib31) 1976; 22
Wallenius, Dyer, Fishburn, Steuer, Zionts, Deb (bib30) 2008; 54
Phelps, Köksalan (bib25) 2003; 49
Cvetkovic, Parmee (bib5) 2002; 6
Fonseca, Fleming (bib11) 1998; 28
Molina, Santana, Hernandez-Diaz, Coello Coello, Caballero (bib22) 2009; 197
Deb (bib6) 2001
10.1016/j.ejor.2010.02.027_bib15
Molina (10.1016/j.ejor.2010.02.027_bib22) 2009; 197
Parmee (10.1016/j.ejor.2010.02.027_bib24) 2001; 32
Fonseca (10.1016/j.ejor.2010.02.027_bib11) 1998; 28
10.1016/j.ejor.2010.02.027_bib14
Srinivas (10.1016/j.ejor.2010.02.027_bib28) 1994; 2
Ahuja (10.1016/j.ejor.2010.02.027_bib1) 2000; 27
Phelps (10.1016/j.ejor.2010.02.027_bib25) 2003; 49
Zionts (10.1016/j.ejor.2010.02.027_bib31) 1976; 22
10.1016/j.ejor.2010.02.027_bib10
Korhonen (10.1016/j.ejor.2010.02.027_bib18) 1984; 30
Deb (10.1016/j.ejor.2010.02.027_bib7) 2002; 6
10.1016/j.ejor.2010.02.027_bib26
10.1016/j.ejor.2010.02.027_bib4
10.1016/j.ejor.2010.02.027_bib27
Kondakci (10.1016/j.ejor.2010.02.027_bib17) 1996; 43
10.1016/j.ejor.2010.02.027_bib29
10.1016/j.ejor.2010.02.027_bib2
Michalewicz (10.1016/j.ejor.2010.02.027_bib19) 1996
Wallenius (10.1016/j.ejor.2010.02.027_bib30) 2008; 54
10.1016/j.ejor.2010.02.027_bib8
Köksalan (10.1016/j.ejor.2010.02.027_bib16) 2007; 19
Deb (10.1016/j.ejor.2010.02.027_bib6) 2001
Miettinen (10.1016/j.ejor.2010.02.027_bib20) 1999
Dyer (10.1016/j.ejor.2010.02.027_bib9) 1992; 38
Myers (10.1016/j.ejor.2010.02.027_bib23) 2002
Hanne (10.1016/j.ejor.2010.02.027_bib13) 2005
Cvetkovic (10.1016/j.ejor.2010.02.027_bib5) 2002; 6
Geoffrion (10.1016/j.ejor.2010.02.027_bib12) 1972; 19
Miller (10.1016/j.ejor.2010.02.027_bib21) 1956; 63
Caballero (10.1016/j.ejor.2010.02.027_bib3) 2002; 1
References_xml – volume: 27
  start-page: 917
  year: 2000
  end-page: 934
  ident: bib1
  article-title: A greedy genetic algorithm for the quadratic assignment problem
  publication-title: Computers and Operations Research
– reference: Coello Coello, Carlos A., 2000. Handling preferences in evolutionary multiobjective optimization: A survey. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 30–37.
– reference: Deb, Kalyanmoy, Sundar, J., Uday, B.R.N., 2005. Reference point based multi-objective optimization using evolutionary algorithms. KanGal Report, Indian Institute of Technology, Kanpur, India.
– volume: 19
  start-page: 683
  year: 1972
  end-page: 694
  ident: bib12
  article-title: An interactive approach for multicriterion optimization, with an application to the operation of an academic department
  publication-title: Management Science
– year: 1996
  ident: bib19
  article-title: Genetic Algorithms
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: bib28
  article-title: Multi-objective function optimization using non-dominated sorting genetic algorithms
  publication-title: Evolutionary Computation Journal
– reference: Schaffer, J.D., 1984. Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D. Thesis, Vanderbilt University, Nashville, Tennessee.
– volume: 6
  start-page: 42
  year: 2002
  end-page: 57
  ident: bib5
  article-title: Preferences and their application in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Kamalian, R., Takagi, H., Agogino, A., 2004. Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1030–1041.
– volume: 38
  start-page: 645
  year: 1992
  end-page: 654
  ident: bib9
  article-title: Multiple criteria decision making, multiattribute utility theory: The next ten years
  publication-title: Management Science
– year: 1999
  ident: bib20
  article-title: Nonlinear Multiobjective Optimization
– start-page: 761
  year: 2005
  end-page: 766
  ident: bib13
  article-title: Interactive decision support based on multiobjective evolutionary algorithms
  publication-title: Operations Research Proceedings (GOR)
– volume: 49
  start-page: 1726
  year: 2003
  end-page: 1738
  ident: bib25
  article-title: An interactive evolutionary metaheuristic for multiobjective combinatorial optimization
  publication-title: Management Science
– volume: 28
  start-page: 38
  year: 1998
  end-page: 47
  ident: bib11
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. Part II: Application example
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans
– volume: 63
  start-page: 81
  year: 1956
  end-page: 97
  ident: bib21
  article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information
  publication-title: The Psychological Review
– reference: Horn, J., Nafploitis, N., Goldberg, D., 1995. A niched pareto genetic algorithm for multi-objective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 82–87.
– reference: Wall, Matthew, 1995. Massachusetts Institute of Technology’s GAlib Library. <
– volume: 54
  start-page: 1336
  year: 2008
  end-page: 1349
  ident: bib30
  article-title: Multiple criteria decision making/multiattribute utility theory: Recent accomplishments and what lies ahead
  publication-title: Management Science
– reference: Poles, S., Vassileva, M., Sasaki, D., 2006. Multiobjective optimization software. In: Branke, J., Deb, K., Miettinen, K., Slowinski, R. (Eds.), Published as a Chapter in Springer State-of-the-Art Survey LNCS 5252 Multiobjective Optimization: Interactive and Evolutionary Approaches.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib7
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: Branke, J., Deb, Kalyanmoy, 2004. Integrating user preferences into evolutionary multi-objective optimization. KanGal Report, Indian Institute of Technology, Kanpur, India.
– volume: 30
  start-page: 1336
  year: 1984
  end-page: 1345
  ident: bib18
  article-title: Solving the discrete multiple criteria problem using convex cones
  publication-title: Management Science
– volume: 22
  start-page: 652
  year: 1976
  end-page: 663
  ident: bib31
  article-title: An interactive programming method for solving the multiple criteria problem
  publication-title: Management Science
– year: 2001
  ident: bib6
  article-title: Multi-Objective Optimization Using Evolutionary Algorithms
– volume: 197
  start-page: 685
  year: 2009
  end-page: 692
  ident: bib22
  article-title: G-dominance: Reference point based dominance for multiobjective metaheuristics
  publication-title: European Journal of Operational Research
– volume: 32
  start-page: 429
  year: 2001
  end-page: 441
  ident: bib24
  article-title: Introducing prototype interactive evolutionary systems for ill-defined multi-objective design environments
  publication-title: Advances in Engineering Software
– volume: 19
  start-page: 291
  year: 2007
  end-page: 301
  ident: bib16
  article-title: An evolutionary metaheuristic for approximating preference-nondominated solutions
  publication-title: INFORMS Journal on Computing
– year: 2002
  ident: bib23
  article-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments
– volume: 1
  start-page: 635
  year: 2002
  end-page: 656
  ident: bib3
  article-title: Promoin: An interactive system for multiobjective programming
  publication-title: International Journal of Information Technology and Decision Making
– volume: 43
  start-page: 929
  year: 1996
  end-page: 936
  ident: bib17
  article-title: Note: Bicriteria scheduling minimizing flowtime and maximum tardiness
  publication-title: Naval Research Logistics
– reference: > (accessed 15.02.06).
– reference: Fonseca, C.M., Fleming, P.J., 1993. Genetic algorithms for multiobjective optimization: Formulation, discussion, and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423.
– volume: 43
  start-page: 929
  year: 1996
  ident: 10.1016/j.ejor.2010.02.027_bib17
  article-title: Note: Bicriteria scheduling minimizing flowtime and maximum tardiness
  publication-title: Naval Research Logistics
  doi: 10.1002/(SICI)1520-6750(199609)43:6<929::AID-NAV9>3.0.CO;2-6
– ident: 10.1016/j.ejor.2010.02.027_bib4
  doi: 10.1109/CEC.2000.870272
– volume: 22
  start-page: 652
  year: 1976
  ident: 10.1016/j.ejor.2010.02.027_bib31
  article-title: An interactive programming method for solving the multiple criteria problem
  publication-title: Management Science
  doi: 10.1287/mnsc.22.6.652
– volume: 28
  start-page: 38
  year: 1998
  ident: 10.1016/j.ejor.2010.02.027_bib11
  article-title: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. Part II: Application example
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans
  doi: 10.1109/3468.650320
– volume: 54
  start-page: 1336
  year: 2008
  ident: 10.1016/j.ejor.2010.02.027_bib30
  article-title: Multiple criteria decision making/multiattribute utility theory: Recent accomplishments and what lies ahead
  publication-title: Management Science
  doi: 10.1287/mnsc.1070.0838
– ident: 10.1016/j.ejor.2010.02.027_bib14
  doi: 10.1109/ICEC.1994.350037
– ident: 10.1016/j.ejor.2010.02.027_bib15
  doi: 10.1007/978-3-540-24855-2_114
– volume: 6
  start-page: 42
  year: 2002
  ident: 10.1016/j.ejor.2010.02.027_bib5
  article-title: Preferences and their application in evolutionary multiobjective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.985691
– volume: 38
  start-page: 645
  year: 1992
  ident: 10.1016/j.ejor.2010.02.027_bib9
  article-title: Multiple criteria decision making, multiattribute utility theory: The next ten years
  publication-title: Management Science
  doi: 10.1287/mnsc.38.5.645
– year: 2002
  ident: 10.1016/j.ejor.2010.02.027_bib23
– year: 1996
  ident: 10.1016/j.ejor.2010.02.027_bib19
– volume: 19
  start-page: 291
  year: 2007
  ident: 10.1016/j.ejor.2010.02.027_bib16
  article-title: An evolutionary metaheuristic for approximating preference-nondominated solutions
  publication-title: INFORMS Journal on Computing
  doi: 10.1287/ijoc.1050.0170
– year: 1999
  ident: 10.1016/j.ejor.2010.02.027_bib20
– volume: 27
  start-page: 917
  year: 2000
  ident: 10.1016/j.ejor.2010.02.027_bib1
  article-title: A greedy genetic algorithm for the quadratic assignment problem
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(99)00067-2
– volume: 49
  start-page: 1726
  year: 2003
  ident: 10.1016/j.ejor.2010.02.027_bib25
  article-title: An interactive evolutionary metaheuristic for multiobjective combinatorial optimization
  publication-title: Management Science
  doi: 10.1287/mnsc.49.12.1726.25117
– ident: 10.1016/j.ejor.2010.02.027_bib8
  doi: 10.1145/1143997.1144112
– volume: 63
  start-page: 81
  year: 1956
  ident: 10.1016/j.ejor.2010.02.027_bib21
  article-title: The magical number seven, plus or minus two: Some limits on our capacity for processing information
  publication-title: The Psychological Review
  doi: 10.1037/h0043158
– volume: 1
  start-page: 635
  year: 2002
  ident: 10.1016/j.ejor.2010.02.027_bib3
  article-title: Promoin: An interactive system for multiobjective programming
  publication-title: International Journal of Information Technology and Decision Making
  doi: 10.1142/S0219622002000403
– ident: 10.1016/j.ejor.2010.02.027_bib26
– start-page: 761
  year: 2005
  ident: 10.1016/j.ejor.2010.02.027_bib13
  article-title: Interactive decision support based on multiobjective evolutionary algorithms
  publication-title: Operations Research Proceedings (GOR)
– volume: 2
  start-page: 221
  year: 1994
  ident: 10.1016/j.ejor.2010.02.027_bib28
  article-title: Multi-objective function optimization using non-dominated sorting genetic algorithms
  publication-title: Evolutionary Computation Journal
  doi: 10.1162/evco.1994.2.3.221
– ident: 10.1016/j.ejor.2010.02.027_bib10
– volume: 197
  start-page: 685
  year: 2009
  ident: 10.1016/j.ejor.2010.02.027_bib22
  article-title: G-dominance: Reference point based dominance for multiobjective metaheuristics
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.07.015
– ident: 10.1016/j.ejor.2010.02.027_bib2
  doi: 10.1007/978-3-540-44511-1_21
– volume: 30
  start-page: 1336
  year: 1984
  ident: 10.1016/j.ejor.2010.02.027_bib18
  article-title: Solving the discrete multiple criteria problem using convex cones
  publication-title: Management Science
  doi: 10.1287/mnsc.30.11.1336
– volume: 19
  start-page: 683
  year: 1972
  ident: 10.1016/j.ejor.2010.02.027_bib12
  article-title: An interactive approach for multicriterion optimization, with an application to the operation of an academic department
  publication-title: Management Science
  doi: 10.1287/mnsc.19.4.357
– volume: 32
  start-page: 429
  year: 2001
  ident: 10.1016/j.ejor.2010.02.027_bib24
  article-title: Introducing prototype interactive evolutionary systems for ill-defined multi-objective design environments
  publication-title: Advances in Engineering Software
  doi: 10.1016/S0965-9978(00)00105-8
– year: 2001
  ident: 10.1016/j.ejor.2010.02.027_bib6
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.ejor.2010.02.027_bib7
  article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 10.1016/j.ejor.2010.02.027_bib29
– ident: 10.1016/j.ejor.2010.02.027_bib27
SSID ssj0001515
Score 2.287214
Snippet We present a new hybrid approach to interactive evolutionary multi-objective optimization that uses a partial preference order to act as the fitness function...
SourceID proquest
repec
pascalfrancis
econis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 417
SubjectTerms Applied sciences
Decision making models
Decision theory. Utility theory
Evolutionary optimization
Exact sciences and technology
Flows in networks. Combinatorial problems
Genetic algorithms
Interactive optimization
Interactive optimization Multi-objective optimization Evolutionary optimization Knapsack problem
Knapsack problem
Multi-objective optimization
Operational research and scientific management
Operational research. Management science
Optimization algorithms
Preferences
Studies
Title Interactive evolutionary multi-objective optimization for quasi-concave preference functions
URI https://dx.doi.org/10.1016/j.ejor.2010.02.027
http://www.econis.eu/PPNSET?PPN=631118713
http://econpapers.repec.org/article/eeeejores/v_3a206_3ay_3a2010_3ai_3a2_3ap_3a417-425.htm
https://www.proquest.com/docview/204161497
Volume 206
WOSCitedRecordID wos000277873300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKOiEQ4tKBVgZTHhAvVabEcezksUAnYFOZRCf1AcnKxVEva5s2bRl_lN_DcexcOlAFD1RJFKWJnfZ8Pjef44PQm4D4LHZCsE5iuai2TUIzdPMl95kdEerGlpvkxSZYv-8Nh_5Vo_GzyIXZ3rD53Lu99dP_Smq4BsSWqbP_QO6yUbgA50B0OALZ4fhXhM99fEHOxjpiq7uSsXF57KC5CCeKx3UWwC1mOg0zjzZcboJsbIKBHMmSRGlZgaQjhV_l2PuTH1_rtHBhVXgX9TJCo0rOfddZhypap4z8UXECvWwWVH7YCzmB_45OMxl5mTttN9Bw5bq9WKxGi7limVdiOg3q3gsZCWKZKrlSudSKtJqvYrlZjKGfs26NAzqMmRir5M4zoTi0x7BJPVWEoGDh2KI1rOIaQybq4d8EhfJZTM7EZLHSAX4YNlaJxSIUoP-Fn19fXvJBbzjY_TbXArCc6gWlx7XfpktTVjOTs_66tMs91MTM9UFgNLufesPPpY4g1ch8fkv_QJ3OpSIP777Tjsp0KP0k42xHd3qUBhmM6ESVYtmxlZorkYqopjINnqLH2tYxugqjz1BDzFvofpFq0UJPipIihpYwLfSwtj7mEfpWw7JRx7JxB8tGHcsGYNnYwbJRYdkosfwcXZ_3Bu8_mrociBm5mKxNh0YUx8BBAkoY2N1-RASNfMcVJJJ8hSXUoSQhHk2wF7rMtyIWx5YdygQbYifOC3QwB2geIyPBxE-C2BKURAQMHt9PXMacJGBejKkdtpFd_OM80mvly5ItN7wIipxwSSUuqcQtDBtro075TKpWitl797EiZHkvdUDt8JjttJFbkJZrNViptxzAu7fJ0x0clC2DheUQ6vttdFIAg2vWkEED0sUBHLuNPuRYKR8T8IEuRMa33AlgiMHxR34GXTrBWJ7CnsIOo4yD8Oej9ezl3k5O0IOKC7xCB-vVRrxGh9F2Pc5Wp3qU_AK76P4p
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactive+evolutionary+multi-objective+optimization+for+quasi-concave+preference+functions&rft.jtitle=European+journal+of+operational+research&rft.au=Fowler%2C+John+W&rft.au=Gel%2C+Esma+S&rft.au=K%C3%B6ksalan%2C+Murat+M&rft.au=Korhonen%2C+Pekka&rft.date=2010-10-16&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=206&rft.issue=2&rft.spage=417&rft_id=info:doi/10.1016%2Fj.ejor.2010.02.027&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2013818551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon