Molecular dynamics simulation-guided drug sensitivity prediction for lung cancer with rare EGFR mutations
Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lun...
Uloženo v:
| Vydáno v: | Proceedings of the National Academy of Sciences - PNAS Ročník 116; číslo 20; s. 10025 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
14.05.2019
|
| Témata: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Next generation sequencing (NGS)-based tumor profiling identified an overwhelming number of uncharacterized somatic mutations, also known as variants of unknown significance (VUS). The therapeutic significance of
mutations outside mutational hotspots, consisting of >50 types, in nonsmall cell lung carcinoma (NSCLC) is largely unknown. In fact, our pan-nation screening of NSCLC without hotspot
mutations (
= 3,779) revealed that the majority (>90%) of cases with rare
mutations, accounting for 5.5% of the cohort subjects, did not receive EGFR-tyrosine kinase inhibitors (TKIs) as a first-line treatment. To tackle this problem, we applied a molecular dynamics simulation-based model to predict the sensitivity of rare EGFR mutants to EGFR-TKIs. The model successfully predicted the diverse in vitro and in vivo sensitivities of exon 20 insertion mutants, including a singleton, to osimertinib, a third-generation EGFR-TKI (
= 0.72,
= 0.0037). Additionally, our model showed a higher consistency with experimentally obtained sensitivity data than other prediction approaches, indicating its robustness in analyzing complex cancer mutations. Thus, the in silico prediction model will be a powerful tool in precision medicine for NSCLC patients carrying rare
mutations in the clinical setting. Here, we propose an insight to overcome mutation diversity in lung cancer. |
|---|---|
| Bibliografie: | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 ObjectType-Feature-4 content type line 23 ObjectType-Report-1 ObjectType-Article-3 |
| ISSN: | 1091-6490 1091-6490 |
| DOI: | 10.1073/pnas.1819430116 |