Dynamical System Modulation for Robot Learning via Kinesthetic Demonstrations
We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control...
Saved in:
| Published in: | IEEE transactions on robotics Vol. 24; no. 6; pp. 1463 - 1467 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.12.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1552-3098, 1941-0468 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to the inverse kinematics problem when dealing with a redundant manipulator. The system is validated on two experiments involving a humanoid robot: putting an object into a box and reaching for and grasping an object. |
|---|---|
| AbstractList | We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to the inverse kinematics problem when dealing with a redundant manipulator. The system is validated on two experiments involving a humanoid robot: putting an object into a box and reaching for and grasping an object. We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations in the environment. It combines a dynamical system control approach with tools of statistical learning theory and provides a solution to the inverse kinematics problem when dealing with a redundant manipulator. The system is validated on two experiments involving a humanoid robot: putting an object into a box and reaching for and grasping an object. [PUBLICATION ABSTRACT] We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and correctly reproduce it despite changes in the initial conditions and perturbations [abstract truncated by publisher]. |
| Author | Hersch, M. Guenter, F. Billard, A. Calinon, S. |
| Author_xml | – sequence: 1 givenname: M. surname: Hersch fullname: Hersch, M. organization: Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne – sequence: 2 givenname: F. surname: Guenter fullname: Guenter, F. organization: Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne – sequence: 3 givenname: S. surname: Calinon fullname: Calinon, S. organization: Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne – sequence: 4 givenname: A. surname: Billard fullname: Billard, A. organization: Learning Algorithms & Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21002834$$DView record in Pascal Francis |
| BookMark | eNqFkT1PHDEQhq0IpPDVR0qzihRSHYw_1y4jSALKISRCasvrnU2Mdm1i70W6fx8fd6KgIM3YxfPaM_Mckr2YIhLyjsIZpWDO7-9uzxiA3hTVAn9DDqgRdAFC6b16l5ItOBj9lhyW8gDAhAF-QG4u19FNwbux-bEuM07NTepXo5tDis2QcnOXujQ3S3Q5hvir-Rtc8z1ELPNvnINvLnFKscz5KVCOyf7gxoInu_OI_Pz65f7iarG8_XZ98Xm58JLxuVZEp6juDBdegHDM90oZMfBeKuHMIDvPmRCik9D1vdEClR8ctLwd2hYNPyKftu8-5vRnVZuxUygex9FFTKti62iKMSb5f0mtDdd1gaqSp6-SXAiqmZQV_PACfEirHOu8lgGVyrSKVejjDnKlLnfILvpQ7GMOk8try2g1oLmoHGw5n1MpGYdnhILdiLVVrN2ItTuxNaJeRHyYn_ZfNYTxteD7bTAg4vM_QrVCMeD_AJPEsII |
| CODEN | ITREAE |
| CitedBy_id | crossref_primary_10_1016_j_bica_2017_02_004 crossref_primary_10_1016_j_cam_2022_114523 crossref_primary_10_1007_s43154_022_00082_9 crossref_primary_10_5772_10575 crossref_primary_10_1049_ccs2_12025 crossref_primary_10_1109_THMS_2022_3184051 crossref_primary_10_1016_j_robot_2023_104427 crossref_primary_10_1016_j_isatra_2022_02_041 crossref_primary_10_1109_TASE_2021_3139096 crossref_primary_10_20965_jrm_2017_p0919 crossref_primary_10_1109_TRO_2011_2159412 crossref_primary_10_1016_j_trit_2016_03_010 crossref_primary_10_1007_s10514_015_9435_2 crossref_primary_10_1007_s12369_010_0060_0 crossref_primary_10_1007_s10514_013_9361_0 crossref_primary_10_1177_1729881417703930 crossref_primary_10_1016_j_robot_2011_07_004 crossref_primary_10_1016_j_robot_2012_09_012 crossref_primary_10_1002_rcs_1774 crossref_primary_10_1080_02533839_2025_2517354 crossref_primary_10_1016_j_mechatronics_2020_102418 crossref_primary_10_1007_s10514_009_9121_3 crossref_primary_10_1007_s12369_015_0318_7 crossref_primary_10_1080_01691864_2013_808305 crossref_primary_10_1109_TSMCA_2012_2207108 crossref_primary_10_1109_TIE_2011_2126530 crossref_primary_10_1007_s10514_017_9635_z crossref_primary_10_1016_j_rcim_2024_102748 crossref_primary_10_1016_j_robot_2011_07_009 crossref_primary_10_1109_MRA_2010_936947 crossref_primary_10_1007_s10514_012_9284_1 crossref_primary_10_1007_s11370_015_0187_9 crossref_primary_10_5772_61036 crossref_primary_10_1016_j_ifacol_2023_01_141 crossref_primary_10_1109_LRA_2016_2525827 crossref_primary_10_1007_s40747_021_00533_4 crossref_primary_10_1109_TAMD_2014_2319861 crossref_primary_10_1145_3209045 crossref_primary_10_1109_TAMD_2012_2208962 crossref_primary_10_1007_s10514_009_9118_y crossref_primary_10_1007_s10514_016_9601_1 crossref_primary_10_1109_LRA_2019_2932610 crossref_primary_10_1007_s10458_019_09430_0 crossref_primary_10_1007_s11370_015_0190_1 crossref_primary_10_3390_app9245279 crossref_primary_10_1016_j_robot_2020_103692 crossref_primary_10_1109_TNNLS_2019_2892207 crossref_primary_10_3390_agriculture14030394 crossref_primary_10_1109_TMECH_2015_2510165 crossref_primary_10_1108_AA_11_2018_0236 crossref_primary_10_1007_s13218_021_00704_y crossref_primary_10_1007_s11071_024_10149_1 crossref_primary_10_1108_IR_12_2019_0258 crossref_primary_10_1109_TIE_2016_2613843 crossref_primary_10_3389_frobt_2017_00045 crossref_primary_10_1007_s12369_012_0160_0 crossref_primary_10_1177_0278364913482016 crossref_primary_10_1109_THMS_2022_3207699 crossref_primary_10_12677_AIRR_2012_11001 crossref_primary_10_1007_s10015_012_0039_z crossref_primary_10_1137_22M152373X crossref_primary_10_1109_JSTSP_2016_2532847 crossref_primary_10_3389_fnbot_2018_00071 crossref_primary_10_1007_s10514_018_9705_x crossref_primary_10_1109_TSMC_2020_3013904 crossref_primary_10_1007_s12555_012_0114_1 crossref_primary_10_1524_auto_2010_0881 crossref_primary_10_1016_j_heliyon_2024_e33605 crossref_primary_10_1080_01691864_2020_1778523 crossref_primary_10_1109_ACCESS_2019_2953122 crossref_primary_10_1016_j_rcim_2019_03_005 crossref_primary_10_1016_j_neunet_2015_05_005 crossref_primary_10_1177_0278364910376251 crossref_primary_10_1016_j_robot_2017_09_019 crossref_primary_10_1016_j_robot_2017_09_012 crossref_primary_10_1109_ACCESS_2019_2952762 crossref_primary_10_1109_ACCESS_2021_3081449 crossref_primary_10_1017_dsi_2019_363 crossref_primary_10_1016_j_engappai_2016_03_006 crossref_primary_10_1016_j_neucom_2014_12_068 crossref_primary_10_1016_j_rcim_2020_101979 crossref_primary_10_1109_MSMC_2023_3238855 crossref_primary_10_3389_fnins_2021_694914 crossref_primary_10_1007_s10010_016_0208_7 crossref_primary_10_1007_s12369_012_0161_z crossref_primary_10_1109_LRA_2017_2651368 crossref_primary_10_1080_01691864_2019_1704869 crossref_primary_10_1163_016918609X12529294461843 crossref_primary_10_3389_frobt_2020_580835 crossref_primary_10_1109_TCYB_2015_2414277 crossref_primary_10_1007_s12559_014_9276_x crossref_primary_10_3390_robotics7020017 crossref_primary_10_1080_01691864_2015_1007084 crossref_primary_10_1007_s00500_015_1981_1 crossref_primary_10_1016_j_robot_2012_05_004 crossref_primary_10_1088_1757_899X_709_2_022092 crossref_primary_10_1109_TRO_2010_2065430 |
| Cites_doi | 10.1115/1.3143764 10.1214/aos/1176344136 10.1109/TRO.2005.861485 10.1109/ROBOT.2004.1302393 10.1177/027836499701600102 10.1109/ROBOT.2004.1308798 10.1177/0278364904042199 10.1109/ROBOT.2004.1307247 10.1109/TSMCB.2006.886952 10.1163/156855307782148550 10.1177/02783649922066385 10.1109/TIE.2003.814765 10.1109/TSMC.1986.289285 10.1016/j.robot.2004.03.005 10.1016/j.robot.2006.01.007 10.1109/ROBOT.2007.364200 10.1109/ROBOT.2007.363903 10.1142/S0219843604000320 10.1145/1228716.1228765 10.1109/ROBOT.1997.620064 |
| ContentType | Journal Article |
| Copyright | 2009 INIST-CNRS Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2008 |
| Copyright_xml | – notice: 2009 INIST-CNRS – notice: Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2008 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
| DOI | 10.1109/TRO.2008.2006703 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1941-0468 |
| EndPage | 1467 |
| ExternalDocumentID | 1626565411 21002834 10_1109_TRO_2008_2006703 4674620 |
| Genre | orig-research Feature |
| GroupedDBID | .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS VJK AAYXX CITATION IQODW RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D F28 |
| ID | FETCH-LOGICAL-c523t-c5eea618b934c404a2cd6694f3d564a9f5bc32444b50bdd984e6cfa0737f77e93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 177 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000262220900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1552-3098 |
| IngestDate | Thu Oct 02 05:16:41 EDT 2025 Sun Sep 28 10:24:10 EDT 2025 Sat Sep 27 19:56:27 EDT 2025 Mon Jun 30 06:37:49 EDT 2025 Mon Jul 21 09:17:15 EDT 2025 Tue Nov 18 22:34:46 EST 2025 Sat Nov 29 06:22:27 EST 2025 Tue Aug 26 16:47:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Gaussian mixture regression Dynamical system control manipulators robot programming by demonstration (PbD) intelligent robots simple robotic manipulation hybrid joint and end-effector control Mixed distribution Gripping Redundancy Intelligent robot Dynamical system Robotics Manipulator Inverse problem Robot programming Humanoid robot Gripper Gesture Probability learning |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c523t-c5eea618b934c404a2cd6694f3d564a9f5bc32444b50bdd984e6cfa0737f77e93 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | http://infoscience.epfl.ch/record/117919 |
| PQID | 201569762 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | pascalfrancis_primary_21002834 proquest_miscellaneous_903622253 proquest_miscellaneous_889381106 crossref_citationtrail_10_1109_TRO_2008_2006703 proquest_journals_201569762 ieee_primary_4674620 crossref_primary_10_1109_TRO_2008_2006703 proquest_miscellaneous_34418255 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-12-01 |
| PublicationDateYYYYMMDD | 2008-12-01 |
| PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on robotics |
| PublicationTitleAbbrev | TRO |
| PublicationYear | 2008 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref24 ref12 ref23 ref15 ref20 ref11 ref22 ref10 ref21 ref2 ref17 ref16 guenter (ref18) 2007; 21 ref8 ref7 ref4 grimes (ref14) 2007; 19 ref3 ref6 ref5 billard (ref1) 2008 ghahramani (ref19) 1994; 6 ijspeert (ref9) 2002 |
| References_xml | – ident: ref22 doi: 10.1115/1.3143764 – ident: ref23 doi: 10.1214/aos/1176344136 – ident: ref17 doi: 10.1109/TRO.2005.861485 – ident: ref5 doi: 10.1109/ROBOT.2004.1302393 – ident: ref3 doi: 10.1177/027836499701600102 – ident: ref8 doi: 10.1109/ROBOT.2004.1308798 – ident: ref13 doi: 10.1177/0278364904042199 – ident: ref7 doi: 10.1109/ROBOT.2004.1307247 – ident: ref24 doi: 10.1109/TSMCB.2006.886952 – volume: 21 start-page: 1521 year: 2007 ident: ref18 article-title: reinforcement learning for imitating constrained reaching movements publication-title: RSJ Adv Robot doi: 10.1163/156855307782148550 – ident: ref2 doi: 10.1177/02783649922066385 – start-page: 1398 year: 2002 ident: ref9 article-title: movement imitation with nonlinear dynamical systems in humanoid robots publication-title: Proc IEEE Int Conf Robot Autom – ident: ref15 doi: 10.1109/TIE.2003.814765 – volume: 6 start-page: 120 year: 1994 ident: ref19 publication-title: Advances in neural information processing systems – ident: ref21 doi: 10.1109/TSMC.1986.289285 – ident: ref16 doi: 10.1016/j.robot.2004.03.005 – ident: ref20 doi: 10.1016/j.robot.2006.01.007 – ident: ref6 doi: 10.1109/ROBOT.2007.364200 – ident: ref11 doi: 10.1109/ROBOT.2007.363903 – volume: 19 start-page: 521 year: 2007 ident: ref14 article-title: learning nonparametric models for probabilistic imitation publication-title: Proc Adv Neural Inf Process Syst – year: 2008 ident: ref1 publication-title: Handbook of Robotics – ident: ref10 doi: 10.1142/S0219843604000320 – ident: ref12 doi: 10.1145/1228716.1228765 – ident: ref4 doi: 10.1109/ROBOT.1997.620064 |
| SSID | ssj0024903 |
| Score | 2.3837566 |
| Snippet | We present a system for robust robot skill acquisition from kinesthetic demonstrations. This system allows a robot to learn a simple goal-directed gesture and... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1463 |
| SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Control systems Control theory. Systems Controllers Dealing Dynamical system control Dynamical systems Dynamics Exact sciences and technology Gaussian mixture regression Grasping Hidden Markov models Humans hybrid joint and end-effector control Initial conditions Intelligent robots Inverse kinematics Kinematics Manipulators Modelling and identification Modulation Robot control Robot programming robot programming by demonstration (PbD) Robot sensing systems Robotic assembly Robotics Robots simple robotic manipulation Spatiotemporal phenomena |
| Title | Dynamical System Modulation for Robot Learning via Kinesthetic Demonstrations |
| URI | https://ieeexplore.ieee.org/document/4674620 https://www.proquest.com/docview/201569762 https://www.proquest.com/docview/34418255 https://www.proquest.com/docview/889381106 https://www.proquest.com/docview/903622253 |
| Volume | 24 |
| WOSCitedRecordID | wos000262220900020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0468 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024903 issn: 1552-3098 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4lAOhZYi0i3UBy6VSDcbO459rAoIiVeFAHGL_ApCgg0iu_v7GdvZtKiAxCWKlIk1mvHjG3s8H8COodxYRA6pztENjKsi1VzqlDIEC8IXpAv7HVfH5empuL6WfxZgt78L45wLyWfup38NZ_m2MVO_VTb0zBg8xwB9sSx5vKv1t66eDCzIvqJYSjMp5keSmRxenJ_FpMk83Eqhz5agwKniMyJVi0apI5vFfxNzWG0OVt-n5xp87FAl-RW7wSdYcOPPsPJPrcF1ONmL3PMoFquUk5PGdtxdBJErOW90MyFdvdUbMrtV5MjnxCNCxFbJnrv3UDJ2mPYLXB7sX_w-TDsuhdRgqDnBp3OKj4SWlBn0gMqN5VyymtqCMyXrQhvEVozpItPWSsEcN7XCCaCsy9JJugFL42bsNoEoqzNpMfKywqFHCyW1papgLhOlVHWewHBu3sp0hcY938VdFQKOTFbokEh_2TkkgR_9Hw-xyMYbsuve4L1cZ-sEtp95sP-ejwIdE0tgMHdp1Q3TFtvE8BUBGer8vf-K48sfmqixa6ZtRREvYhRdJEBekRAI-QTqyl8XkR4n4MxJv76s_QA-hDyUkCbzDZYmj1O3BctmNrltH7dDR38CJJ_6-g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hWgk4tOVRNdCCD71Uaths7Dj2sSpFVOxuK7RF3CK_gpDaDSK7_H7GdjYUAZV6iSJlYo1m_PjGHs8H8NFQbiwih1Tn6AbGVZFqLnVKGYIF4QvShf2O81E5mYiLC_lzBT73d2GccyH5zB3613CWbxuz8FtlA8-MwXMM0F8UjOVZvK11X1lPBh5kX1MspZkUy0PJTA6mZz9i2mQe7qXQB4tQYFXxOZGqRbPUkc_i0dQc1pvj1_-n6Rt41eFK8iV2hE1YcbMt2Pir2uA2jI8i-zyKxTrlZNzYjr2LIHYlZ41u5qSruHpJbq8UOfVZ8YgRsVVy5P54MBm7TLsDv46_Tb-epB2bQmow2Jzj0znFh0JLygz6QOXGci5ZTW3BmZJ1oQ2iK8Z0kWlrpWCOm1rhFFDWZekkfQurs2bm3gFRVmfSYuxlhUOfFkpqS1XBXCZKqeo8gcHSvJXpSo17xovfVQg5MlmhQyIBZueQBD71f1zHMhv_kN32Bu_lOlsnsP_Ag_33fBgImVgCe0uXVt1AbbFNDGARkqHOB_1XHGH-2ETNXLNoK4qIEePoIgHyjIRA0CdQV_68iPRIAedOuvu09gewdjIdj6rR98npHqyHrJSQNPMeVuc3C_cBXprb-VV7sx86_R1QF_5B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+System+Modulation+for+Robot+Learning+via+Kinesthetic+Demonstrations&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Hersch%2C+M&rft.au=Guenter%2C+F&rft.au=Calinon%2C+S&rft.au=Billard%2C+A&rft.date=2008-12-01&rft.issn=1552-3098&rft.volume=24&rft.issue=6&rft.spage=1463&rft.epage=1467&rft_id=info:doi/10.1109%2FTRO.2008.2006703&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon |