Real-time diffusion-perfusion mismatch analysis in acute stroke

Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging Vol. 32; no. 5; pp. 1024 - 1037
Main Authors: Straka, Matus, Albers, Gregory W., Bammer, Roland
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.11.2010
Subjects:
ISSN:1053-1807, 1522-2586, 1522-2586
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, Tmax) using deconvolution of tissue and arterial signals. Diffusion‐weighted imaging/perfusion‐weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from Tmax maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r2 = 0.99 for DWI and r2 = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5–7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. J. Magn. Reson. Imaging 2010;32:1024–1037. © 2010 Wiley‐Liss, Inc.
AbstractList Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (CBV, CBF, MTT, and Tmax) using deconvolution of tissue and arterial signals. DWI/PWI mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from Tmax maps. The performance of the RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r2 = 0.99 for DWI and r2 = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 minutes. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials.
Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RA pid processing of P erfus I on and D iffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T max ) using deconvolution of tissue and arterial signals. Diffusion‐weighted imaging/perfusion‐weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T max maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r 2 = 0.99 for DWI and r 2 = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5–7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. J. Magn. Reson. Imaging 2010;32:1024–1037. © 2010 Wiley‐Liss, Inc.
Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, Tmax) using deconvolution of tissue and arterial signals. Diffusion‐weighted imaging/perfusion‐weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from Tmax maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r2 = 0.99 for DWI and r2 = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5–7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. J. Magn. Reson. Imaging 2010;32:1024–1037. © 2010 Wiley‐Liss, Inc.
Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T(max)) using deconvolution of tissue and arterial signals. Diffusion-weighted imaging/perfusion-weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T(max) maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r(2) = 0.99 for DWI and r(2) = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials.
Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T(max)) using deconvolution of tissue and arterial signals. Diffusion-weighted imaging/perfusion-weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T(max) maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r(2) = 0.99 for DWI and r(2) = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials.Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T(max)) using deconvolution of tissue and arterial signals. Diffusion-weighted imaging/perfusion-weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T(max) maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r(2) = 0.99 for DWI and r(2) = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials.
Author Bammer, Roland
Straka, Matus
Albers, Gregory W.
AuthorAffiliation 3 Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
1 Department of Radiology, Stanford University, Stanford, CA, USA
2 Stanford Stroke Center, Stanford University Medical Center, Stanford, CA, USA
AuthorAffiliation_xml – name: 2 Stanford Stroke Center, Stanford University Medical Center, Stanford, CA, USA
– name: 3 Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
– name: 1 Department of Radiology, Stanford University, Stanford, CA, USA
Author_xml – sequence: 1
  givenname: Matus
  surname: Straka
  fullname: Straka, Matus
  organization: Department of Radiology, Stanford University, Stanford, California, USA
– sequence: 2
  givenname: Gregory W.
  surname: Albers
  fullname: Albers, Gregory W.
  organization: Stanford Stroke Center, Stanford University Medical Center, Stanford, California, USA
– sequence: 3
  givenname: Roland
  surname: Bammer
  fullname: Bammer, Roland
  email: rbammer@stanford.edu
  organization: Department of Radiology, Stanford University, Stanford, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21031505$$D View this record in MEDLINE/PubMed
BookMark eNp9kUlvFDEQhS0URBa48ANQ35AidfDSbvdcQBAlIZAEZcQicSnVuKuJk14mthuYf49DZyJAKCeX5O-9V8s22-iHnhh7Kvie4Fy-uOy825NSqeoB2xJaylzqqtxINdcqFxU3m2w7hEvO-WxW6EdsUwquhOZ6i72aE7Z5dB1ltWuaMbihz5fkpyrrXOgw2osMe2xXwYXM9RnaMVIWoh-u6DF72GAb6Mntu8M-HR583H-bn3w4Ot5_fZJbLVWVp7SCrCEsCyMsFpQ6sVVpbYGNEKU0Fm1tFEmJC24Q6xlKW8hFZRuJVS3UDns5-S7HRUe1pT56bGHpXYd-BQM6-PundxfwbfgOcmZ0wYtk8PzWwA_XI4UIaTZLbYs9DWMAU8rUWqlMIp_9GXWXsV5aAvgEWD-E4KkB6yLGtK-U7FoQHG7uAjd3gd93SZLdfyRr1__CYoJ_uJZW95Dw7nR-vNbkk8aFSD_vNOivoDTKaPhydgTn5_Ovn9-rU3ijfgE31q8m
CitedBy_id crossref_primary_10_1038_jcbfm_2012_121
crossref_primary_10_1007_s00115_018_0535_z
crossref_primary_10_1177_0271678X19831024
crossref_primary_10_1007_s11604_024_01583_7
crossref_primary_10_1038_s41598_020_80036_3
crossref_primary_10_3389_fneur_2024_1345914
crossref_primary_10_3389_fneur_2018_00702
crossref_primary_10_1002_mrm_25232
crossref_primary_10_1002_mrm_27532
crossref_primary_10_1161_STROKEAHA_114_006564
crossref_primary_10_1007_s10278_019_00222_2
crossref_primary_10_3389_fneur_2024_1441055
crossref_primary_10_1371_journal_pone_0185552
crossref_primary_10_1016_j_media_2016_07_009
crossref_primary_10_1002_jmri_26778
crossref_primary_10_1038_jcbfm_2015_108
crossref_primary_10_1161_STROKEAHA_111_644344
crossref_primary_10_1007_s00117_013_2486_5
crossref_primary_10_1161_STROKEAHA_116_014177
crossref_primary_10_1007_s10140_019_01675_2
crossref_primary_10_2147_RMI_S331876
crossref_primary_10_1002_mrm_23283
crossref_primary_10_3390_brainsci12111451
crossref_primary_10_1161_STROKEAHA_114_008171
crossref_primary_10_1159_000501547
crossref_primary_10_1161_STROKEAHA_113_003340
crossref_primary_10_1016_j_wneu_2019_01_176
crossref_primary_10_1159_000519730
crossref_primary_10_1161_STROKEAHA_113_002135
crossref_primary_10_1371_journal_pone_0151772
crossref_primary_10_1016_j_neurad_2021_05_001
crossref_primary_10_1007_s11940_016_0403_8
crossref_primary_10_1212_WNL_0b013e3182a08f07
crossref_primary_10_1016_j_media_2020_101791
crossref_primary_10_55095_CesRadiol2020_024
crossref_primary_10_1002_ana_24543
crossref_primary_10_1007_s00234_021_02855_z
crossref_primary_10_1161_STROKEAHA_113_004085
crossref_primary_10_1111_ijs_12207
crossref_primary_10_1002_mrm_23195
crossref_primary_10_1111_ijs_12206
crossref_primary_10_1177_1747493017701147
crossref_primary_10_3414_ME14_01_0007
crossref_primary_10_1002_jmri_23613
crossref_primary_10_1002_mp_12015
crossref_primary_10_1007_s11940_015_0376_z
crossref_primary_10_1177_0271678X221083471
crossref_primary_10_1161_STROKEAHA_113_003798
crossref_primary_10_1016_j_jns_2017_02_044
crossref_primary_10_3389_fneur_2020_00120
crossref_primary_10_1161_STROKEAHA_123_044606
crossref_primary_10_1177_0846537120902068
crossref_primary_10_3390_jcm9113383
crossref_primary_10_1161_STROKEAHA_111_639773
crossref_primary_10_1038_srep08910
crossref_primary_10_1136_neurintsurg_2018_013784
crossref_primary_10_1016_j_nicl_2012_10_003
crossref_primary_10_1007_s00330_016_4415_2
crossref_primary_10_1111_ijs_12436
crossref_primary_10_3171_2021_10_JNS21986
crossref_primary_10_1002_mp_15508
crossref_primary_10_1161_STROKEAHA_117_020200
crossref_primary_10_3389_fneur_2018_00737
crossref_primary_10_1371_journal_pone_0249772
crossref_primary_10_4329_wjr_v16_i8_329
crossref_primary_10_1159_000365503
crossref_primary_10_1161_STROKEAHA_112_653329
crossref_primary_10_1002_jmri_24963
crossref_primary_10_1016_S1474_4422_12_70203_X
crossref_primary_10_1161_STROKEAHA_121_036871
crossref_primary_10_1161_STROKEAHA_116_014707
crossref_primary_10_1016_j_spen_2022_100989
crossref_primary_10_1161_STROKEAHA_120_032822
crossref_primary_10_1161_STROKEAHA_120_032941
crossref_primary_10_1177_0271678X16674221
crossref_primary_10_1007_s00062_019_00817_w
crossref_primary_10_1002_mrm_24500
crossref_primary_10_1177_0271678X20924549
crossref_primary_10_1016_j_media_2022_102610
crossref_primary_10_1093_neuros_nyw108
crossref_primary_10_1148_radiol_2015150319
crossref_primary_10_3389_fneur_2017_00657
crossref_primary_10_1111_j_1747_4949_2012_00783_x
crossref_primary_10_3389_fneur_2022_752450
crossref_primary_10_3389_fneur_2017_00539
crossref_primary_10_1016_j_wneu_2018_10_084
crossref_primary_10_1007_s00062_017_0634_4
crossref_primary_10_1161_STR_0000000000000074
crossref_primary_10_1016_j_media_2017_12_009
crossref_primary_10_3389_fneur_2022_899957
crossref_primary_10_1016_j_neurol_2017_09_002
crossref_primary_10_1161_STROKEAHA_119_026640
crossref_primary_10_1007_s00330_017_5174_4
crossref_primary_10_1002_brb3_3521
crossref_primary_10_1161_STROKEAHA_121_034444
crossref_primary_10_1111_ene_13287
crossref_primary_10_1016_j_ejrad_2019_02_038
crossref_primary_10_1111_ijs_12068
crossref_primary_10_1111_ijs_12186
crossref_primary_10_3389_fcvm_2022_861913
crossref_primary_10_1016_j_mric_2023_09_010
crossref_primary_10_1111_j_1747_4949_2012_00941_x
crossref_primary_10_3390_ctn5030021
crossref_primary_10_1007_s11886_012_0315_5
crossref_primary_10_1177_1179573520943314
crossref_primary_10_1007_s40120_022_00409_w
crossref_primary_10_1136_neurintsurg_2013_010973
crossref_primary_10_1017_cjn_2022_9
crossref_primary_10_1007_s12975_012_0167_8
crossref_primary_10_1111_jon_12850
crossref_primary_10_1016_j_jneumeth_2021_109260
crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_09_031
crossref_primary_10_1055_s_0041_1742181
crossref_primary_10_1038_s41598_025_96340_9
crossref_primary_10_1212_WNL_0000000000005413
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106548
crossref_primary_10_1038_s41598_020_66041_6
crossref_primary_10_1212_WNL_0000000000001853
crossref_primary_10_1038_s41598_017_17533_5
crossref_primary_10_1161_STROKEAHA_116_013147
crossref_primary_10_1161_STROKEAHA_116_013021
crossref_primary_10_1148_radiol_220080
crossref_primary_10_1016_j_acra_2018_12_013
crossref_primary_10_3389_fnins_2021_608799
crossref_primary_10_1007_s13311_023_01358_4
crossref_primary_10_1212_WNL_0000000000012855
crossref_primary_10_1038_jcbfm_2011_102
crossref_primary_10_1177_0271678X20982395
crossref_primary_10_1161_STROKEAHA_110_609008
crossref_primary_10_6009_jjrt_25_0907
crossref_primary_10_1038_s41598_023_48700_6
crossref_primary_10_1016_j_compbiomed_2024_109590
crossref_primary_10_1136_neurintsurg_2019_015135
crossref_primary_10_1007_s00330_020_07485_2
crossref_primary_10_1016_j_jneumeth_2019_108575
crossref_primary_10_1111_joim_12653
crossref_primary_10_1111_jon_13003
crossref_primary_10_1371_journal_pone_0196161
crossref_primary_10_1016_j_clinimag_2021_09_015
crossref_primary_10_1002_mrm_29431
crossref_primary_10_1159_000481205
crossref_primary_10_1177_0271678X15610586
crossref_primary_10_1056_NEJMoa1713973
crossref_primary_10_1111_jon_12272
crossref_primary_10_1111_ijs_12271
crossref_primary_10_1177_1747493019873515
crossref_primary_10_1016_j_nicl_2016_11_018
crossref_primary_10_1007_s00415_021_10638_y
crossref_primary_10_3389_fninf_2018_00021
crossref_primary_10_1161_STROKEAHA_119_028101
crossref_primary_10_1097_RCT_0000000000000570
crossref_primary_10_1007_s00234_024_03335_w
crossref_primary_10_1177_1747493015607503
crossref_primary_10_1136_svn_2023_002411
crossref_primary_10_1016_j_wneu_2024_01_012
crossref_primary_10_3348_kjr_2014_15_5_554
crossref_primary_10_1016_j_wneu_2024_04_113
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106870
crossref_primary_10_1016_j_expneurol_2024_115117
crossref_primary_10_1161_STROKEAHA_114_004772
crossref_primary_10_1161_STROKEAHA_124_050171
crossref_primary_10_1111_ijs_12381
crossref_primary_10_3348_kjr_2018_0615
crossref_primary_10_3389_fneur_2025_1528812
crossref_primary_10_1002_ana_22524
crossref_primary_10_1056_NEJMoa1415061
crossref_primary_10_1136_bmjopen_2022_060818
crossref_primary_10_4103_2394_8108_186266
crossref_primary_10_1111_jon_12933
crossref_primary_10_1161_STROKEAHA_111_644971
crossref_primary_10_1002_ana_25133
crossref_primary_10_1038_jcbfm_2013_10
crossref_primary_10_1016_j_compbiomed_2024_109134
crossref_primary_10_1161_STROKEAHA_112_668301
crossref_primary_10_1016_j_jocn_2016_01_001
crossref_primary_10_1007_s00415_021_10872_4
crossref_primary_10_1016_j_measurement_2025_118925
crossref_primary_10_1136_neurintsurg_2021_017510
crossref_primary_10_3995_jstroke_11269
crossref_primary_10_1002_acn3_388
crossref_primary_10_1016_j_jocn_2016_10_018
crossref_primary_10_1002_ana_23744
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106866
crossref_primary_10_1161_STROKEAHA_117_019173
crossref_primary_10_1148_radiol_12112618
crossref_primary_10_1136_neurintsurg_2017_013083
crossref_primary_10_1002_brb3_772
crossref_primary_10_1016_j_wneu_2018_12_051
crossref_primary_10_1161_STROKEAHA_116_013903
crossref_primary_10_3389_fninf_2019_00033
crossref_primary_10_1111_imj_14116
crossref_primary_10_1161_STROKEAHA_114_005084
crossref_primary_10_1161_STROKEAHA_118_024261
crossref_primary_10_1007_s12028_023_01689_2
crossref_primary_10_1136_bmjno_2024_000707
crossref_primary_10_1371_journal_pone_0085884
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107983
crossref_primary_10_3389_fneur_2020_618765
crossref_primary_10_1159_000519310
crossref_primary_10_1186_s13244_023_01472_z
crossref_primary_10_1159_000519796
crossref_primary_10_1161_STROKEAHA_117_019740
crossref_primary_10_1161_STROKEAHA_111_000371
crossref_primary_10_1161_STROKEAHA_119_025411
crossref_primary_10_3389_fneur_2019_01139
crossref_primary_10_1002_jmri_27365
crossref_primary_10_1177_2396987317753486
crossref_primary_10_12688_f1000research_9191_1
crossref_primary_10_1161_STROKEAHA_111_000135
crossref_primary_10_1056_NEJMoa1414792
crossref_primary_10_1161_STROKEAHA_110_601609
crossref_primary_10_12688_f1000research_21100_1
crossref_primary_10_1111_jon_12119
crossref_primary_10_3389_fneur_2021_734345
crossref_primary_10_1002_ana_26528
crossref_primary_10_1161_STROKEAHA_115_008782
crossref_primary_10_2459_JCM_0000000000000469
crossref_primary_10_1016_j_neurol_2011_10_002
crossref_primary_10_1016_j_pnmrs_2013_04_002
crossref_primary_10_1161_STROKEAHA_117_020395
crossref_primary_10_1111_j_1747_4949_2012_00787_x
crossref_primary_10_1161_JAHA_121_023828
crossref_primary_10_1002_jmri_28364
crossref_primary_10_1161_STROKEAHA_117_017773
crossref_primary_10_3389_fneur_2025_1639880
crossref_primary_10_3389_fphy_2023_1246973
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106844
crossref_primary_10_1016_j_media_2023_102971
crossref_primary_10_3390_ijms21176107
crossref_primary_10_3389_fneur_2018_00586
crossref_primary_10_1007_s00234_020_02517_6
crossref_primary_10_1161_STROKEAHA_115_012010
crossref_primary_10_1056_NEJMoa2310392
crossref_primary_10_1179_1743132813Y_0000000214
crossref_primary_10_3233_CH_219106
crossref_primary_10_1097_RCT_0000000000000498
crossref_primary_10_1001_jama_2020_26867
crossref_primary_10_1136_neurintsurg_2016_012750
crossref_primary_10_1007_s00234_021_02640_y
crossref_primary_10_1111_ijs_12459
crossref_primary_10_1002_jmri_24558
crossref_primary_10_1089_brain_2018_0610
crossref_primary_10_1242_dmm_048785
crossref_primary_10_1136_neurintsurg_2015_012101
crossref_primary_10_1177_1971400915576641
crossref_primary_10_1016_j_clinimag_2023_109992
crossref_primary_10_1080_14737175_2021_1836963
crossref_primary_10_1161_STROKEAHA_119_027457
crossref_primary_10_1097_MD_0000000000004702
crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_04_021
crossref_primary_10_1007_s00330_024_10619_5
crossref_primary_10_1002_mp_14351
crossref_primary_10_1007_s40138_020_00205_6
crossref_primary_10_1007_s13369_022_07536_4
crossref_primary_10_1007_s10278_022_00611_0
crossref_primary_10_1111_j_1749_6632_2012_06747_x
crossref_primary_10_1111_jon_12698
crossref_primary_10_1111_ijs_12007
crossref_primary_10_1161_STROKEAHA_117_016669
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106393
crossref_primary_10_3390_brainsci12010077
crossref_primary_10_3389_fneur_2023_1203241
crossref_primary_10_1177_15910199221149563
crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_02_003
crossref_primary_10_1097_RMR_0b013e31821e53f5
crossref_primary_10_1016_j_wneu_2018_08_008
crossref_primary_10_1161_STROKEAHA_111_000208
crossref_primary_10_1186_s13063_020_04794_1
crossref_primary_10_1111_jon_12107
crossref_primary_10_3389_fneur_2021_668360
crossref_primary_10_1097_RCT_0000000000001243
crossref_primary_10_1111_j_1747_4949_2012_00946_x
crossref_primary_10_1177_23969873241301276
crossref_primary_10_3389_fneur_2014_00194
crossref_primary_10_1007_s10439_024_03471_7
crossref_primary_10_1016_j_ynirp_2024_100196
crossref_primary_10_1007_s12975_012_0159_8
crossref_primary_10_1016_j_pneurobio_2016_09_002
crossref_primary_10_1161_STROKEAHA_121_036204
crossref_primary_10_1161_STROKEAHA_122_039337
crossref_primary_10_1016_j_wneu_2019_12_033
crossref_primary_10_1007_s00062_024_01382_7
crossref_primary_10_1111_j_1552_6569_2011_00588_x
crossref_primary_10_1016_j_mri_2015_01_009
crossref_primary_10_1002_ana_23837
crossref_primary_10_1161_STROKEAHA_119_027479
crossref_primary_10_1067_j_cpradiol_2023_10_011
crossref_primary_10_1148_radiol_13121622
crossref_primary_10_1007_s11547_018_0887_2
crossref_primary_10_1161_JAHA_121_022880
crossref_primary_10_1161_STROKEAHA_118_020788
crossref_primary_10_1148_radiol_12112134
crossref_primary_10_3389_fneur_2021_689606
Cites_doi 10.1002/ana.10380
10.1002/mrm.1307
10.1007/s10334-010-0217-8
10.1002/mrm.20759
10.1161/STROKEAHA.108.546069
10.1002/mrm.10643
10.1088/0031-9155/39/11/004
10.1161/01.STR.0000023579.61630.AC
10.1002/mrm.1910360510
10.1161/01.STR.0000097608.38779.CC
10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M
10.1016/j.nic.2005.08.011
10.1002/mrm.10461
10.1212/01.wnl.0000345372.49233.e3
10.1148/radiology.193.3.7972800
10.1002/jmri.20455
10.1161/01.STR.0000209238.61459.39
10.1002/mrm.10522
10.1002/mrm.21362
10.1002/jmri.20843
10.1002/ana.20976
10.1152/jappl.1954.6.12.731
10.1002/mrm.1910290420
10.1002/jmri.20457
10.1097/00004728-200011000-00022
10.1161/01.str.0000366115.56266.0a
10.1002/jmri.21093
10.1161/STROKEAHA.108.526954
10.1002/mrm.20920
10.1212/WNL.57.9.1611
10.1148/radiology.137.3.7003648
10.1148/radiology.211.3.r99jn15799
10.1136/jnnp.2008.164947
10.1161/01.STR.0000072998.70087.E9
10.1016/S1474-4422(08)70044-9
10.1161/STROKEAHA.107.500090
10.1113/jphysiol.1967.sp008130
10.1002/mrm.10330
10.1161/01.RES.10.3.393
10.1137/1.9780898719697
10.1016/S0730-725X(01)00435-0
10.1002/mrm.21255
10.1152/ajplegacy.1931.96.3.562
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/jmri.22338
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1037
ExternalDocumentID PMC2975404
21031505
10_1002_jmri_22338
JMRI22338
ark_67375_WNG_QQRZVK3M_B
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB
  funderid: R01EB2711
– fundername: NIH
  funderid: 2R01 NS039325
– fundername: NINDS
  funderid: R01NS39325
– fundername: NINDS NIH HHS
  grantid: R01NS39325
– fundername: NINDS NIH HHS
  grantid: 2R01 NS039325
– fundername: NIBIB NIH HHS
  grantid: R01 EB008706
– fundername: NIBIB NIH HHS
  grantid: R01 EB006526
– fundername: NCRR NIH HHS
  grantid: P41 RR009784
– fundername: NINDS NIH HHS
  grantid: R01 NS039325
– fundername: NIBIB NIH HHS
  grantid: R01EB2711
– fundername: NIBIB NIH HHS
  grantid: R01 EB002711
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5238-3154ec7ea6471ca4e099c86cc4af11627cacd73e22ab07aad9a2c42b8cf2a8d13
IEDL.DBID WIN
ISICitedReferencesCount 339
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284190200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-1807
1522-2586
IngestDate Tue Sep 30 16:57:09 EDT 2025
Fri Jul 11 11:31:43 EDT 2025
Thu Apr 03 07:08:50 EDT 2025
Sat Nov 29 02:57:29 EST 2025
Tue Nov 18 22:01:36 EST 2025
Wed Jan 22 16:41:39 EST 2025
Sun Sep 21 06:27:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5238-3154ec7ea6471ca4e099c86cc4af11627cacd73e22ab07aad9a2c42b8cf2a8d13
Notes NIBIB - No. R01EB2711
ark:/67375/WNG-QQRZVK3M-B
istex:540EC44A42FDD580903B2B3AD95D33D6030686EE
ArticleID:JMRI22338
NINDS - No. R01NS39325
NIH - No. 2R01 NS039325
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2975404
PMID 21031505
PQID 762471637
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2975404
proquest_miscellaneous_762471637
pubmed_primary_21031505
crossref_citationtrail_10_1002_jmri_22338
crossref_primary_10_1002_jmri_22338
wiley_primary_10_1002_jmri_22338_JMRI22338
istex_primary_ark_67375_WNG_QQRZVK3M_B
PublicationCentury 2000
PublicationDate November 2010
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: November 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Calamante F, Vonken EPA, van Osch MJP. Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 2007; 58: 544-553.
Schaefer PW, Copen WA, Lev MH, Gonzalez RG. Diffusion- weighted imaging in acute stroke. Neuroimaging Clin N Am 2005; 15: 503-530.
Olivot JM, Mlynash M, Zaharchuk G, et al. Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 2009; 72: 1140-1145.
Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193: 637-641.
Gall P, Emerich P, Kjølby BF, Kellner E, Mader I, Kiselev VG. On the design of filters for fourier and oSVD-based deconvolution in bolus tracking perfusion MRI. Magn Reson Mater Phys 2010; 23: 187-195.
Hansen PC. Rank-deficient and discrete ill-posed problems. Numerical aspects of linear inversion, 1st edition. Philadelphia: Society of Industrial And Applied Mathemathics (SIAM); 1998. 247 p.
Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006; 60: 508-517.
Ma H, Zavala JA, Teoh H, et al. Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time. J Neurol Neurosurg Psychiatry 2009; 80: 991-997.
Wintermark M, Flanders AE, Velthuis B, et al. Perfusion-CT assessment of infarct core and penumbra receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006; 37: 979-985.
Gobbel GT, Fike JR. A deconvolution method for evaluating indicator-dilution curves. Phys Med Biol 1994; 39: 1833-1854.
Weisskoff RM, Chesler D, Boxerman JL, Rosen BR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?. Magn Reson Med 1993; 29: 553-558.
Newbould RD, Stefan ST, Jochimsen TH, et al. Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007; 58: 70-81.
Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003; 34: 2729-2735.
Kosior JC, Frayne R. PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies. J Magn Reson Imaging 2007; 25: 653-659.
van Osch MJP, van der Grond J, Bakker CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 2005; 22: 704-709.
Olivot JM, Mlynash M, Thijs VN, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009; 40: 469-475.
Meier P, Zierler KL. On the theory of the indicator-dillution method for measurement of blood flow and volume. J Appl Physiol 1954; 6: 731-744.
van Osch MJP, Vonken EPA, Viergever MA, van der Grond J, Bakker CJG. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003; 49: 1067-1076.
Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006; 55: 524-531.
Kiselev VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001; 46: 1113-1122.
Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008; 7: 299-309.
Smith MR, Lu H, Frayne R. Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents. Magn Reson Med 2003; 49: 122-128.
Knuttson L, Börjesson S, Larsson EM, et al. Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 2007; 26: 913-920.
Takasawa M, Jones PS, Guadagno JV, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008; 39: 870-877.
Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996; 36: 715-725.
Kidwell CS, Saver JL, Starkman S, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 2002; 52: 698-703.
Axel L. Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 1980; 137: 679-686.
Conturo TE, Akbudak E, Kotys MS, et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 2005; 22: 697-703.
Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859-867.
Fåhreus R, Lindquist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931; 96: 562-568.
Wintermark M, Reichhart M, Cuisenaire O, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002; 33: 2025-2031.
Christensen S, Mouridsen K, Wu O, et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 2009; 40: 2055-2061.
Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962; 10: 393-407.
Kidwell CS, Saver JL, Mattiello J, et al. Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage. Neurology 2001; 57: 1611-1617.
Ellinger R, Kremser C, Schocke MFH, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 2000; 24: 942-948.
Rose SE, Chalk JB, Griffin MP, et al. MRI based diffusion and perfusion predictive model to estimate stroke evolution. Magn Reson Imaging 2001; 19: 1043-1053.
Shih LC, Saver JL, Alger JR, et al. Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke 2003; 34: 1425-1430.
Kjølby BF, Østergaard L, Kiselev VG. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006; 56: 187-197.
Bammer R, Stollberger R, Augustin M, et al. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology 1999; 211: 799-806.
Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003; 50: 164-174.
Schaefer PW, Hunter GJ, He J, et al. Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. AJNR Am J Neuroradiol 2002; 23: 1785-1794.
Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003; 50: 1237-1247.
Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000; 44: 466-473.
Chacalos EH. Variations in small and large vessel volumes caused by cations, adrenaline and histamine. J Physiol 1967; 188: 141-158.
1980; 137
2009; 40
1993; 29
2006; 56
2002; 52
1994; 193
2009; 80
2010
2006; 55
2000; 24
2000; 44
2002; 33
2006; 37
2008; 39
2009
1998
2008; 7
2007
1962; 10
1996; 36
2003; 50
1931; 96
2001; 46
2005; 22
2007; 58
2003; 34
2010; 23
2006; 60
2001
2009; 72
2002; 23
2006; 27
2001; 19
1954; 6
2003; 49
1967; 188
1994; 39
1999; 211
2005; 15
2001; 57
2007; 25
2007; 26
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_31_2
Fåhreus R (e_1_2_6_34_2) 1931; 96
e_1_2_6_18_2
Boxerman JL (e_1_2_6_50_2) 2006; 27
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
Schaefer PW (e_1_2_6_40_2) 2002; 23
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
19357125 - J Neurol Neurosurg Psychiatry. 2009 Sep;80(9):991-6
17896379 - J Magn Reson Imaging. 2007 Oct;26(4):913-20
16724299 - Magn Reson Med. 2006 Jul;56(1):187-97
14576370 - Stroke. 2003 Nov;34(11):2729-35
8916022 - Magn Reson Med. 1996 Nov;36(5):715-25
15559994 - Phys Med Biol. 1994 Nov;39(11):1833-54
11746577 - Magn Reson Med. 2001 Dec;46(6):1113-22
12738899 - Stroke. 2003 Jun;34(6):1425-30
18258831 - Stroke. 2008 Mar;39(3):870-7
19109547 - Stroke. 2009 Feb;40(2):469-75
14648572 - Magn Reson Med. 2003 Dec;50(6):1237-47
16453314 - Magn Reson Med. 2006 Mar;55(3):524-31
16360586 - Neuroimaging Clin N Am. 2005 Aug;15(3):503-30, ix-x
7972800 - Radiology. 1994 Dec;193(3):637-41
16611779 - AJNR Am J Neuroradiol. 2006 Apr;27(4):859-67
17326077 - J Magn Reson Imaging. 2007 Mar;25(3):653-9
12427640 - AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1785-94
10975900 - Magn Reson Med. 2000 Sep;44(3):466-73
6030507 - J Physiol. 1967 Jan;188(2):141-58
13174454 - J Appl Physiol. 1954 Jun;6(12):731-44
12815691 - Magn Reson Med. 2003 Jul;50(1):164-74
18296121 - Lancet Neurol. 2008 Apr;7(4):299-309
7003648 - Radiology. 1980 Dec;137(3):679-86
17066483 - Ann Neurol. 2006 Nov;60(5):508-17
12154257 - Stroke. 2002 Aug;33(8):2025-31
16261570 - J Magn Reson Imaging. 2005 Dec;22(6):704-9
20512521 - MAGMA. 2010 Jun;23(3):187-95
19332690 - Neurology. 2009 Mar 31;72(13):1140-5
10352609 - Radiology. 1999 Jun;211(3):799-806
8464373 - Magn Reson Med. 1993 Apr;29(4):553-8
12768585 - Magn Reson Med. 2003 Jun;49(6):1067-76
16261571 - J Magn Reson Imaging. 2005 Dec;22(6):697-703
12509827 - Magn Reson Med. 2003 Jan;49(1):122-8
11711228 - Magn Reson Imaging. 2001 Oct;19(8):1043-53
16514093 - Stroke. 2006 Apr;37(4):979-85
17659630 - Magn Reson Med. 2007 Jul;58(1):70-81
17763347 - Magn Reson Med. 2007 Sep;58(3):544-53
11105716 - J Comput Assist Tomogr. 2000 Nov-Dec;24(6):942-8
11706101 - Neurology. 2001 Nov 13;57(9):1611-7
12447922 - Ann Neurol. 2002 Dec;52(6):698-703
19359626 - Stroke. 2009 Jun;40(6):2055-61
References_xml – reference: Rose SE, Chalk JB, Griffin MP, et al. MRI based diffusion and perfusion predictive model to estimate stroke evolution. Magn Reson Imaging 2001; 19: 1043-1053.
– reference: Olivot JM, Mlynash M, Zaharchuk G, et al. Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 2009; 72: 1140-1145.
– reference: Meier P, Zierler KL. On the theory of the indicator-dillution method for measurement of blood flow and volume. J Appl Physiol 1954; 6: 731-744.
– reference: van Osch MJP, van der Grond J, Bakker CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 2005; 22: 704-709.
– reference: Weisskoff RM, Chesler D, Boxerman JL, Rosen BR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?. Magn Reson Med 1993; 29: 553-558.
– reference: Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006; 60: 508-517.
– reference: Axel L. Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 1980; 137: 679-686.
– reference: Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193: 637-641.
– reference: van Osch MJP, Vonken EPA, Viergever MA, van der Grond J, Bakker CJG. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003; 49: 1067-1076.
– reference: Gall P, Emerich P, Kjølby BF, Kellner E, Mader I, Kiselev VG. On the design of filters for fourier and oSVD-based deconvolution in bolus tracking perfusion MRI. Magn Reson Mater Phys 2010; 23: 187-195.
– reference: Hansen PC. Rank-deficient and discrete ill-posed problems. Numerical aspects of linear inversion, 1st edition. Philadelphia: Society of Industrial And Applied Mathemathics (SIAM); 1998. 247 p.
– reference: Takasawa M, Jones PS, Guadagno JV, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008; 39: 870-877.
– reference: Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996; 36: 715-725.
– reference: Kidwell CS, Saver JL, Starkman S, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 2002; 52: 698-703.
– reference: Christensen S, Mouridsen K, Wu O, et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 2009; 40: 2055-2061.
– reference: Shih LC, Saver JL, Alger JR, et al. Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke 2003; 34: 1425-1430.
– reference: Fåhreus R, Lindquist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931; 96: 562-568.
– reference: Kjølby BF, Østergaard L, Kiselev VG. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006; 56: 187-197.
– reference: Bammer R, Stollberger R, Augustin M, et al. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology 1999; 211: 799-806.
– reference: Kiselev VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001; 46: 1113-1122.
– reference: Knuttson L, Börjesson S, Larsson EM, et al. Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 2007; 26: 913-920.
– reference: Kidwell CS, Saver JL, Mattiello J, et al. Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage. Neurology 2001; 57: 1611-1617.
– reference: Newbould RD, Stefan ST, Jochimsen TH, et al. Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007; 58: 70-81.
– reference: Gobbel GT, Fike JR. A deconvolution method for evaluating indicator-dilution curves. Phys Med Biol 1994; 39: 1833-1854.
– reference: Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000; 44: 466-473.
– reference: Calamante F, Vonken EPA, van Osch MJP. Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 2007; 58: 544-553.
– reference: Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859-867.
– reference: Smith MR, Lu H, Frayne R. Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents. Magn Reson Med 2003; 49: 122-128.
– reference: Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003; 34: 2729-2735.
– reference: Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962; 10: 393-407.
– reference: Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006; 55: 524-531.
– reference: Ma H, Zavala JA, Teoh H, et al. Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time. J Neurol Neurosurg Psychiatry 2009; 80: 991-997.
– reference: Ellinger R, Kremser C, Schocke MFH, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 2000; 24: 942-948.
– reference: Wintermark M, Flanders AE, Velthuis B, et al. Perfusion-CT assessment of infarct core and penumbra receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006; 37: 979-985.
– reference: Olivot JM, Mlynash M, Thijs VN, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009; 40: 469-475.
– reference: Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008; 7: 299-309.
– reference: Schaefer PW, Copen WA, Lev MH, Gonzalez RG. Diffusion- weighted imaging in acute stroke. Neuroimaging Clin N Am 2005; 15: 503-530.
– reference: Schaefer PW, Hunter GJ, He J, et al. Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. AJNR Am J Neuroradiol 2002; 23: 1785-1794.
– reference: Wintermark M, Reichhart M, Cuisenaire O, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002; 33: 2025-2031.
– reference: Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003; 50: 1237-1247.
– reference: Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003; 50: 164-174.
– reference: Chacalos EH. Variations in small and large vessel volumes caused by cations, adrenaline and histamine. J Physiol 1967; 188: 141-158.
– reference: Conturo TE, Akbudak E, Kotys MS, et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 2005; 22: 697-703.
– reference: Kosior JC, Frayne R. PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies. J Magn Reson Imaging 2007; 25: 653-659.
– volume: 37
  start-page: 979
  year: 2006
  end-page: 985
  article-title: Perfusion‐CT assessment of infarct core and penumbra receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke
  publication-title: Stroke
– year: 2009
– volume: 39
  start-page: 1833
  year: 1994
  end-page: 1854
  article-title: A deconvolution method for evaluating indicator‐dilution curves
  publication-title: Phys Med Biol
– volume: 23
  start-page: 1785
  year: 2002
  end-page: 1794
  article-title: Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 58
  start-page: 544
  year: 2007
  end-page: 553
  article-title: Contrast agent concentration measurements affecting quantification of bolus‐tracking perfusion MRI
  publication-title: Magn Reson Med
– volume: 188
  start-page: 141
  year: 1967
  end-page: 158
  article-title: Variations in small and large vessel volumes caused by cations, adrenaline and histamine
  publication-title: J Physiol
– volume: 56
  start-page: 187
  year: 2006
  end-page: 197
  article-title: Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation
  publication-title: Magn Reson Med
– volume: 25
  start-page: 653
  year: 2007
  end-page: 659
  article-title: PerfTool: a software platform for investigating bolus‐tracking perfusion imaging quantification strategies
  publication-title: J Magn Reson Imaging
– volume: 39
  start-page: 870
  year: 2008
  end-page: 877
  article-title: How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET
  publication-title: Stroke
– volume: 50
  start-page: 164
  year: 2003
  end-page: 174
  article-title: Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix
  publication-title: Magn Reson Med
– volume: 10
  start-page: 393
  year: 1962
  end-page: 407
  article-title: Theoretical basis of indicator‐dilution methods for measuring flow and volume
  publication-title: Circ Res
– volume: 46
  start-page: 1113
  year: 2001
  end-page: 1122
  article-title: On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1237
  year: 2003
  end-page: 1247
  article-title: Quantification of bolus‐tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization
  publication-title: Magn Reson Med
– volume: 60
  start-page: 508
  year: 2006
  end-page: 517
  article-title: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study
  publication-title: Ann Neurol
– year: 2007
– year: 2001
– volume: 96
  start-page: 562
  year: 1931
  end-page: 568
  article-title: The viscosity of the blood in narrow capillary tubes
  publication-title: Am J Physiol
– volume: 49
  start-page: 122
  year: 2003
  end-page: 128
  article-title: Signal‐to‐noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents
  publication-title: Magn Reson Med
– volume: 22
  start-page: 697
  year: 2005
  end-page: 703
  article-title: Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 553
  year: 1993
  end-page: 558
  article-title: Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?
  publication-title: Magn Reson Med
– volume: 80
  start-page: 991
  year: 2009
  end-page: 997
  article-title: Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 7
  start-page: 299
  year: 2008
  end-page: 309
  article-title: Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo‐controlled randomised trial
  publication-title: Lancet Neurol
– volume: 40
  start-page: 2055
  year: 2009
  end-page: 2061
  article-title: Comparison of 10 perfusion MRI parameters in 97 sub‐6‐hour stroke patients using voxel‐based receiver operating characteristics analysis
  publication-title: Stroke
– volume: 137
  start-page: 679
  year: 1980
  end-page: 686
  article-title: Cerebral blood flow determination by rapid‐sequence computed tomography
  publication-title: Radiology
– year: 2010
– start-page: 247
  year: 1998
– volume: 36
  start-page: 715
  year: 1996
  end-page: 725
  article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis
  publication-title: Magn Reson Med
– volume: 52
  start-page: 698
  year: 2002
  end-page: 703
  article-title: Late secondary ischemic injury in patients receiving intraarterial thrombolysis
  publication-title: Ann Neurol
– volume: 15
  start-page: 503
  year: 2005
  end-page: 530
  article-title: Diffusion‐ weighted imaging in acute stroke
  publication-title: Neuroimaging Clin N Am
– volume: 19
  start-page: 1043
  year: 2001
  end-page: 1053
  article-title: MRI based diffusion and perfusion predictive model to estimate stroke evolution
  publication-title: Magn Reson Imaging
– volume: 44
  start-page: 466
  year: 2000
  end-page: 473
  article-title: Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition
  publication-title: Magn Reson Med
– volume: 6
  start-page: 731
  year: 1954
  end-page: 744
  article-title: On the theory of the indicator‐dillution method for measurement of blood flow and volume
  publication-title: J Appl Physiol
– volume: 34
  start-page: 2729
  year: 2003
  end-page: 2735
  article-title: Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging
  publication-title: Stroke
– volume: 49
  start-page: 1067
  year: 2003
  end-page: 1076
  article-title: Measuring the arterial input function with gradient echo sequences
  publication-title: Magn Reson Med
– volume: 55
  start-page: 524
  year: 2006
  end-page: 531
  article-title: Automatic selection of arterial input function using cluster analysis
  publication-title: Magn Reson Med
– volume: 26
  start-page: 913
  year: 2007
  end-page: 920
  article-title: Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe‐133 SPECT and dynamic susceptibility contrast MRI
  publication-title: J Magn Reson Imaging
– volume: 58
  start-page: 70
  year: 2007
  end-page: 81
  article-title: Perfusion mapping with multiecho multishot parallel imaging EPI
  publication-title: Magn Reson Med
– volume: 27
  start-page: 859
  year: 2006
  end-page: 867
  article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not
  publication-title: AJNR Am J Neuroradiol
– volume: 33
  start-page: 2025
  year: 2002
  end-page: 2031
  article-title: Comparison of admission perfusion computed tomography and qualitative diffusion‐ and perfusion‐weighted magnetic resonance imaging in acute stroke patients
  publication-title: Stroke
– volume: 40
  start-page: 469
  year: 2009
  end-page: 475
  article-title: Optimal Tmax threshold for predicting penumbral tissue in acute stroke
  publication-title: Stroke
– volume: 22
  start-page: 704
  year: 2005
  end-page: 709
  article-title: Partial volume effects on arterial input functions: shape and amplitude distortions and their correction
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 942
  year: 2000
  end-page: 948
  article-title: The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast‐enhanced MR studies
  publication-title: J Comput Assist Tomogr
– volume: 23
  start-page: 187
  year: 2010
  end-page: 195
  article-title: On the design of filters for fourier and oSVD‐based deconvolution in bolus tracking perfusion MRI
  publication-title: Magn Reson Mater Phys
– volume: 211
  start-page: 799
  year: 1999
  end-page: 806
  article-title: Diffusion‐weighted imaging with navigated interleaved echo‐planar imaging and a conventional gradient system
  publication-title: Radiology
– volume: 57
  start-page: 1611
  year: 2001
  end-page: 1617
  article-title: Diffusion‐perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage
  publication-title: Neurology
– volume: 34
  start-page: 1425
  year: 2003
  end-page: 1430
  article-title: Perfusion‐weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue
  publication-title: Stroke
– volume: 193
  start-page: 637
  year: 1994
  end-page: 641
  article-title: Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast‐enhanced MR imaging
  publication-title: Radiology
– volume: 72
  start-page: 1140
  year: 2009
  end-page: 1145
  article-title: Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients
  publication-title: Neurology
– ident: e_1_2_6_39_2
  doi: 10.1002/ana.10380
– ident: e_1_2_6_47_2
  doi: 10.1002/mrm.1307
– ident: e_1_2_6_28_2
  doi: 10.1007/s10334-010-0217-8
– ident: e_1_2_6_5_2
  doi: 10.1002/mrm.20759
– ident: e_1_2_6_18_2
  doi: 10.1161/STROKEAHA.108.546069
– ident: e_1_2_6_33_2
  doi: 10.1002/mrm.10643
– ident: e_1_2_6_8_2
– ident: e_1_2_6_24_2
  doi: 10.1088/0031-9155/39/11/004
– ident: e_1_2_6_11_2
  doi: 10.1161/01.STR.0000023579.61630.AC
– ident: e_1_2_6_4_2
  doi: 10.1002/mrm.1910360510
– ident: e_1_2_6_9_2
– ident: e_1_2_6_12_2
  doi: 10.1161/01.STR.0000097608.38779.CC
– ident: e_1_2_6_27_2
  doi: 10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M
– ident: e_1_2_6_38_2
  doi: 10.1016/j.nic.2005.08.011
– ident: e_1_2_6_48_2
  doi: 10.1002/mrm.10461
– ident: e_1_2_6_15_2
  doi: 10.1212/01.wnl.0000345372.49233.e3
– ident: e_1_2_6_25_2
  doi: 10.1148/radiology.193.3.7972800
– volume: 27
  start-page: 859
  year: 2006
  ident: e_1_2_6_50_2
  article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_36_2
  doi: 10.1002/jmri.20455
– ident: e_1_2_6_14_2
  doi: 10.1161/01.STR.0000209238.61459.39
– ident: e_1_2_6_41_2
– ident: e_1_2_6_26_2
  doi: 10.1002/mrm.10522
– ident: e_1_2_6_46_2
  doi: 10.1002/mrm.21362
– ident: e_1_2_6_6_2
  doi: 10.1002/jmri.20843
– ident: e_1_2_6_2_2
  doi: 10.1002/ana.20976
– ident: e_1_2_6_21_2
  doi: 10.1152/jappl.1954.6.12.731
– ident: e_1_2_6_29_2
  doi: 10.1002/mrm.1910290420
– volume: 23
  start-page: 1785
  year: 2002
  ident: e_1_2_6_40_2
  article-title: Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_20_2
  doi: 10.1002/jmri.20457
– ident: e_1_2_6_45_2
  doi: 10.1097/00004728-200011000-00022
– ident: e_1_2_6_42_2
  doi: 10.1161/01.str.0000366115.56266.0a
– ident: e_1_2_6_49_2
  doi: 10.1002/jmri.21093
– ident: e_1_2_6_16_2
  doi: 10.1161/STROKEAHA.108.526954
– ident: e_1_2_6_19_2
  doi: 10.1002/mrm.20920
– ident: e_1_2_6_10_2
  doi: 10.1212/WNL.57.9.1611
– ident: e_1_2_6_23_2
  doi: 10.1148/radiology.137.3.7003648
– ident: e_1_2_6_44_2
  doi: 10.1148/radiology.211.3.r99jn15799
– ident: e_1_2_6_31_2
– ident: e_1_2_6_43_2
  doi: 10.1136/jnnp.2008.164947
– ident: e_1_2_6_13_2
  doi: 10.1161/01.STR.0000072998.70087.E9
– ident: e_1_2_6_3_2
  doi: 10.1016/S1474-4422(08)70044-9
– ident: e_1_2_6_17_2
  doi: 10.1161/STROKEAHA.107.500090
– ident: e_1_2_6_35_2
  doi: 10.1113/jphysiol.1967.sp008130
– ident: e_1_2_6_32_2
  doi: 10.1002/mrm.10330
– ident: e_1_2_6_22_2
  doi: 10.1161/01.RES.10.3.393
– ident: e_1_2_6_30_2
  doi: 10.1137/1.9780898719697
– ident: e_1_2_6_7_2
  doi: 10.1016/S0730-725X(01)00435-0
– ident: e_1_2_6_37_2
  doi: 10.1002/mrm.21255
– volume: 96
  start-page: 562
  year: 1931
  ident: e_1_2_6_34_2
  article-title: The viscosity of the blood in narrow capillary tubes
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1931.96.3.562
– reference: 17763347 - Magn Reson Med. 2007 Sep;58(3):544-53
– reference: 16611779 - AJNR Am J Neuroradiol. 2006 Apr;27(4):859-67
– reference: 19332690 - Neurology. 2009 Mar 31;72(13):1140-5
– reference: 16261571 - J Magn Reson Imaging. 2005 Dec;22(6):697-703
– reference: 12768585 - Magn Reson Med. 2003 Jun;49(6):1067-76
– reference: 13174454 - J Appl Physiol. 1954 Jun;6(12):731-44
– reference: 12427640 - AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1785-94
– reference: 7003648 - Radiology. 1980 Dec;137(3):679-86
– reference: 11746577 - Magn Reson Med. 2001 Dec;46(6):1113-22
– reference: 12738899 - Stroke. 2003 Jun;34(6):1425-30
– reference: 10975900 - Magn Reson Med. 2000 Sep;44(3):466-73
– reference: 16724299 - Magn Reson Med. 2006 Jul;56(1):187-97
– reference: 16261570 - J Magn Reson Imaging. 2005 Dec;22(6):704-9
– reference: 17326077 - J Magn Reson Imaging. 2007 Mar;25(3):653-9
– reference: 20512521 - MAGMA. 2010 Jun;23(3):187-95
– reference: 11105716 - J Comput Assist Tomogr. 2000 Nov-Dec;24(6):942-8
– reference: 17066483 - Ann Neurol. 2006 Nov;60(5):508-17
– reference: 18258831 - Stroke. 2008 Mar;39(3):870-7
– reference: 11706101 - Neurology. 2001 Nov 13;57(9):1611-7
– reference: 16453314 - Magn Reson Med. 2006 Mar;55(3):524-31
– reference: 16514093 - Stroke. 2006 Apr;37(4):979-85
– reference: 12509827 - Magn Reson Med. 2003 Jan;49(1):122-8
– reference: 18296121 - Lancet Neurol. 2008 Apr;7(4):299-309
– reference: 11711228 - Magn Reson Imaging. 2001 Oct;19(8):1043-53
– reference: 17896379 - J Magn Reson Imaging. 2007 Oct;26(4):913-20
– reference: 10352609 - Radiology. 1999 Jun;211(3):799-806
– reference: 16360586 - Neuroimaging Clin N Am. 2005 Aug;15(3):503-30, ix-x
– reference: 17659630 - Magn Reson Med. 2007 Jul;58(1):70-81
– reference: 19109547 - Stroke. 2009 Feb;40(2):469-75
– reference: 14576370 - Stroke. 2003 Nov;34(11):2729-35
– reference: 19357125 - J Neurol Neurosurg Psychiatry. 2009 Sep;80(9):991-6
– reference: 8464373 - Magn Reson Med. 1993 Apr;29(4):553-8
– reference: 12154257 - Stroke. 2002 Aug;33(8):2025-31
– reference: 19359626 - Stroke. 2009 Jun;40(6):2055-61
– reference: 15559994 - Phys Med Biol. 1994 Nov;39(11):1833-54
– reference: 12815691 - Magn Reson Med. 2003 Jul;50(1):164-74
– reference: 8916022 - Magn Reson Med. 1996 Nov;36(5):715-25
– reference: 6030507 - J Physiol. 1967 Jan;188(2):141-58
– reference: 12447922 - Ann Neurol. 2002 Dec;52(6):698-703
– reference: 7972800 - Radiology. 1994 Dec;193(3):637-41
– reference: 14648572 - Magn Reson Med. 2003 Dec;50(6):1237-47
SSID ssj0009945
Score 2.4974473
SecondaryResourceType review_article
Snippet Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch...
Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1024
SubjectTerms acute stroke
automated data processing
Cerebrovascular Circulation
diffusion
Diffusion Magnetic Resonance Imaging
Humans
Image Processing, Computer-Assisted
mismatch
perfusion
Sensitivity and Specificity
Software
Stroke - diagnosis
Stroke - physiopathology
Title Real-time diffusion-perfusion mismatch analysis in acute stroke
URI https://api.istex.fr/ark:/67375/WNG-QQRZVK3M-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22338
https://www.ncbi.nlm.nih.gov/pubmed/21031505
https://www.proquest.com/docview/762471637
https://pubmed.ncbi.nlm.nih.gov/PMC2975404
Volume 32
WOSCitedRecordID wos000284190200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 20201211
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  issn: 1053-1807
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwED6NDSG-8D4WXipLICSQwhLbjROJLzAoDGjFKsaqfbGci611g3RK22kf-Qn8Rn4JtpOmVExIiG9Wco7k813u8cs9B_C4MDbo5jEPuTE05AnLw9wl51jsobTGVNO0LjYhBoN0NMo-rcGLRS5MzQ_Rbrg5z_D_a-fgKp9uL0lDj79V4-c2uDGX6Rtz75UHu4Ml427mKxRb_MDCOI1Ey01Kt5ddV6LRhlPs-UVQ888bk78jWR-Ketf_bxA34FoDQcnL2mZuwpoub8GVfnPIfht2hhY8_vz-w5WdJ66AytztqNkHp7qq28Qah0W6eERUw2lCxiVROJ9pMp1VkxN9B_Z7bz7vvAubWgsh2qWo2yLtco1Cq8RGK1RcW_1hmiByZeI4oQIVFoJpSlUeCaWKTFHkNE_RUJUWMduE9XJS6i0ghV3SFZnIMKYxzyPM0ShjGM8i4xieWABPFzqX2BCRu3oYX2VNoUyl04r0WgngUSt7WtNvXCj1xE9dK6KqE3dhTXTlweCt3NsbHn75wPryVQBkMbfSasqdjahST-ZTaWOCHXjCRAB366luP0Z9JYyoG4BYMYJWwDF0r74px0eeqdulLfOIB_DMG8FfhiDf94e7vnXvX4Tvw1V_ncEnRz6A9Vk11w_hMp7NxtOqA5fEKO3Axuthb_9jx7vHLypvFLQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9Bi4AX_g4Ify2BkEAKS2w3dh5hUDbWVqza2MSL5VwcrWxLp7RFPPIR-Ix8EmwnS6mYkBBvVnJJdOdz7ny--x3As7ywRjeLeciLgoY8YVmYueIc63toY1AaKutmE2I0kgcH6ccmN8fVwtT4EG3Aza0M_792C9wFpNeXqKFfTqrJK2vdmLwIXfsV2etA9-24vzdYou6mvkux9SFYGMtItPikdH359IpF6jrhfjvP3fwza_J3b9abo_71_2TkBlxr_FDyulacm3DBlLfg8rA5ab8NG2PrQf78_sP1nieui8rChdXshVNT1WNiNcS6u3hIdANsQiYl0biYGzKbV9MjswZ7_Xe7G5th03AhRLsfdXHSHjcojE6syULNjRUgygSR6yKOEypQYy6YoVRnkdA6TzVFTjOJBdUyj9kd6JTT0twDktt9XZ6KFGMa8yzCDAtdFIynUeFgnlgAL86ErrBBI3dNMY5VjaNMlZOK8lIJ4GlLe1pjcJxL9dzPXUuiqyOXtSZ6an_0Xu3sjD9_2mZD9SYAcja5ykrKHZDo0kwXM2UNg2U8YSKAu_Vcty-jvh1G1AtArGhBS-BgulfvlJNDD9ftapd5xAN46bXgLyyoD8Pxlh_d_xfiJ3Blc3c4UIOt0fYDuOrzG3y15EPozKuFeQSX8Ot8MqseN-vjF398F3g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_Biqa98B8W_loCIYGULbHdOHmEjcLYWm0Vg2kvlnOxtTJIq7RFe9xH4DPySbCdLKViQkK8Wcklks93uV_su98BPC-MDbp5zENuDA15wvIwd8U5FnsorTHVNK2bTYjBID06yvab3BxXC1PzQ7Qbbs4z_PfaObieFGZzwRr65Vs12rDRjaVXocO7WWL9srM97B3uLVh3M9-l2GIIFsZpJFp-Urq5eHopInWccs8ug5t_Zk3-jmZ9OOrd-M-J3ITrDQ4lr2vDuQVXdHkbVvvNSfsd2BpaBPnz_IfrPU9cF5W521azFya6qsfEWoiFu3hCVENsQkYlUTifaTKdVeNTfRcOe28_br0Pm4YLIdr_UbdP2uUahVaJDVmouLYKxDRB5MrEcUIFKiwE05SqPBJKFZmiyGmeoqEqLWJ2D1bKcanXgRT2v67IRIYxjXkeYY5GGcN4FhlH88QCeHmhdIkNG7lrivFV1jzKVDqtSK-VAJ61spOag-NSqRd-7VoRVZ26rDXRlZ8H7-TBwfD40y7ryzcBkIvFlVZT7oBElXo8n0obGOzEEyYCuF-vdfsy6tthRN0AxJIVtAKOpnv5Tjk68XTdrnaZRzyAV94K_jIF-aE_3PGjB_8i_BRW97d7cm9nsPsQ1nx6gy-WfAQrs2quH8M1_D4bTasnjXv8Auw7FvM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+Diffusion-Perfusion+Mismatch+Analysis+in+Acute+Stroke&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Straka%2C+Matus&rft.au=Albers%2C+Gregory+W.&rft.au=Bammer%2C+Roland&rft.date=2010-11-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=32&rft.issue=5&rft.spage=1024&rft.epage=1037&rft_id=info:doi/10.1002%2Fjmri.22338&rft_id=info%3Apmid%2F21031505&rft.externalDocID=PMC2975404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon