Real-time diffusion-perfusion mismatch analysis in acute stroke
Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for...
Saved in:
| Published in: | Journal of magnetic resonance imaging Vol. 32; no. 5; pp. 1024 - 1037 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.11.2010
|
| Subjects: | |
| ISSN: | 1053-1807, 1522-2586, 1522-2586 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, Tmax) using deconvolution of tissue and arterial signals. Diffusion‐weighted imaging/perfusion‐weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from Tmax maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r2 = 0.99 for DWI and r2 = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5–7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. J. Magn. Reson. Imaging 2010;32:1024–1037. © 2010 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (CBV, CBF, MTT, and Tmax) using deconvolution of tissue and arterial signals. DWI/PWI mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from Tmax maps. The performance of the RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r2 = 0.99 for DWI and r2 = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 minutes. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RA pid processing of P erfus I on and D iffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T max ) using deconvolution of tissue and arterial signals. Diffusion‐weighted imaging/perfusion‐weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T max maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r 2 = 0.99 for DWI and r 2 = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5–7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. J. Magn. Reson. Imaging 2010;32:1024–1037. © 2010 Wiley‐Liss, Inc. Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, Tmax) using deconvolution of tissue and arterial signals. Diffusion‐weighted imaging/perfusion‐weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from Tmax maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r2 = 0.99 for DWI and r2 = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5–7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. J. Magn. Reson. Imaging 2010;32:1024–1037. © 2010 Wiley‐Liss, Inc. Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T(max)) using deconvolution of tissue and arterial signals. Diffusion-weighted imaging/perfusion-weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T(max) maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r(2) = 0.99 for DWI and r(2) = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T(max)) using deconvolution of tissue and arterial signals. Diffusion-weighted imaging/perfusion-weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T(max) maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r(2) = 0.99 for DWI and r(2) = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials.Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch facilitates necessary diagnosis and treatment decisions in acute stroke. We developed the RApid processing of PerfusIon and Diffusion (RAPID) for unsupervised, fully automated processing of perfusion and diffusion data for the purpose of expedited routine clinical assessment. The RAPID system computes quantitative perfusion maps (cerebral blood volume, CBV; cerebral blood flow, CBF; mean transit time, MTT; and the time until the residue function reaches its peak, T(max)) using deconvolution of tissue and arterial signals. Diffusion-weighted imaging/perfusion-weighted imaging (DWI/PWI) mismatch is automatically determined using infarct core segmentation of ADC maps and perfusion deficits segmented from T(max) maps. The performance of RAPID was evaluated on 63 acute stroke cases, in which diffusion and perfusion lesion volumes were outlined by both a human reader and the RAPID system. The correlation of outlined lesion volumes obtained from both methods was r(2) = 0.99 for DWI and r(2) = 0.96 for PWI. For mismatch identification, RAPID showed 100% sensitivity and 91% specificity. The mismatch information is made available on the hospital's PACS within 5-7 min. Results indicate that the automated system is sufficiently accurate and fast enough to be used for routine care as well as in clinical trials. |
| Author | Bammer, Roland Straka, Matus Albers, Gregory W. |
| AuthorAffiliation | 3 Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA 1 Department of Radiology, Stanford University, Stanford, CA, USA 2 Stanford Stroke Center, Stanford University Medical Center, Stanford, CA, USA |
| AuthorAffiliation_xml | – name: 2 Stanford Stroke Center, Stanford University Medical Center, Stanford, CA, USA – name: 3 Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA – name: 1 Department of Radiology, Stanford University, Stanford, CA, USA |
| Author_xml | – sequence: 1 givenname: Matus surname: Straka fullname: Straka, Matus organization: Department of Radiology, Stanford University, Stanford, California, USA – sequence: 2 givenname: Gregory W. surname: Albers fullname: Albers, Gregory W. organization: Stanford Stroke Center, Stanford University Medical Center, Stanford, California, USA – sequence: 3 givenname: Roland surname: Bammer fullname: Bammer, Roland email: rbammer@stanford.edu organization: Department of Radiology, Stanford University, Stanford, California, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21031505$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUlvFDEQhS0URBa48ANQ35AidfDSbvdcQBAlIZAEZcQicSnVuKuJk14mthuYf49DZyJAKCeX5O-9V8s22-iHnhh7Kvie4Fy-uOy825NSqeoB2xJaylzqqtxINdcqFxU3m2w7hEvO-WxW6EdsUwquhOZ6i72aE7Z5dB1ltWuaMbihz5fkpyrrXOgw2osMe2xXwYXM9RnaMVIWoh-u6DF72GAb6Mntu8M-HR583H-bn3w4Ot5_fZJbLVWVp7SCrCEsCyMsFpQ6sVVpbYGNEKU0Fm1tFEmJC24Q6xlKW8hFZRuJVS3UDns5-S7HRUe1pT56bGHpXYd-BQM6-PundxfwbfgOcmZ0wYtk8PzWwA_XI4UIaTZLbYs9DWMAU8rUWqlMIp_9GXWXsV5aAvgEWD-E4KkB6yLGtK-U7FoQHG7uAjd3gd93SZLdfyRr1__CYoJ_uJZW95Dw7nR-vNbkk8aFSD_vNOivoDTKaPhydgTn5_Ovn9-rU3ijfgE31q8m |
| CitedBy_id | crossref_primary_10_1038_jcbfm_2012_121 crossref_primary_10_1007_s00115_018_0535_z crossref_primary_10_1177_0271678X19831024 crossref_primary_10_1007_s11604_024_01583_7 crossref_primary_10_1038_s41598_020_80036_3 crossref_primary_10_3389_fneur_2024_1345914 crossref_primary_10_3389_fneur_2018_00702 crossref_primary_10_1002_mrm_25232 crossref_primary_10_1002_mrm_27532 crossref_primary_10_1161_STROKEAHA_114_006564 crossref_primary_10_1007_s10278_019_00222_2 crossref_primary_10_3389_fneur_2024_1441055 crossref_primary_10_1371_journal_pone_0185552 crossref_primary_10_1016_j_media_2016_07_009 crossref_primary_10_1002_jmri_26778 crossref_primary_10_1038_jcbfm_2015_108 crossref_primary_10_1161_STROKEAHA_111_644344 crossref_primary_10_1007_s00117_013_2486_5 crossref_primary_10_1161_STROKEAHA_116_014177 crossref_primary_10_1007_s10140_019_01675_2 crossref_primary_10_2147_RMI_S331876 crossref_primary_10_1002_mrm_23283 crossref_primary_10_3390_brainsci12111451 crossref_primary_10_1161_STROKEAHA_114_008171 crossref_primary_10_1159_000501547 crossref_primary_10_1161_STROKEAHA_113_003340 crossref_primary_10_1016_j_wneu_2019_01_176 crossref_primary_10_1159_000519730 crossref_primary_10_1161_STROKEAHA_113_002135 crossref_primary_10_1371_journal_pone_0151772 crossref_primary_10_1016_j_neurad_2021_05_001 crossref_primary_10_1007_s11940_016_0403_8 crossref_primary_10_1212_WNL_0b013e3182a08f07 crossref_primary_10_1016_j_media_2020_101791 crossref_primary_10_55095_CesRadiol2020_024 crossref_primary_10_1002_ana_24543 crossref_primary_10_1007_s00234_021_02855_z crossref_primary_10_1161_STROKEAHA_113_004085 crossref_primary_10_1111_ijs_12207 crossref_primary_10_1002_mrm_23195 crossref_primary_10_1111_ijs_12206 crossref_primary_10_1177_1747493017701147 crossref_primary_10_3414_ME14_01_0007 crossref_primary_10_1002_jmri_23613 crossref_primary_10_1002_mp_12015 crossref_primary_10_1007_s11940_015_0376_z crossref_primary_10_1177_0271678X221083471 crossref_primary_10_1161_STROKEAHA_113_003798 crossref_primary_10_1016_j_jns_2017_02_044 crossref_primary_10_3389_fneur_2020_00120 crossref_primary_10_1161_STROKEAHA_123_044606 crossref_primary_10_1177_0846537120902068 crossref_primary_10_3390_jcm9113383 crossref_primary_10_1161_STROKEAHA_111_639773 crossref_primary_10_1038_srep08910 crossref_primary_10_1136_neurintsurg_2018_013784 crossref_primary_10_1016_j_nicl_2012_10_003 crossref_primary_10_1007_s00330_016_4415_2 crossref_primary_10_1111_ijs_12436 crossref_primary_10_3171_2021_10_JNS21986 crossref_primary_10_1002_mp_15508 crossref_primary_10_1161_STROKEAHA_117_020200 crossref_primary_10_3389_fneur_2018_00737 crossref_primary_10_1371_journal_pone_0249772 crossref_primary_10_4329_wjr_v16_i8_329 crossref_primary_10_1159_000365503 crossref_primary_10_1161_STROKEAHA_112_653329 crossref_primary_10_1002_jmri_24963 crossref_primary_10_1016_S1474_4422_12_70203_X crossref_primary_10_1161_STROKEAHA_121_036871 crossref_primary_10_1161_STROKEAHA_116_014707 crossref_primary_10_1016_j_spen_2022_100989 crossref_primary_10_1161_STROKEAHA_120_032822 crossref_primary_10_1161_STROKEAHA_120_032941 crossref_primary_10_1177_0271678X16674221 crossref_primary_10_1007_s00062_019_00817_w crossref_primary_10_1002_mrm_24500 crossref_primary_10_1177_0271678X20924549 crossref_primary_10_1016_j_media_2022_102610 crossref_primary_10_1093_neuros_nyw108 crossref_primary_10_1148_radiol_2015150319 crossref_primary_10_3389_fneur_2017_00657 crossref_primary_10_1111_j_1747_4949_2012_00783_x crossref_primary_10_3389_fneur_2022_752450 crossref_primary_10_3389_fneur_2017_00539 crossref_primary_10_1016_j_wneu_2018_10_084 crossref_primary_10_1007_s00062_017_0634_4 crossref_primary_10_1161_STR_0000000000000074 crossref_primary_10_1016_j_media_2017_12_009 crossref_primary_10_3389_fneur_2022_899957 crossref_primary_10_1016_j_neurol_2017_09_002 crossref_primary_10_1161_STROKEAHA_119_026640 crossref_primary_10_1007_s00330_017_5174_4 crossref_primary_10_1002_brb3_3521 crossref_primary_10_1161_STROKEAHA_121_034444 crossref_primary_10_1111_ene_13287 crossref_primary_10_1016_j_ejrad_2019_02_038 crossref_primary_10_1111_ijs_12068 crossref_primary_10_1111_ijs_12186 crossref_primary_10_3389_fcvm_2022_861913 crossref_primary_10_1016_j_mric_2023_09_010 crossref_primary_10_1111_j_1747_4949_2012_00941_x crossref_primary_10_3390_ctn5030021 crossref_primary_10_1007_s11886_012_0315_5 crossref_primary_10_1177_1179573520943314 crossref_primary_10_1007_s40120_022_00409_w crossref_primary_10_1136_neurintsurg_2013_010973 crossref_primary_10_1017_cjn_2022_9 crossref_primary_10_1007_s12975_012_0167_8 crossref_primary_10_1111_jon_12850 crossref_primary_10_1016_j_jneumeth_2021_109260 crossref_primary_10_1016_j_jstrokecerebrovasdis_2016_09_031 crossref_primary_10_1055_s_0041_1742181 crossref_primary_10_1038_s41598_025_96340_9 crossref_primary_10_1212_WNL_0000000000005413 crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106548 crossref_primary_10_1038_s41598_020_66041_6 crossref_primary_10_1212_WNL_0000000000001853 crossref_primary_10_1038_s41598_017_17533_5 crossref_primary_10_1161_STROKEAHA_116_013147 crossref_primary_10_1161_STROKEAHA_116_013021 crossref_primary_10_1148_radiol_220080 crossref_primary_10_1016_j_acra_2018_12_013 crossref_primary_10_3389_fnins_2021_608799 crossref_primary_10_1007_s13311_023_01358_4 crossref_primary_10_1212_WNL_0000000000012855 crossref_primary_10_1038_jcbfm_2011_102 crossref_primary_10_1177_0271678X20982395 crossref_primary_10_1161_STROKEAHA_110_609008 crossref_primary_10_6009_jjrt_25_0907 crossref_primary_10_1038_s41598_023_48700_6 crossref_primary_10_1016_j_compbiomed_2024_109590 crossref_primary_10_1136_neurintsurg_2019_015135 crossref_primary_10_1007_s00330_020_07485_2 crossref_primary_10_1016_j_jneumeth_2019_108575 crossref_primary_10_1111_joim_12653 crossref_primary_10_1111_jon_13003 crossref_primary_10_1371_journal_pone_0196161 crossref_primary_10_1016_j_clinimag_2021_09_015 crossref_primary_10_1002_mrm_29431 crossref_primary_10_1159_000481205 crossref_primary_10_1177_0271678X15610586 crossref_primary_10_1056_NEJMoa1713973 crossref_primary_10_1111_jon_12272 crossref_primary_10_1111_ijs_12271 crossref_primary_10_1177_1747493019873515 crossref_primary_10_1016_j_nicl_2016_11_018 crossref_primary_10_1007_s00415_021_10638_y crossref_primary_10_3389_fninf_2018_00021 crossref_primary_10_1161_STROKEAHA_119_028101 crossref_primary_10_1097_RCT_0000000000000570 crossref_primary_10_1007_s00234_024_03335_w crossref_primary_10_1177_1747493015607503 crossref_primary_10_1136_svn_2023_002411 crossref_primary_10_1016_j_wneu_2024_01_012 crossref_primary_10_3348_kjr_2014_15_5_554 crossref_primary_10_1016_j_wneu_2024_04_113 crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106870 crossref_primary_10_1016_j_expneurol_2024_115117 crossref_primary_10_1161_STROKEAHA_114_004772 crossref_primary_10_1161_STROKEAHA_124_050171 crossref_primary_10_1111_ijs_12381 crossref_primary_10_3348_kjr_2018_0615 crossref_primary_10_3389_fneur_2025_1528812 crossref_primary_10_1002_ana_22524 crossref_primary_10_1056_NEJMoa1415061 crossref_primary_10_1136_bmjopen_2022_060818 crossref_primary_10_4103_2394_8108_186266 crossref_primary_10_1111_jon_12933 crossref_primary_10_1161_STROKEAHA_111_644971 crossref_primary_10_1002_ana_25133 crossref_primary_10_1038_jcbfm_2013_10 crossref_primary_10_1016_j_compbiomed_2024_109134 crossref_primary_10_1161_STROKEAHA_112_668301 crossref_primary_10_1016_j_jocn_2016_01_001 crossref_primary_10_1007_s00415_021_10872_4 crossref_primary_10_1016_j_measurement_2025_118925 crossref_primary_10_1136_neurintsurg_2021_017510 crossref_primary_10_3995_jstroke_11269 crossref_primary_10_1002_acn3_388 crossref_primary_10_1016_j_jocn_2016_10_018 crossref_primary_10_1002_ana_23744 crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106866 crossref_primary_10_1161_STROKEAHA_117_019173 crossref_primary_10_1148_radiol_12112618 crossref_primary_10_1136_neurintsurg_2017_013083 crossref_primary_10_1002_brb3_772 crossref_primary_10_1016_j_wneu_2018_12_051 crossref_primary_10_1161_STROKEAHA_116_013903 crossref_primary_10_3389_fninf_2019_00033 crossref_primary_10_1111_imj_14116 crossref_primary_10_1161_STROKEAHA_114_005084 crossref_primary_10_1161_STROKEAHA_118_024261 crossref_primary_10_1007_s12028_023_01689_2 crossref_primary_10_1136_bmjno_2024_000707 crossref_primary_10_1371_journal_pone_0085884 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_107983 crossref_primary_10_3389_fneur_2020_618765 crossref_primary_10_1159_000519310 crossref_primary_10_1186_s13244_023_01472_z crossref_primary_10_1159_000519796 crossref_primary_10_1161_STROKEAHA_117_019740 crossref_primary_10_1161_STROKEAHA_111_000371 crossref_primary_10_1161_STROKEAHA_119_025411 crossref_primary_10_3389_fneur_2019_01139 crossref_primary_10_1002_jmri_27365 crossref_primary_10_1177_2396987317753486 crossref_primary_10_12688_f1000research_9191_1 crossref_primary_10_1161_STROKEAHA_111_000135 crossref_primary_10_1056_NEJMoa1414792 crossref_primary_10_1161_STROKEAHA_110_601609 crossref_primary_10_12688_f1000research_21100_1 crossref_primary_10_1111_jon_12119 crossref_primary_10_3389_fneur_2021_734345 crossref_primary_10_1002_ana_26528 crossref_primary_10_1161_STROKEAHA_115_008782 crossref_primary_10_2459_JCM_0000000000000469 crossref_primary_10_1016_j_neurol_2011_10_002 crossref_primary_10_1016_j_pnmrs_2013_04_002 crossref_primary_10_1161_STROKEAHA_117_020395 crossref_primary_10_1111_j_1747_4949_2012_00787_x crossref_primary_10_1161_JAHA_121_023828 crossref_primary_10_1002_jmri_28364 crossref_primary_10_1161_STROKEAHA_117_017773 crossref_primary_10_3389_fneur_2025_1639880 crossref_primary_10_3389_fphy_2023_1246973 crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106844 crossref_primary_10_1016_j_media_2023_102971 crossref_primary_10_3390_ijms21176107 crossref_primary_10_3389_fneur_2018_00586 crossref_primary_10_1007_s00234_020_02517_6 crossref_primary_10_1161_STROKEAHA_115_012010 crossref_primary_10_1056_NEJMoa2310392 crossref_primary_10_1179_1743132813Y_0000000214 crossref_primary_10_3233_CH_219106 crossref_primary_10_1097_RCT_0000000000000498 crossref_primary_10_1001_jama_2020_26867 crossref_primary_10_1136_neurintsurg_2016_012750 crossref_primary_10_1007_s00234_021_02640_y crossref_primary_10_1111_ijs_12459 crossref_primary_10_1002_jmri_24558 crossref_primary_10_1089_brain_2018_0610 crossref_primary_10_1242_dmm_048785 crossref_primary_10_1136_neurintsurg_2015_012101 crossref_primary_10_1177_1971400915576641 crossref_primary_10_1016_j_clinimag_2023_109992 crossref_primary_10_1080_14737175_2021_1836963 crossref_primary_10_1161_STROKEAHA_119_027457 crossref_primary_10_1097_MD_0000000000004702 crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_04_021 crossref_primary_10_1007_s00330_024_10619_5 crossref_primary_10_1002_mp_14351 crossref_primary_10_1007_s40138_020_00205_6 crossref_primary_10_1007_s13369_022_07536_4 crossref_primary_10_1007_s10278_022_00611_0 crossref_primary_10_1111_j_1749_6632_2012_06747_x crossref_primary_10_1111_jon_12698 crossref_primary_10_1111_ijs_12007 crossref_primary_10_1161_STROKEAHA_117_016669 crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106393 crossref_primary_10_3390_brainsci12010077 crossref_primary_10_3389_fneur_2023_1203241 crossref_primary_10_1177_15910199221149563 crossref_primary_10_1016_j_jstrokecerebrovasdis_2019_02_003 crossref_primary_10_1097_RMR_0b013e31821e53f5 crossref_primary_10_1016_j_wneu_2018_08_008 crossref_primary_10_1161_STROKEAHA_111_000208 crossref_primary_10_1186_s13063_020_04794_1 crossref_primary_10_1111_jon_12107 crossref_primary_10_3389_fneur_2021_668360 crossref_primary_10_1097_RCT_0000000000001243 crossref_primary_10_1111_j_1747_4949_2012_00946_x crossref_primary_10_1177_23969873241301276 crossref_primary_10_3389_fneur_2014_00194 crossref_primary_10_1007_s10439_024_03471_7 crossref_primary_10_1016_j_ynirp_2024_100196 crossref_primary_10_1007_s12975_012_0159_8 crossref_primary_10_1016_j_pneurobio_2016_09_002 crossref_primary_10_1161_STROKEAHA_121_036204 crossref_primary_10_1161_STROKEAHA_122_039337 crossref_primary_10_1016_j_wneu_2019_12_033 crossref_primary_10_1007_s00062_024_01382_7 crossref_primary_10_1111_j_1552_6569_2011_00588_x crossref_primary_10_1016_j_mri_2015_01_009 crossref_primary_10_1002_ana_23837 crossref_primary_10_1161_STROKEAHA_119_027479 crossref_primary_10_1067_j_cpradiol_2023_10_011 crossref_primary_10_1148_radiol_13121622 crossref_primary_10_1007_s11547_018_0887_2 crossref_primary_10_1161_JAHA_121_022880 crossref_primary_10_1161_STROKEAHA_118_020788 crossref_primary_10_1148_radiol_12112134 crossref_primary_10_3389_fneur_2021_689606 |
| Cites_doi | 10.1002/ana.10380 10.1002/mrm.1307 10.1007/s10334-010-0217-8 10.1002/mrm.20759 10.1161/STROKEAHA.108.546069 10.1002/mrm.10643 10.1088/0031-9155/39/11/004 10.1161/01.STR.0000023579.61630.AC 10.1002/mrm.1910360510 10.1161/01.STR.0000097608.38779.CC 10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M 10.1016/j.nic.2005.08.011 10.1002/mrm.10461 10.1212/01.wnl.0000345372.49233.e3 10.1148/radiology.193.3.7972800 10.1002/jmri.20455 10.1161/01.STR.0000209238.61459.39 10.1002/mrm.10522 10.1002/mrm.21362 10.1002/jmri.20843 10.1002/ana.20976 10.1152/jappl.1954.6.12.731 10.1002/mrm.1910290420 10.1002/jmri.20457 10.1097/00004728-200011000-00022 10.1161/01.str.0000366115.56266.0a 10.1002/jmri.21093 10.1161/STROKEAHA.108.526954 10.1002/mrm.20920 10.1212/WNL.57.9.1611 10.1148/radiology.137.3.7003648 10.1148/radiology.211.3.r99jn15799 10.1136/jnnp.2008.164947 10.1161/01.STR.0000072998.70087.E9 10.1016/S1474-4422(08)70044-9 10.1161/STROKEAHA.107.500090 10.1113/jphysiol.1967.sp008130 10.1002/mrm.10330 10.1161/01.RES.10.3.393 10.1137/1.9780898719697 10.1016/S0730-725X(01)00435-0 10.1002/mrm.21255 10.1152/ajplegacy.1931.96.3.562 |
| ContentType | Journal Article |
| Copyright | Copyright © 2010 Wiley‐Liss, Inc. 2010 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: 2010 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1002/jmri.22338 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1522-2586 |
| EndPage | 1037 |
| ExternalDocumentID | PMC2975404 21031505 10_1002_jmri_22338 JMRI22338 ark_67375_WNG_QQRZVK3M_B |
| Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIBIB funderid: R01EB2711 – fundername: NIH funderid: 2R01 NS039325 – fundername: NINDS funderid: R01NS39325 – fundername: NINDS NIH HHS grantid: R01NS39325 – fundername: NINDS NIH HHS grantid: 2R01 NS039325 – fundername: NIBIB NIH HHS grantid: R01 EB008706 – fundername: NIBIB NIH HHS grantid: R01 EB006526 – fundername: NCRR NIH HHS grantid: P41 RR009784 – fundername: NINDS NIH HHS grantid: R01 NS039325 – fundername: NIBIB NIH HHS grantid: R01EB2711 – fundername: NIBIB NIH HHS grantid: R01 EB002711 |
| GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c5238-3154ec7ea6471ca4e099c86cc4af11627cacd73e22ab07aad9a2c42b8cf2a8d13 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 339 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000284190200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-1807 1522-2586 |
| IngestDate | Tue Sep 30 16:57:09 EDT 2025 Fri Jul 11 11:31:43 EDT 2025 Thu Apr 03 07:08:50 EDT 2025 Sat Nov 29 02:57:29 EST 2025 Tue Nov 18 22:01:36 EST 2025 Wed Jan 22 16:41:39 EST 2025 Sun Sep 21 06:27:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2010 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5238-3154ec7ea6471ca4e099c86cc4af11627cacd73e22ab07aad9a2c42b8cf2a8d13 |
| Notes | NIBIB - No. R01EB2711 ark:/67375/WNG-QQRZVK3M-B istex:540EC44A42FDD580903B2B3AD95D33D6030686EE ArticleID:JMRI22338 NINDS - No. R01NS39325 NIH - No. 2R01 NS039325 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2975404 |
| PMID | 21031505 |
| PQID | 762471637 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2975404 proquest_miscellaneous_762471637 pubmed_primary_21031505 crossref_citationtrail_10_1002_jmri_22338 crossref_primary_10_1002_jmri_22338 wiley_primary_10_1002_jmri_22338_JMRI22338 istex_primary_ark_67375_WNG_QQRZVK3M_B |
| PublicationCentury | 2000 |
| PublicationDate | November 2010 |
| PublicationDateYYYYMMDD | 2010-11-01 |
| PublicationDate_xml | – month: 11 year: 2010 text: November 2010 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Journal of magnetic resonance imaging |
| PublicationTitleAlternate | J. Magn. Reson. Imaging |
| PublicationYear | 2010 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Calamante F, Vonken EPA, van Osch MJP. Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 2007; 58: 544-553. Schaefer PW, Copen WA, Lev MH, Gonzalez RG. Diffusion- weighted imaging in acute stroke. Neuroimaging Clin N Am 2005; 15: 503-530. Olivot JM, Mlynash M, Zaharchuk G, et al. Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 2009; 72: 1140-1145. Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193: 637-641. Gall P, Emerich P, Kjølby BF, Kellner E, Mader I, Kiselev VG. On the design of filters for fourier and oSVD-based deconvolution in bolus tracking perfusion MRI. Magn Reson Mater Phys 2010; 23: 187-195. Hansen PC. Rank-deficient and discrete ill-posed problems. Numerical aspects of linear inversion, 1st edition. Philadelphia: Society of Industrial And Applied Mathemathics (SIAM); 1998. 247 p. Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006; 60: 508-517. Ma H, Zavala JA, Teoh H, et al. Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time. J Neurol Neurosurg Psychiatry 2009; 80: 991-997. Wintermark M, Flanders AE, Velthuis B, et al. Perfusion-CT assessment of infarct core and penumbra receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006; 37: 979-985. Gobbel GT, Fike JR. A deconvolution method for evaluating indicator-dilution curves. Phys Med Biol 1994; 39: 1833-1854. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?. Magn Reson Med 1993; 29: 553-558. Newbould RD, Stefan ST, Jochimsen TH, et al. Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007; 58: 70-81. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003; 34: 2729-2735. Kosior JC, Frayne R. PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies. J Magn Reson Imaging 2007; 25: 653-659. van Osch MJP, van der Grond J, Bakker CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 2005; 22: 704-709. Olivot JM, Mlynash M, Thijs VN, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009; 40: 469-475. Meier P, Zierler KL. On the theory of the indicator-dillution method for measurement of blood flow and volume. J Appl Physiol 1954; 6: 731-744. van Osch MJP, Vonken EPA, Viergever MA, van der Grond J, Bakker CJG. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003; 49: 1067-1076. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006; 55: 524-531. Kiselev VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001; 46: 1113-1122. Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008; 7: 299-309. Smith MR, Lu H, Frayne R. Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents. Magn Reson Med 2003; 49: 122-128. Knuttson L, Börjesson S, Larsson EM, et al. Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 2007; 26: 913-920. Takasawa M, Jones PS, Guadagno JV, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008; 39: 870-877. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996; 36: 715-725. Kidwell CS, Saver JL, Starkman S, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 2002; 52: 698-703. Axel L. Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 1980; 137: 679-686. Conturo TE, Akbudak E, Kotys MS, et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 2005; 22: 697-703. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859-867. Fåhreus R, Lindquist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931; 96: 562-568. Wintermark M, Reichhart M, Cuisenaire O, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002; 33: 2025-2031. Christensen S, Mouridsen K, Wu O, et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 2009; 40: 2055-2061. Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962; 10: 393-407. Kidwell CS, Saver JL, Mattiello J, et al. Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage. Neurology 2001; 57: 1611-1617. Ellinger R, Kremser C, Schocke MFH, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 2000; 24: 942-948. Rose SE, Chalk JB, Griffin MP, et al. MRI based diffusion and perfusion predictive model to estimate stroke evolution. Magn Reson Imaging 2001; 19: 1043-1053. Shih LC, Saver JL, Alger JR, et al. Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke 2003; 34: 1425-1430. Kjølby BF, Østergaard L, Kiselev VG. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006; 56: 187-197. Bammer R, Stollberger R, Augustin M, et al. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology 1999; 211: 799-806. Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003; 50: 164-174. Schaefer PW, Hunter GJ, He J, et al. Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. AJNR Am J Neuroradiol 2002; 23: 1785-1794. Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003; 50: 1237-1247. Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000; 44: 466-473. Chacalos EH. Variations in small and large vessel volumes caused by cations, adrenaline and histamine. J Physiol 1967; 188: 141-158. 1980; 137 2009; 40 1993; 29 2006; 56 2002; 52 1994; 193 2009; 80 2010 2006; 55 2000; 24 2000; 44 2002; 33 2006; 37 2008; 39 2009 1998 2008; 7 2007 1962; 10 1996; 36 2003; 50 1931; 96 2001; 46 2005; 22 2007; 58 2003; 34 2010; 23 2006; 60 2001 2009; 72 2002; 23 2006; 27 2001; 19 1954; 6 2003; 49 1967; 188 1994; 39 1999; 211 2005; 15 2001; 57 2007; 25 2007; 26 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_31_2 Fåhreus R (e_1_2_6_34_2) 1931; 96 e_1_2_6_18_2 Boxerman JL (e_1_2_6_50_2) 2006; 27 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 Schaefer PW (e_1_2_6_40_2) 2002; 23 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 19357125 - J Neurol Neurosurg Psychiatry. 2009 Sep;80(9):991-6 17896379 - J Magn Reson Imaging. 2007 Oct;26(4):913-20 16724299 - Magn Reson Med. 2006 Jul;56(1):187-97 14576370 - Stroke. 2003 Nov;34(11):2729-35 8916022 - Magn Reson Med. 1996 Nov;36(5):715-25 15559994 - Phys Med Biol. 1994 Nov;39(11):1833-54 11746577 - Magn Reson Med. 2001 Dec;46(6):1113-22 12738899 - Stroke. 2003 Jun;34(6):1425-30 18258831 - Stroke. 2008 Mar;39(3):870-7 19109547 - Stroke. 2009 Feb;40(2):469-75 14648572 - Magn Reson Med. 2003 Dec;50(6):1237-47 16453314 - Magn Reson Med. 2006 Mar;55(3):524-31 16360586 - Neuroimaging Clin N Am. 2005 Aug;15(3):503-30, ix-x 7972800 - Radiology. 1994 Dec;193(3):637-41 16611779 - AJNR Am J Neuroradiol. 2006 Apr;27(4):859-67 17326077 - J Magn Reson Imaging. 2007 Mar;25(3):653-9 12427640 - AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1785-94 10975900 - Magn Reson Med. 2000 Sep;44(3):466-73 6030507 - J Physiol. 1967 Jan;188(2):141-58 13174454 - J Appl Physiol. 1954 Jun;6(12):731-44 12815691 - Magn Reson Med. 2003 Jul;50(1):164-74 18296121 - Lancet Neurol. 2008 Apr;7(4):299-309 7003648 - Radiology. 1980 Dec;137(3):679-86 17066483 - Ann Neurol. 2006 Nov;60(5):508-17 12154257 - Stroke. 2002 Aug;33(8):2025-31 16261570 - J Magn Reson Imaging. 2005 Dec;22(6):704-9 20512521 - MAGMA. 2010 Jun;23(3):187-95 19332690 - Neurology. 2009 Mar 31;72(13):1140-5 10352609 - Radiology. 1999 Jun;211(3):799-806 8464373 - Magn Reson Med. 1993 Apr;29(4):553-8 12768585 - Magn Reson Med. 2003 Jun;49(6):1067-76 16261571 - J Magn Reson Imaging. 2005 Dec;22(6):697-703 12509827 - Magn Reson Med. 2003 Jan;49(1):122-8 11711228 - Magn Reson Imaging. 2001 Oct;19(8):1043-53 16514093 - Stroke. 2006 Apr;37(4):979-85 17659630 - Magn Reson Med. 2007 Jul;58(1):70-81 17763347 - Magn Reson Med. 2007 Sep;58(3):544-53 11105716 - J Comput Assist Tomogr. 2000 Nov-Dec;24(6):942-8 11706101 - Neurology. 2001 Nov 13;57(9):1611-7 12447922 - Ann Neurol. 2002 Dec;52(6):698-703 19359626 - Stroke. 2009 Jun;40(6):2055-61 |
| References_xml | – reference: Rose SE, Chalk JB, Griffin MP, et al. MRI based diffusion and perfusion predictive model to estimate stroke evolution. Magn Reson Imaging 2001; 19: 1043-1053. – reference: Olivot JM, Mlynash M, Zaharchuk G, et al. Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 2009; 72: 1140-1145. – reference: Meier P, Zierler KL. On the theory of the indicator-dillution method for measurement of blood flow and volume. J Appl Physiol 1954; 6: 731-744. – reference: van Osch MJP, van der Grond J, Bakker CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 2005; 22: 704-709. – reference: Weisskoff RM, Chesler D, Boxerman JL, Rosen BR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time?. Magn Reson Med 1993; 29: 553-558. – reference: Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006; 60: 508-517. – reference: Axel L. Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 1980; 137: 679-686. – reference: Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193: 637-641. – reference: van Osch MJP, Vonken EPA, Viergever MA, van der Grond J, Bakker CJG. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003; 49: 1067-1076. – reference: Gall P, Emerich P, Kjølby BF, Kellner E, Mader I, Kiselev VG. On the design of filters for fourier and oSVD-based deconvolution in bolus tracking perfusion MRI. Magn Reson Mater Phys 2010; 23: 187-195. – reference: Hansen PC. Rank-deficient and discrete ill-posed problems. Numerical aspects of linear inversion, 1st edition. Philadelphia: Society of Industrial And Applied Mathemathics (SIAM); 1998. 247 p. – reference: Takasawa M, Jones PS, Guadagno JV, et al. How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET. Stroke 2008; 39: 870-877. – reference: Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis. Magn Reson Med 1996; 36: 715-725. – reference: Kidwell CS, Saver JL, Starkman S, et al. Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 2002; 52: 698-703. – reference: Christensen S, Mouridsen K, Wu O, et al. Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis. Stroke 2009; 40: 2055-2061. – reference: Shih LC, Saver JL, Alger JR, et al. Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke 2003; 34: 1425-1430. – reference: Fåhreus R, Lindquist T. The viscosity of the blood in narrow capillary tubes. Am J Physiol 1931; 96: 562-568. – reference: Kjølby BF, Østergaard L, Kiselev VG. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006; 56: 187-197. – reference: Bammer R, Stollberger R, Augustin M, et al. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology 1999; 211: 799-806. – reference: Kiselev VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001; 46: 1113-1122. – reference: Knuttson L, Börjesson S, Larsson EM, et al. Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 2007; 26: 913-920. – reference: Kidwell CS, Saver JL, Mattiello J, et al. Diffusion-perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage. Neurology 2001; 57: 1611-1617. – reference: Newbould RD, Stefan ST, Jochimsen TH, et al. Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007; 58: 70-81. – reference: Gobbel GT, Fike JR. A deconvolution method for evaluating indicator-dilution curves. Phys Med Biol 1994; 39: 1833-1854. – reference: Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000; 44: 466-473. – reference: Calamante F, Vonken EPA, van Osch MJP. Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 2007; 58: 544-553. – reference: Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859-867. – reference: Smith MR, Lu H, Frayne R. Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents. Magn Reson Med 2003; 49: 122-128. – reference: Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003; 34: 2729-2735. – reference: Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962; 10: 393-407. – reference: Mouridsen K, Christensen S, Gyldensted L, Ostergaard L. Automatic selection of arterial input function using cluster analysis. Magn Reson Med 2006; 55: 524-531. – reference: Ma H, Zavala JA, Teoh H, et al. Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time. J Neurol Neurosurg Psychiatry 2009; 80: 991-997. – reference: Ellinger R, Kremser C, Schocke MFH, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast-enhanced MR studies. J Comput Assist Tomogr 2000; 24: 942-948. – reference: Wintermark M, Flanders AE, Velthuis B, et al. Perfusion-CT assessment of infarct core and penumbra receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 2006; 37: 979-985. – reference: Olivot JM, Mlynash M, Thijs VN, et al. Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 2009; 40: 469-475. – reference: Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 2008; 7: 299-309. – reference: Schaefer PW, Copen WA, Lev MH, Gonzalez RG. Diffusion- weighted imaging in acute stroke. Neuroimaging Clin N Am 2005; 15: 503-530. – reference: Schaefer PW, Hunter GJ, He J, et al. Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging. AJNR Am J Neuroradiol 2002; 23: 1785-1794. – reference: Wintermark M, Reichhart M, Cuisenaire O, et al. Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002; 33: 2025-2031. – reference: Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003; 50: 1237-1247. – reference: Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003; 50: 164-174. – reference: Chacalos EH. Variations in small and large vessel volumes caused by cations, adrenaline and histamine. J Physiol 1967; 188: 141-158. – reference: Conturo TE, Akbudak E, Kotys MS, et al. Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 2005; 22: 697-703. – reference: Kosior JC, Frayne R. PerfTool: a software platform for investigating bolus-tracking perfusion imaging quantification strategies. J Magn Reson Imaging 2007; 25: 653-659. – volume: 37 start-page: 979 year: 2006 end-page: 985 article-title: Perfusion‐CT assessment of infarct core and penumbra receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke publication-title: Stroke – year: 2009 – volume: 39 start-page: 1833 year: 1994 end-page: 1854 article-title: A deconvolution method for evaluating indicator‐dilution curves publication-title: Phys Med Biol – volume: 23 start-page: 1785 year: 2002 end-page: 1794 article-title: Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging publication-title: AJNR Am J Neuroradiol – volume: 58 start-page: 544 year: 2007 end-page: 553 article-title: Contrast agent concentration measurements affecting quantification of bolus‐tracking perfusion MRI publication-title: Magn Reson Med – volume: 188 start-page: 141 year: 1967 end-page: 158 article-title: Variations in small and large vessel volumes caused by cations, adrenaline and histamine publication-title: J Physiol – volume: 56 start-page: 187 year: 2006 end-page: 197 article-title: Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation publication-title: Magn Reson Med – volume: 25 start-page: 653 year: 2007 end-page: 659 article-title: PerfTool: a software platform for investigating bolus‐tracking perfusion imaging quantification strategies publication-title: J Magn Reson Imaging – volume: 39 start-page: 870 year: 2008 end-page: 877 article-title: How reliable is perfusion MR in acute stroke? Validation and determination of the penumbra threshold against quantitative PET publication-title: Stroke – volume: 50 start-page: 164 year: 2003 end-page: 174 article-title: Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix publication-title: Magn Reson Med – volume: 10 start-page: 393 year: 1962 end-page: 407 article-title: Theoretical basis of indicator‐dilution methods for measuring flow and volume publication-title: Circ Res – volume: 46 start-page: 1113 year: 2001 end-page: 1122 article-title: On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI publication-title: Magn Reson Med – volume: 50 start-page: 1237 year: 2003 end-page: 1247 article-title: Quantification of bolus‐tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization publication-title: Magn Reson Med – volume: 60 start-page: 508 year: 2006 end-page: 517 article-title: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study publication-title: Ann Neurol – year: 2007 – year: 2001 – volume: 96 start-page: 562 year: 1931 end-page: 568 article-title: The viscosity of the blood in narrow capillary tubes publication-title: Am J Physiol – volume: 49 start-page: 122 year: 2003 end-page: 128 article-title: Signal‐to‐noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents publication-title: Magn Reson Med – volume: 22 start-page: 697 year: 2005 end-page: 703 article-title: Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options publication-title: J Magn Reson Imaging – volume: 29 start-page: 553 year: 1993 end-page: 558 article-title: Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit time? publication-title: Magn Reson Med – volume: 80 start-page: 991 year: 2009 end-page: 997 article-title: Penumbral mismatch is underestimated using standard volumetric methods and this is exacerbated with time publication-title: J Neurol Neurosurg Psychiatry – volume: 7 start-page: 299 year: 2008 end-page: 309 article-title: Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): a placebo‐controlled randomised trial publication-title: Lancet Neurol – volume: 40 start-page: 2055 year: 2009 end-page: 2061 article-title: Comparison of 10 perfusion MRI parameters in 97 sub‐6‐hour stroke patients using voxel‐based receiver operating characteristics analysis publication-title: Stroke – volume: 137 start-page: 679 year: 1980 end-page: 686 article-title: Cerebral blood flow determination by rapid‐sequence computed tomography publication-title: Radiology – year: 2010 – start-page: 247 year: 1998 – volume: 36 start-page: 715 year: 1996 end-page: 725 article-title: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I. Mathematical approach and statistical analysis publication-title: Magn Reson Med – volume: 52 start-page: 698 year: 2002 end-page: 703 article-title: Late secondary ischemic injury in patients receiving intraarterial thrombolysis publication-title: Ann Neurol – volume: 15 start-page: 503 year: 2005 end-page: 530 article-title: Diffusion‐ weighted imaging in acute stroke publication-title: Neuroimaging Clin N Am – volume: 19 start-page: 1043 year: 2001 end-page: 1053 article-title: MRI based diffusion and perfusion predictive model to estimate stroke evolution publication-title: Magn Reson Imaging – volume: 44 start-page: 466 year: 2000 end-page: 473 article-title: Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition publication-title: Magn Reson Med – volume: 6 start-page: 731 year: 1954 end-page: 744 article-title: On the theory of the indicator‐dillution method for measurement of blood flow and volume publication-title: J Appl Physiol – volume: 34 start-page: 2729 year: 2003 end-page: 2735 article-title: Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging publication-title: Stroke – volume: 49 start-page: 1067 year: 2003 end-page: 1076 article-title: Measuring the arterial input function with gradient echo sequences publication-title: Magn Reson Med – volume: 55 start-page: 524 year: 2006 end-page: 531 article-title: Automatic selection of arterial input function using cluster analysis publication-title: Magn Reson Med – volume: 26 start-page: 913 year: 2007 end-page: 920 article-title: Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe‐133 SPECT and dynamic susceptibility contrast MRI publication-title: J Magn Reson Imaging – volume: 58 start-page: 70 year: 2007 end-page: 81 article-title: Perfusion mapping with multiecho multishot parallel imaging EPI publication-title: Magn Reson Med – volume: 27 start-page: 859 year: 2006 end-page: 867 article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not publication-title: AJNR Am J Neuroradiol – volume: 33 start-page: 2025 year: 2002 end-page: 2031 article-title: Comparison of admission perfusion computed tomography and qualitative diffusion‐ and perfusion‐weighted magnetic resonance imaging in acute stroke patients publication-title: Stroke – volume: 40 start-page: 469 year: 2009 end-page: 475 article-title: Optimal Tmax threshold for predicting penumbral tissue in acute stroke publication-title: Stroke – volume: 22 start-page: 704 year: 2005 end-page: 709 article-title: Partial volume effects on arterial input functions: shape and amplitude distortions and their correction publication-title: J Magn Reson Imaging – volume: 24 start-page: 942 year: 2000 end-page: 948 article-title: The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast‐enhanced MR studies publication-title: J Comput Assist Tomogr – volume: 23 start-page: 187 year: 2010 end-page: 195 article-title: On the design of filters for fourier and oSVD‐based deconvolution in bolus tracking perfusion MRI publication-title: Magn Reson Mater Phys – volume: 211 start-page: 799 year: 1999 end-page: 806 article-title: Diffusion‐weighted imaging with navigated interleaved echo‐planar imaging and a conventional gradient system publication-title: Radiology – volume: 57 start-page: 1611 year: 2001 end-page: 1617 article-title: Diffusion‐perfusion MR evaluation of perihematomal injury in hyperacute intracerebral hemorrhage publication-title: Neurology – volume: 34 start-page: 1425 year: 2003 end-page: 1430 article-title: Perfusion‐weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue publication-title: Stroke – volume: 193 start-page: 637 year: 1994 end-page: 641 article-title: Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast‐enhanced MR imaging publication-title: Radiology – volume: 72 start-page: 1140 year: 2009 end-page: 1145 article-title: Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients publication-title: Neurology – ident: e_1_2_6_39_2 doi: 10.1002/ana.10380 – ident: e_1_2_6_47_2 doi: 10.1002/mrm.1307 – ident: e_1_2_6_28_2 doi: 10.1007/s10334-010-0217-8 – ident: e_1_2_6_5_2 doi: 10.1002/mrm.20759 – ident: e_1_2_6_18_2 doi: 10.1161/STROKEAHA.108.546069 – ident: e_1_2_6_33_2 doi: 10.1002/mrm.10643 – ident: e_1_2_6_8_2 – ident: e_1_2_6_24_2 doi: 10.1088/0031-9155/39/11/004 – ident: e_1_2_6_11_2 doi: 10.1161/01.STR.0000023579.61630.AC – ident: e_1_2_6_4_2 doi: 10.1002/mrm.1910360510 – ident: e_1_2_6_9_2 – ident: e_1_2_6_12_2 doi: 10.1161/01.STR.0000097608.38779.CC – ident: e_1_2_6_27_2 doi: 10.1002/1522-2594(200009)44:3<466::AID-MRM18>3.0.CO;2-M – ident: e_1_2_6_38_2 doi: 10.1016/j.nic.2005.08.011 – ident: e_1_2_6_48_2 doi: 10.1002/mrm.10461 – ident: e_1_2_6_15_2 doi: 10.1212/01.wnl.0000345372.49233.e3 – ident: e_1_2_6_25_2 doi: 10.1148/radiology.193.3.7972800 – volume: 27 start-page: 859 year: 2006 ident: e_1_2_6_50_2 article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_36_2 doi: 10.1002/jmri.20455 – ident: e_1_2_6_14_2 doi: 10.1161/01.STR.0000209238.61459.39 – ident: e_1_2_6_41_2 – ident: e_1_2_6_26_2 doi: 10.1002/mrm.10522 – ident: e_1_2_6_46_2 doi: 10.1002/mrm.21362 – ident: e_1_2_6_6_2 doi: 10.1002/jmri.20843 – ident: e_1_2_6_2_2 doi: 10.1002/ana.20976 – ident: e_1_2_6_21_2 doi: 10.1152/jappl.1954.6.12.731 – ident: e_1_2_6_29_2 doi: 10.1002/mrm.1910290420 – volume: 23 start-page: 1785 year: 2002 ident: e_1_2_6_40_2 article-title: Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_20_2 doi: 10.1002/jmri.20457 – ident: e_1_2_6_45_2 doi: 10.1097/00004728-200011000-00022 – ident: e_1_2_6_42_2 doi: 10.1161/01.str.0000366115.56266.0a – ident: e_1_2_6_49_2 doi: 10.1002/jmri.21093 – ident: e_1_2_6_16_2 doi: 10.1161/STROKEAHA.108.526954 – ident: e_1_2_6_19_2 doi: 10.1002/mrm.20920 – ident: e_1_2_6_10_2 doi: 10.1212/WNL.57.9.1611 – ident: e_1_2_6_23_2 doi: 10.1148/radiology.137.3.7003648 – ident: e_1_2_6_44_2 doi: 10.1148/radiology.211.3.r99jn15799 – ident: e_1_2_6_31_2 – ident: e_1_2_6_43_2 doi: 10.1136/jnnp.2008.164947 – ident: e_1_2_6_13_2 doi: 10.1161/01.STR.0000072998.70087.E9 – ident: e_1_2_6_3_2 doi: 10.1016/S1474-4422(08)70044-9 – ident: e_1_2_6_17_2 doi: 10.1161/STROKEAHA.107.500090 – ident: e_1_2_6_35_2 doi: 10.1113/jphysiol.1967.sp008130 – ident: e_1_2_6_32_2 doi: 10.1002/mrm.10330 – ident: e_1_2_6_22_2 doi: 10.1161/01.RES.10.3.393 – ident: e_1_2_6_30_2 doi: 10.1137/1.9780898719697 – ident: e_1_2_6_7_2 doi: 10.1016/S0730-725X(01)00435-0 – ident: e_1_2_6_37_2 doi: 10.1002/mrm.21255 – volume: 96 start-page: 562 year: 1931 ident: e_1_2_6_34_2 article-title: The viscosity of the blood in narrow capillary tubes publication-title: Am J Physiol doi: 10.1152/ajplegacy.1931.96.3.562 – reference: 17763347 - Magn Reson Med. 2007 Sep;58(3):544-53 – reference: 16611779 - AJNR Am J Neuroradiol. 2006 Apr;27(4):859-67 – reference: 19332690 - Neurology. 2009 Mar 31;72(13):1140-5 – reference: 16261571 - J Magn Reson Imaging. 2005 Dec;22(6):697-703 – reference: 12768585 - Magn Reson Med. 2003 Jun;49(6):1067-76 – reference: 13174454 - J Appl Physiol. 1954 Jun;6(12):731-44 – reference: 12427640 - AJNR Am J Neuroradiol. 2002 Nov-Dec;23(10):1785-94 – reference: 7003648 - Radiology. 1980 Dec;137(3):679-86 – reference: 11746577 - Magn Reson Med. 2001 Dec;46(6):1113-22 – reference: 12738899 - Stroke. 2003 Jun;34(6):1425-30 – reference: 10975900 - Magn Reson Med. 2000 Sep;44(3):466-73 – reference: 16724299 - Magn Reson Med. 2006 Jul;56(1):187-97 – reference: 16261570 - J Magn Reson Imaging. 2005 Dec;22(6):704-9 – reference: 17326077 - J Magn Reson Imaging. 2007 Mar;25(3):653-9 – reference: 20512521 - MAGMA. 2010 Jun;23(3):187-95 – reference: 11105716 - J Comput Assist Tomogr. 2000 Nov-Dec;24(6):942-8 – reference: 17066483 - Ann Neurol. 2006 Nov;60(5):508-17 – reference: 18258831 - Stroke. 2008 Mar;39(3):870-7 – reference: 11706101 - Neurology. 2001 Nov 13;57(9):1611-7 – reference: 16453314 - Magn Reson Med. 2006 Mar;55(3):524-31 – reference: 16514093 - Stroke. 2006 Apr;37(4):979-85 – reference: 12509827 - Magn Reson Med. 2003 Jan;49(1):122-8 – reference: 18296121 - Lancet Neurol. 2008 Apr;7(4):299-309 – reference: 11711228 - Magn Reson Imaging. 2001 Oct;19(8):1043-53 – reference: 17896379 - J Magn Reson Imaging. 2007 Oct;26(4):913-20 – reference: 10352609 - Radiology. 1999 Jun;211(3):799-806 – reference: 16360586 - Neuroimaging Clin N Am. 2005 Aug;15(3):503-30, ix-x – reference: 17659630 - Magn Reson Med. 2007 Jul;58(1):70-81 – reference: 19109547 - Stroke. 2009 Feb;40(2):469-75 – reference: 14576370 - Stroke. 2003 Nov;34(11):2729-35 – reference: 19357125 - J Neurol Neurosurg Psychiatry. 2009 Sep;80(9):991-6 – reference: 8464373 - Magn Reson Med. 1993 Apr;29(4):553-8 – reference: 12154257 - Stroke. 2002 Aug;33(8):2025-31 – reference: 19359626 - Stroke. 2009 Jun;40(6):2055-61 – reference: 15559994 - Phys Med Biol. 1994 Nov;39(11):1833-54 – reference: 12815691 - Magn Reson Med. 2003 Jul;50(1):164-74 – reference: 8916022 - Magn Reson Med. 1996 Nov;36(5):715-25 – reference: 6030507 - J Physiol. 1967 Jan;188(2):141-58 – reference: 12447922 - Ann Neurol. 2002 Dec;52(6):698-703 – reference: 7972800 - Radiology. 1994 Dec;193(3):637-41 – reference: 14648572 - Magn Reson Med. 2003 Dec;50(6):1237-47 |
| SSID | ssj0009945 |
| Score | 2.4974473 |
| SecondaryResourceType | review_article |
| Snippet | Diffusion‐perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch... Diffusion-perfusion mismatch can be used to identify acute stroke patients that could benefit from reperfusion therapies. Early assessment of the mismatch... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1024 |
| SubjectTerms | acute stroke automated data processing Cerebrovascular Circulation diffusion Diffusion Magnetic Resonance Imaging Humans Image Processing, Computer-Assisted mismatch perfusion Sensitivity and Specificity Software Stroke - diagnosis Stroke - physiopathology |
| Title | Real-time diffusion-perfusion mismatch analysis in acute stroke |
| URI | https://api.istex.fr/ark:/67375/WNG-QQRZVK3M-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22338 https://www.ncbi.nlm.nih.gov/pubmed/21031505 https://www.proquest.com/docview/762471637 https://pubmed.ncbi.nlm.nih.gov/PMC2975404 |
| Volume | 32 |
| WOSCitedRecordID | wos000284190200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2586 dateEnd: 20201211 omitProxy: false ssIdentifier: ssj0009945 issn: 1053-1807 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 issn: 1053-1807 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwED6NDSG-8D4WXipLICSQwhLbjROJLzAoDGjFKsaqfbGci611g3RK22kf-Qn8Rn4JtpOmVExIiG9Wco7k813u8cs9B_C4MDbo5jEPuTE05AnLw9wl51jsobTGVNO0LjYhBoN0NMo-rcGLRS5MzQ_Rbrg5z_D_a-fgKp9uL0lDj79V4-c2uDGX6Rtz75UHu4Ml427mKxRb_MDCOI1Ey01Kt5ddV6LRhlPs-UVQ888bk78jWR-Ketf_bxA34FoDQcnL2mZuwpoub8GVfnPIfht2hhY8_vz-w5WdJ66AytztqNkHp7qq28Qah0W6eERUw2lCxiVROJ9pMp1VkxN9B_Z7bz7vvAubWgsh2qWo2yLtco1Cq8RGK1RcW_1hmiByZeI4oQIVFoJpSlUeCaWKTFHkNE_RUJUWMduE9XJS6i0ghV3SFZnIMKYxzyPM0ShjGM8i4xieWABPFzqX2BCRu3oYX2VNoUyl04r0WgngUSt7WtNvXCj1xE9dK6KqE3dhTXTlweCt3NsbHn75wPryVQBkMbfSasqdjahST-ZTaWOCHXjCRAB366luP0Z9JYyoG4BYMYJWwDF0r74px0eeqdulLfOIB_DMG8FfhiDf94e7vnXvX4Tvw1V_ncEnRz6A9Vk11w_hMp7NxtOqA5fEKO3Axuthb_9jx7vHLypvFLQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9Bi4AX_g4Ify2BkEAKS2w3dh5hUDbWVqza2MSL5VwcrWxLp7RFPPIR-Ix8EmwnS6mYkBBvVnJJdOdz7ny--x3As7ywRjeLeciLgoY8YVmYueIc63toY1AaKutmE2I0kgcH6ccmN8fVwtT4EG3Aza0M_792C9wFpNeXqKFfTqrJK2vdmLwIXfsV2etA9-24vzdYou6mvkux9SFYGMtItPikdH359IpF6jrhfjvP3fwza_J3b9abo_71_2TkBlxr_FDyulacm3DBlLfg8rA5ab8NG2PrQf78_sP1nieui8rChdXshVNT1WNiNcS6u3hIdANsQiYl0biYGzKbV9MjswZ7_Xe7G5th03AhRLsfdXHSHjcojE6syULNjRUgygSR6yKOEypQYy6YoVRnkdA6TzVFTjOJBdUyj9kd6JTT0twDktt9XZ6KFGMa8yzCDAtdFIynUeFgnlgAL86ErrBBI3dNMY5VjaNMlZOK8lIJ4GlLe1pjcJxL9dzPXUuiqyOXtSZ6an_0Xu3sjD9_2mZD9SYAcja5ykrKHZDo0kwXM2UNg2U8YSKAu_Vcty-jvh1G1AtArGhBS-BgulfvlJNDD9ftapd5xAN46bXgLyyoD8Pxlh_d_xfiJ3Blc3c4UIOt0fYDuOrzG3y15EPozKuFeQSX8Ot8MqseN-vjF398F3g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_Biqa98B8W_loCIYGULbHdOHmEjcLYWm0Vg2kvlnOxtTJIq7RFe9xH4DPySbCdLKViQkK8Wcklks93uV_su98BPC-MDbp5zENuDA15wvIwd8U5FnsorTHVNK2bTYjBID06yvab3BxXC1PzQ7Qbbs4z_PfaObieFGZzwRr65Vs12rDRjaVXocO7WWL9srM97B3uLVh3M9-l2GIIFsZpJFp-Urq5eHopInWccs8ug5t_Zk3-jmZ9OOrd-M-J3ITrDQ4lr2vDuQVXdHkbVvvNSfsd2BpaBPnz_IfrPU9cF5W521azFya6qsfEWoiFu3hCVENsQkYlUTifaTKdVeNTfRcOe28_br0Pm4YLIdr_UbdP2uUahVaJDVmouLYKxDRB5MrEcUIFKiwE05SqPBJKFZmiyGmeoqEqLWJ2D1bKcanXgRT2v67IRIYxjXkeYY5GGcN4FhlH88QCeHmhdIkNG7lrivFV1jzKVDqtSK-VAJ61spOag-NSqRd-7VoRVZ26rDXRlZ8H7-TBwfD40y7ryzcBkIvFlVZT7oBElXo8n0obGOzEEyYCuF-vdfsy6tthRN0AxJIVtAKOpnv5Tjk68XTdrnaZRzyAV94K_jIF-aE_3PGjB_8i_BRW97d7cm9nsPsQ1nx6gy-WfAQrs2quH8M1_D4bTasnjXv8Auw7FvM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+Diffusion-Perfusion+Mismatch+Analysis+in+Acute+Stroke&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Straka%2C+Matus&rft.au=Albers%2C+Gregory+W.&rft.au=Bammer%2C+Roland&rft.date=2010-11-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=32&rft.issue=5&rft.spage=1024&rft.epage=1037&rft_id=info:doi/10.1002%2Fjmri.22338&rft_id=info%3Apmid%2F21031505&rft.externalDocID=PMC2975404 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |