Foundations of automatic feature extraction at LHC–point clouds and graphs

Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Jg. 233; H. 15-16; S. 2619 - 2640
Hauptverfasser: Bhardwaj, Akanksha, Konar, Partha, Ngairangbam, Vishal
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2024
Springer Nature B.V
Springer Science + Business Media
Schlagworte:
ISSN:1951-6355, 1951-6401
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as “replacing the expert” in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology.
AbstractList Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as "replacing the expert" in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology.
Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as "replacing the expert" in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology.Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as "replacing the expert" in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology.
Abstract Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and accurate detector simulations to physics analysis probing possible deviations from the Standard Model. The game-changing feature of these new algorithms is the ability to extract relevant information from high-dimensional input spaces, often regarded as “replacing the expert” in designing physics-intuitive variables. While this may seem true at first glance, it is far from reality. Existing research shows that physics-inspired feature extractors have many advantages beyond improving the qualitative understanding of the extracted features. In this review, we systematically explore automatic feature extraction from a phenomenological viewpoint and the motivation for physics-inspired architectures. We also discuss how prior knowledge from physics results in the naturalness of the point cloud representation and discuss graph-based applications to LHC phenomenology.
Author Konar, Partha
Ngairangbam, Vishal
Bhardwaj, Akanksha
Author_xml – sequence: 1
  givenname: Akanksha
  surname: Bhardwaj
  fullname: Bhardwaj, Akanksha
  organization: Department of Physics, Oklahoma State University
– sequence: 2
  givenname: Partha
  surname: Konar
  fullname: Konar, Partha
  organization: Theoretical Physics Division, Physical Research Laboratory
– sequence: 3
  givenname: Vishal
  orcidid: 0000-0002-7143-715X
  surname: Ngairangbam
  fullname: Ngairangbam, Vishal
  email: vishal.s.ngairangbam@durham.ac.uk
  organization: Institute for Particle Physics Phenomenology, Department of Physics, Durham University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39605978$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2478724$$D View this record in Osti.gov
BookMark eNqFUctu1DAUtVARbQd-ASzYsAn1I07sBUJoRCnSSN3A2nIce8ajjB1sB7Vd8Q_8IV-Cp-kA7aYLy77yOfeec88pOPLBGwBeYfQO4xqdmXGbzhLGLa0rRMrBFDXVzRNwggXDVVMjfHR4U8aOwWlKW4RYQwR9Bo6paBATLT8Bq_Mw-V5lF3yCwUI15bArpYbWqDxFA81VjkrvAVBluLpY_v75awzOZ6iHMPUJKt_DdVTjJj0HT60aknlxdy_At_NPX5cX1ery85flx1WlGSG50pZYU1zUDKGOcIsZ46LDmlMrqKqpbbQqBrgwVpGm4X1ni27RoboTDBFGF-DD3Hecup3ptfFF4iDH6HYqXsugnLz_491GrsMPiTHjnJetLcDruUNI2cmkXTZ6o4P3RmdJ6pa3pC6gt3djYvg-mZTlziVthkF5E6YkKaa0pZygPfTNA-g2TNGXJUhKWCOYwJgX1Mv_df8VfIijAN7PAB1DStFYWZTdhlNsuEFiJPfxy338co5flvjlbfzypvDbB_zDiMeZfGamwvBrE_8ZeIz6B_PdyTQ
CitedBy_id crossref_primary_10_1088_2632_2153_adbab1
crossref_primary_10_1140_epjs_s11734_024_01364_3
Cites_doi 10.1007/JHEP02(2019)132
10.1016/0031-3203(82)90024-3
10.1007/JHEP01(2024)113
10.1007/JHEP04(2022)137
10.1016/j.physrep.2019.11.001
10.1016/j.revip.2024.100092
10.1016/j.acha.2022.12.002
10.1007/JHEP09(2023)135
10.1103/PhysRevD.107.116019
10.1109/TNN.2008.2005605
10.1103/PhysRevLett.111.102002
10.1007/JHEP09(2017)083
10.1103/PhysRevD.104.056026
10.1103/PhysRevD.102.012010
10.1103/PhysRevLett.128.032003
10.1007/JHEP06(2023)184
10.1103/PhysRevD.80.094002
10.1088/1126-6708/2005/03/073
10.1016/0010-4655(88)90004-5
10.1088/1748-0221/13/07/P07027
10.1093/ptep/ptac097
10.1103/PhysRevLett.65.1321
10.1007/JHEP08(2021)080
10.1007/JHEP04(2023)104
10.1007/s10462-021-10033-z
10.1088/1361-6633/ac36b9
10.1016/B978-1-55860-335-6.50039-8
10.1103/PhysRevD.103.074022
10.1007/JHEP05(2017)145
10.3389/frai.2022.943135
10.1103/PhysRevLett.125.121601
10.1103/PhysRevD.101.075021
10.21468/SciPostPhys.15.4.130
10.1103/RevModPhys.91.045002
10.1038/s41586-018-0361-2
10.1007/JHEP09(2013)029
10.1007/JHEP08(2019)055
10.1038/s41586-021-03819-2
10.1162/neco.1996.8.7.1341
10.1140/epjc/s10052-020-7608-4
10.1007/JHEP03(2021)052
10.1007/BF02478259
10.1007/JHEP03(2024)113
10.21468/SciPostPhys.10.2.046
10.1140/epjp/s13360-020-00497-3
10.1140/epjc/s10052-022-10012-w
10.21468/SciPostPhys.13.4.087
10.1007/JHEP08(2022)177
10.1007/JHEP03(2024)144
10.1109/TNNLS.2013.2293637
10.1038/ncomms5308
10.1007/BF02551274
10.1109/MSP.2017.2693418
10.1007/JHEP01(2019)121
10.1007/JHEP09(2020)195
10.1007/JHEP10(2022)156
10.1103/PhysRevLett.125.131801
10.1140/epjc/s10052-010-1314-6
10.1103/PhysRevD.109.056003
10.1103/PhysRevLett.120.042003
10.1038/s42254-023-00569-0
10.1007/JHEP07(2020)006
10.1103/PhysRevLett.132.081801
10.1088/1748-0221/19/03/C03019
10.21468/SciPostPhysCore.6.2.045
10.1088/2632-2153/ad66ad
10.1140/epjc/s10052-023-11925-w
10.1016/S0893-6080(05)80131-5
10.1103/PhysRevD.101.056019
10.1007/JHEP07(2022)030
10.1103/PhysRevD.103.036020
10.1051/epjconf/202024506014
10.1007/JHEP10(2017)174
10.21468/SciPostPhys.7.3.036
10.1007/s41781-019-0028-1
10.1051/epjconf/202125103047
10.1016/0893-6080(89)90020-8
10.1103/PhysRevD.91.111501
10.1140/epjc/s10052-021-09158-w
10.1140/epjc/s10052-019-7113-9
10.1109/72.572108
10.1088/1126-6708/2008/04/063
10.21468/SciPostPhys.12.1.043
10.1007/s41781-021-00056-0
10.1103/PhysRevD.107.114012
10.1007/JHEP02(2021)160
10.1007/BF01550942
10.1103/PhysRevD.108.072007
10.1109/72.712151
10.1088/2632-2153/ac07f6
10.1007/JHEP02(2022)060
10.21468/SciPostPhys.12.1.045
10.1162/neco.1989.1.4.541
10.1007/JHEP12(2018)064
10.21468/SciPostPhys.6.3.030
10.1037/h0042519
10.1007/JHEP04(2021)296
10.1103/PhysRevD.108.012001
10.1109/4235.585893
10.1140/epjc/s10052-023-11633-5
10.1016/j.revip.2024.100091
10.1140/epjc/s10052-023-12293-1
10.2172/1886020
10.1007/978-3-030-66515-9_13
10.1007/JHEP10(2022)172
10.1007/s41781-024-00122-3
10.1142/9789811234033_0007
10.1109/ICCV.2015.123
10.1140/epjc/s10052-024-12722-9
10.1088/2632-2153/ad55a3
10.1109/ICCV48922.2021.01595
10.1007/JHEP07(2024)245
10.1051/epjconf/202429506016
10.7551/mitpress/7496.003.0016
10.1145/3326362
10.1109/IJCNN.2005.1555942
10.1142/9789811234033_0012
10.1007/JHEP05(2024)004
10.22323/1.449.0534
10.1007/JHEP07(2024)247
10.1007/JHEP07(2016)069
10.1038/s41467-024-49104-4] 10.1038/s41467-024-49971-x
10.1103/PhysRevD.109.076012
10.1088/2632-2153/ad64a8
10.1088/2632-2153/abbf9a
10.5281/zenodo.4009114
10.18653/v1/N19-1423
10.1103/PhysRevD.108.035001
10.1103/PhysRevD.110.074020
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
OTOTI
5PM
DOI 10.1140/epjs/s11734-024-01306-z
DatabaseName SpringerOpen
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Collection


CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1951-6401
EndPage 2640
ExternalDocumentID PMC11588817
2478724
39605978
10_1140_epjs_s11734_024_01306_z
Genre Journal Article
Review
GrantInformation_xml – fundername: U. S. Department of Energy
  grantid: DE-SC 0016013
– fundername: Science and Technology Facilities Council
  grantid: ST/P001246/1
  funderid: http://dx.doi.org/10.13039/501100000271
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
123
199
1N0
203
29G
29~
2J2
2JY
2KG
2KM
2LR
30V
4.4
406
408
40D
40E
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFFNX
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHSBF
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
QOS
R89
RED
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
2JN
AAPKM
AAYXX
ABBRH
ABDBE
ABJCF
ABRTQ
AFDZB
AFFHD
AFKRA
AFOHR
AHPBZ
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
EBLON
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
NPM
8FE
8FG
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
OTOTI
5PM
ID FETCH-LOGICAL-c522t-cf2fe1404500b28f15589b1c83f93a43f6ca40189efa2668dbf6299b04b950253
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001320716800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1951-6355
IngestDate Tue Nov 04 02:04:35 EST 2025
Thu Nov 27 01:46:39 EST 2025
Sun Nov 09 09:42:50 EST 2025
Sun Nov 02 05:47:58 EST 2025
Wed Feb 19 02:04:04 EST 2025
Tue Nov 18 21:01:48 EST 2025
Sat Nov 29 03:49:45 EST 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15-16
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c522t-cf2fe1404500b28f15589b1c83f93a43f6ca40189efa2668dbf6299b04b950253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
SC 0016013
USDOE
ORCID 0000-0002-7143-715X
000000027143715X
OpenAccessLink https://link.springer.com/10.1140/epjs/s11734-024-01306-z
PMID 39605978
PQID 3256959118
PQPubID 2044459
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11588817
osti_scitechconnect_2478724
proquest_miscellaneous_3133738204
proquest_journals_3256959118
pubmed_primary_39605978
crossref_citationtrail_10_1140_epjs_s11734_024_01306_z
crossref_primary_10_1140_epjs_s11734_024_01306_z
springer_journals_10_1140_epjs_s11734_024_01306_z
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: France
– name: Heidelberg
PublicationTitle The European physical journal. ST, Special topics
PublicationTitleAbbrev Eur. Phys. J. Spec. Top
PublicationTitleAlternate Eur Phys J Spec Top
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Science + Business Media
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Science + Business Media
References Duarte (CR7) 2018; 13
Finke, Krämer, Mück, Tönshoff (CR29) 2023; 06
Banfi, Salam, Zanderighi (CR107) 2005; 03
Ostdiek (CR170) 2022; 12
McCulloch, Pitts (CR53) 1943; 5
Voigtlaender (CR62) 2023; 64
Denby (CR74) 1988; 49
CR162
CR160
CR38
CR35
Hornik, Stinchcombe, White (CR59) 1989; 2
CR34
CR32
CR31
CR157
CR30
CR158
Ellis, Melnikov, Zanderighi (CR106) 2009; 80
Belis, Odagiu, Aarrestad (CR47) 2024; 12
Narkhede, Bartakke, Sutaone (CR57) 2022; 55
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (CR116) 2009; 20
Golutvin, Iniukhin, Mauri, Owen, Serra, Ustyuzhanin (CR39) 2023; 83
Håstad (CR64) 1987
Sperduti, Starita (CR117) 1997; 8
Kasieczka (CR22) 2021; 84
Qu, Gouskos (CR131) 2020; 101
Birk (CR33) 2024; 5
Schaffer, Cohen, Hirsh (CR71) 1994
Aarrestad (CR24) 2022; 12
CR46
Aad (CR23) 2020; 125
CR45
CR44
CR43
CR168
He, Wang (CR135) 2023; 83
CR164
CR165
Butter, Diefenbacher, Kasieczka, Nachman, Plehn, Shih, Winterhalder (CR8) 2022; 13
Atkinson, Bhardwaj, Englert, Ngairangbam, Spannowsky (CR169) 2021; 08
Choi, Lee, Perelstein (CR92) 2019; 02
Salam (CR105) 2010; 67
Kasieczka, Marzani, Soyez, Stagnitto (CR109) 2020; 09
Paganini, Oliveira, Nachman (CR10) 2018; 120
Rosenblatt (CR54) 1958; 65
CR140
Allender, Chandru, Vinay (CR65) 1996
Kanwar, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan (CR84) 2020; 125
CR141
Cacciari, Salam, Soyez (CR103) 2008; 04
Larkoski, Moult, Nachman (CR42) 2020; 841
Nguyen, Weitekamp, Anderson, Castello, Cerri, Pierini, Spiropulu, Vlimant (CR6) 2019; 3
CR58
CR56
CR55
CR137
Dreyer, Salam, Soyez (CR151) 2018; 12
Leshno, Lin, Pinkus, Schocken (CR61) 1993; 6
CR138
CR52
Cybenko (CR60) 1989; 2
CR136
Ma, Liu, Li (CR139) 2023; 108
Dery, Nachman, Rubbo, Schwartzman (CR20) 2017; 05
CR50
Komiske, Metodiev, Thaler (CR148) 2020; 07
Biscarat, Caillou, Rougier, Stark, Zahreddine (CR15) 2021; 251
Abdughani, Ren, Wu, Yang (CR155) 2019; 08
Faucett, Thaler, Whiteson (CR78) 2021; 103
Favoni, Ipp, Müller, Schuh (CR85) 2022; 128
DeZoort, Battaglia, Biscarat, Vlimant (CR49) 2023; 5
Bianchini, Scarselli (CR66) 2014; 25
Baldi, Sadowski, Whiteson (CR19) 2014; 5
Moore, Nordström, Varma, Fairbairn (CR77) 2019; 7
Wolpert, Macready (CR72) 1997; 1
Moreno, Nguyen, Vlimant, Cerri, Newman, Periwal, Spiropulu, Duarte, Pierini (CR133) 2020; 102
Wolpert (CR70) 1996; 8
Dolan, Ore (CR94) 2021; 103
CR69
CR67
Fukushima, Miyake (CR112) 1982; 15
Dreyer, Soyez, Takacs (CR153) 2022; 08
CR63
CR147
CR145
Mikuni, Canelli (CR142) 2021; 2
Andersson, Gustafson, Lönnblad, Pettersson (CR150) 1989; 43
Pata, Duarte, Vlimant, Pierini, Spiropulu (CR156) 2021; 81
Carleo, Cirac, Cranmer, Daudet, Schuld, Tishby, Vogt-Maranto, Zdeborová (CR1) 2019; 91
Mikuni, Canelli (CR134) 2020; 135
Ghosh, Nachman (CR41) 2022; 82
Buhmann, Diefenbacher, Eren, Gaede, Kasieczka, Korol, Krüger (CR14) 2021; 5
Atkinson, Bhardwaj, Englert, Konar, Ngairangbam, Spannowsky (CR99) 2022; 5
Bernreuther, Finke, Kahlhoefer, Krämer, Mück (CR149) 2021; 10
Komiske, Metodiev, Thaler (CR93) 2019; 01
CR115
Radovic, Williams, Rousseau, Kagan, Bonacorsi, Himmel, Aurisano, Terao, Wongjirad (CR76) 2018; 560
Heimel, Kasieczka, Plehn, Thompson (CR166) 2019; 6
CR114
CR73
Hao, Kansal, Duarte, Chernyavskaya (CR171) 2023; 83
CR119
Aad (CR26) 2024; 132
CR4
CR3
CR5
CR130
Dasgupta, Fregoso, Marzani, Salam (CR108) 2013; 09
CR126
CR127
CR86
Frasconi, Gori, Sperduti (CR118) 1998; 9
CR124
CR125
Buhmann, Kasieczka, Thaler (CR87) 2023; 15
CR122
CR123
CR82
CR120
CR81
CR121
Konar, Ngairangbam, Spannowsky (CR100) 2024; 01
Ghosh, Nachman, Plehn, Shire, Tait, Whiteson (CR40) 2023; 6
CR128
Gong, Meng, Zhang, Qu, Li, Qian, Du, Ma, Liu (CR143) 2022; 07
CR129
Ehrke, Raine, Zoch, Guth, Golling (CR161) 2023; 107
Farina, Nakai, Shih (CR167) 2020; 101
Elmsheuser (CR2) 2020; 245
Workman (CR48) 2022; 2022
Dreyer, Qu (CR152) 2021; 03
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (CR79) 2017; 34
Ghosh, Nachman, Whiteson (CR37) 2021; 104
Frye, Larkoski, Thaler, Zhou (CR89) 2017; 09
CR18
CR17
CR16
CR13
CR11
Naitzat, Zhitnikov, Lim (CR68) 2020; 21
CR97
Andrieu (CR104) 2005; 36
Lönnblad, Peterson, Rögnvaldsson (CR75) 1990; 65
Onyisi, Shen, Thaler (CR88) 2023; 108
CR96
Larkoski, Marzani, Thaler (CR111) 2015; 91
Shen, Wang, Yang (CR95) 2023; 09
Mullin, Nicholls, Pacey, Parker, White, Williams (CR163) 2021; 02
Qasim, Kieseler, Iiyama, Pierini (CR12) 2019; 79
Chang, Procura, Thaler, Waalewijn (CR110) 2013; 111
Hammad, Moretti, Nojiri (CR159) 2024; 03
Araz, Spannowsky (CR36) 2021; 04
Konar, Ngairangbam, Spannowsky (CR98) 2022; 02
Bortolato, Cepeda, Heikkilä, Huber, Leutgeb, Rabady, Sakulin (CR9) 2024; 19
CR28
CR27
Hallin, Kasieczka, Quadfasel, Shih, Sommerhalder (CR25) 2023; 107
Medves, Soto-Ontoso, Soyez (CR90) 2022; 10
Medves, Soto-Ontoso, Soyez (CR91) 2023; 04
CR102
Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko, Bridgland, Meyer, Kohl, Ballard, Cowie, Romera-Paredes, Nikolov, Jain, Adler, Back, Petersen, Reiman, Clancy, Zielinski, Steinegger, Pacholska, Berghammer, Bodenstein, Silver, Vinyals, Senior, Kavukcuoglu, Kohli, Hassabis (CR83) 2021; 596
CR101
Metodiev, Nachman, Thaler (CR21) 2017; 10
LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (CR113) 1989; 1
Li, Qu, Qian, Meng, Gong, Zhang, Liu, Li (CR144) 2024; 109
Hashemi, Krause (CR51) 2024; 12
Moreno, Cerri, Duarte, Newman, Nguyen, Periwal, Pierini, Serikova, Spiropulu, Vlimant (CR132) 2020; 80
Bogatskiy, Hoffman, Miller, Offermann, Liu (CR146) 2024; 03
Bronstein, Bruna, Cohen, Veličković (CR80) 2021
Atkinson, Bhardwaj, Brown, Englert, Miller, Stylianou (CR154) 2022; 04
1306_CR157
1306_CR158
1306_CR63
B Denby (1306_CR74) 1988; 49
1306_CR67
G Kasieczka (1306_CR109) 2020; 09
1306_CR69
C Frye (1306_CR89) 2017; 09
J Jumper (1306_CR83) 2021; 596
SR Qasim (1306_CR12) 2019; 79
T Faucett (1306_CR78) 2021; 103
O Atkinson (1306_CR99) 2022; 5
AJ Larkoski (1306_CR42) 2020; 841
P Konar (1306_CR98) 2022; 02
J Pata (1306_CR156) 2021; 81
1306_CR145
1306_CR50
B Ostdiek (1306_CR170) 2022; 12
P Baldi (1306_CR19) 2014; 5
1306_CR147
1306_CR52
1306_CR141
1306_CR55
1306_CR56
1306_CR58
PT Komiske (1306_CR93) 2019; 01
B Hashemi (1306_CR51) 2024; 12
1306_CR140
S Choi (1306_CR92) 2019; 02
G DeZoort (1306_CR49) 2023; 5
M Leshno (1306_CR61) 1993; 6
E Bernreuther (1306_CR149) 2021; 10
G Bortolato (1306_CR9) 2024; 19
1306_CR82
F Voigtlaender (1306_CR62) 2023; 64
1306_CR136
1306_CR137
F Ma (1306_CR139) 2023; 108
1306_CR86
1306_CR130
K Hornik (1306_CR59) 1989; 2
E Buhmann (1306_CR87) 2023; 15
L Moore (1306_CR77) 2019; 7
K Fukushima (1306_CR112) 1982; 15
L Ehrke (1306_CR161) 2023; 107
M Favoni (1306_CR85) 2022; 128
A Banfi (1306_CR107) 2005; 03
V Belis (1306_CR47) 2024; 12
1306_CR138
1306_CR123
MV Narkhede (1306_CR57) 2022; 55
1306_CR124
1306_CR73
MJ Dolan (1306_CR94) 2021; 103
1306_CR125
1306_CR126
B Andersson (1306_CR150) 1989; 43
1306_CR120
M He (1306_CR135) 2023; 83
A Ghosh (1306_CR37) 2021; 104
1306_CR121
1306_CR122
A Ghosh (1306_CR41) 2022; 82
E Allender (1306_CR65) 1996
P Onyisi (1306_CR88) 2023; 108
G Aad (1306_CR26) 2024; 132
AJ Larkoski (1306_CR111) 2015; 91
PT Komiske (1306_CR148) 2020; 07
EA Moreno (1306_CR133) 2020; 102
A Sperduti (1306_CR117) 1997; 8
RL Workman (1306_CR48) 2022; 2022
1306_CR127
A Butter (1306_CR8) 2022; 13
1306_CR128
WS McCulloch (1306_CR53) 1943; 5
1306_CR129
F Rosenblatt (1306_CR54) 1958; 65
1306_CR81
RK Ellis (1306_CR106) 2009; 80
P Frasconi (1306_CR118) 1998; 9
1306_CR114
E Buhmann (1306_CR14) 2021; 5
A Hallin (1306_CR25) 2023; 107
1306_CR115
J Duarte (1306_CR7) 2018; 13
H Qu (1306_CR131) 2020; 101
1306_CR3
L Lönnblad (1306_CR75) 1990; 65
1306_CR5
1306_CR4
1306_CR27
G Cybenko (1306_CR60) 1989; 2
1306_CR28
MM Bronstein (1306_CR80) 2021
Y LeCun (1306_CR113) 1989; 1
V Mikuni (1306_CR134) 2020; 135
T Heimel (1306_CR166) 2019; 6
A Hammad (1306_CR159) 2024; 03
S Gong (1306_CR143) 2022; 07
G Kanwar (1306_CR84) 2020; 125
A Mullin (1306_CR163) 2021; 02
B Andrieu (1306_CR104) 2005; 36
A Golutvin (1306_CR39) 2023; 83
H-M Chang (1306_CR110) 2013; 111
G Carleo (1306_CR1) 2019; 91
JY Araz (1306_CR36) 2021; 04
1306_CR119
DH Wolpert (1306_CR70) 1996; 8
1306_CR101
1306_CR102
1306_CR96
1306_CR97
1306_CR11
FA Dreyer (1306_CR153) 2022; 08
1306_CR13
M Bianchini (1306_CR66) 2014; 25
EA Moreno (1306_CR132) 2020; 80
O Atkinson (1306_CR169) 2021; 08
1306_CR16
1306_CR17
1306_CR18
TQ Nguyen (1306_CR6) 2019; 3
A Ghosh (1306_CR40) 2023; 6
W Shen (1306_CR95) 2023; 09
A Radovic (1306_CR76) 2018; 560
1306_CR43
1306_CR44
1306_CR45
C Biscarat (1306_CR15) 2021; 251
T Aarrestad (1306_CR24) 2022; 12
1306_CR46
C Schaffer (1306_CR71) 1994
J Birk (1306_CR33) 2024; 5
A Bogatskiy (1306_CR146) 2024; 03
GP Salam (1306_CR105) 2010; 67
Z Hao (1306_CR171) 2023; 83
M Cacciari (1306_CR103) 2008; 04
LM Dery (1306_CR20) 2017; 05
M Abdughani (1306_CR155) 2019; 08
EM Metodiev (1306_CR21) 2017; 10
1306_CR168
R Medves (1306_CR90) 2022; 10
M Paganini (1306_CR10) 2018; 120
G Kasieczka (1306_CR22) 2021; 84
1306_CR30
P Konar (1306_CR100) 2024; 01
1306_CR31
J Håstad (1306_CR64) 1987
1306_CR32
1306_CR164
1306_CR165
1306_CR34
DH Wolpert (1306_CR72) 1997; 1
G Aad (1306_CR23) 2020; 125
1306_CR35
MM Bronstein (1306_CR79) 2017; 34
1306_CR160
O Atkinson (1306_CR154) 2022; 04
1306_CR38
1306_CR162
C Li (1306_CR144) 2024; 109
V Mikuni (1306_CR142) 2021; 2
M Farina (1306_CR167) 2020; 101
FA Dreyer (1306_CR152) 2021; 03
R Medves (1306_CR91) 2023; 04
FA Dreyer (1306_CR151) 2018; 12
G Naitzat (1306_CR68) 2020; 21
J Elmsheuser (1306_CR2) 2020; 245
M Dasgupta (1306_CR108) 2013; 09
T Finke (1306_CR29) 2023; 06
F Scarselli (1306_CR116) 2009; 20
References_xml – ident: CR45
– ident: CR97
– volume: 02
  start-page: 132
  year: 2019
  ident: CR92
  article-title: Infrared Safety of a Neural-Net Top Tagging Algorithm
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)132
– volume: 15
  start-page: 455
  issue: 6
  year: 1982
  end-page: 469
  ident: CR112
  article-title: Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(82)90024-3
– ident: CR16
– volume: 01
  start-page: 113
  year: 2024
  ident: CR100
  article-title: Hypergraphs in LHC phenomenology – the next frontier of IRC-safe feature extraction
  publication-title: JHEP
  doi: 10.1007/JHEP01(2024)113
– ident: CR158
– ident: CR115
– ident: CR138
– volume: 04
  start-page: 137
  year: 2022
  ident: CR154
  article-title: Improved constraints on effective top quark interactions using edge convolution networks
  publication-title: JHEP
  doi: 10.1007/JHEP04(2022)137
– start-page: 1
  year: 1996
  end-page: 18
  ident: CR65
  article-title: Circuit complexity before the dawn of the new millennium
  publication-title: Foundations of Software Technology and Theoretical Computer Science
– volume: 21
  start-page: 1
  issue: 184
  year: 2020
  end-page: 40
  ident: CR68
  article-title: Topology of deep neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 841
  start-page: 1
  year: 2020
  end-page: 63
  ident: CR42
  article-title: Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2019.11.001
– volume: 12
  year: 2024
  ident: CR51
  article-title: Deep generative models for detector signature simulation: A taxonomic review
  publication-title: Rev. Phys.
  doi: 10.1016/j.revip.2024.100092
– ident: CR121
– volume: 64
  start-page: 33
  year: 2023
  end-page: 61
  ident: CR62
  article-title: The universal approximation theorem for complex-valued neural networks
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2022.12.002
– ident: CR129
– volume: 09
  start-page: 135
  year: 2023
  ident: CR95
  article-title: Hierarchical high-point Energy Flow Network for jet tagging
  publication-title: JHEP
  doi: 10.1007/JHEP09(2023)135
– ident: CR101
– volume: 107
  issue: 11
  year: 2023
  ident: CR161
  article-title: Topological reconstruction of particle physics processes using graph neural networks
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.116019
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  end-page: 80
  ident: CR116
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2008.2005605
– volume: 111
  year: 2013
  ident: CR110
  article-title: Calculating Track-Based Observables for the LHC
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.102002
– volume: 09
  start-page: 083
  year: 2017
  ident: CR89
  article-title: Casimir Meets Poisson: Improved Quark/Gluon Discrimination with Counting Observables
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)083
– volume: 104
  issue: 5
  year: 2021
  ident: CR37
  article-title: Uncertainty-aware machine learning for high energy physics
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.056026
– volume: 102
  issue: 1
  year: 2020
  ident: CR133
  article-title: Interaction networks for the identification of boosted decays
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.012010
– ident: CR11
– volume: 128
  issue: 3
  year: 2022
  ident: CR85
  article-title: Lattice Gauge Equivariant Convolutional Neural Networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.032003
– ident: CR5
– volume: 06
  start-page: 184
  year: 2023
  ident: CR29
  article-title: Learning the language of QCD jets with transformers
  publication-title: JHEP
  doi: 10.1007/JHEP06(2023)184
– volume: 80
  year: 2009
  ident: CR106
  article-title: W+3 jet production at the Tevatron
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.094002
– volume: 03
  start-page: 073
  year: 2005
  ident: CR107
  article-title: Principles of general final-state resummation and automated implementation
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/03/073
– ident: CR147
– ident: CR164
– volume: 49
  start-page: 429
  issue: 3
  year: 1988
  end-page: 448
  ident: CR74
  article-title: Neural networks and cellular automata in experimental high energy physics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(88)90004-5
– ident: CR126
– volume: 13
  start-page: 07027
  issue: 07
  year: 2018
  ident: CR7
  article-title: Fast inference of deep neural networks in FPGAs for particle physics
  publication-title: JINST
  doi: 10.1088/1748-0221/13/07/P07027
– volume: 2022
  start-page: 083
  year: 2022
  end-page: 01
  ident: CR48
  article-title: Others: Review of Particle Physics
  publication-title: PTEP
  doi: 10.1093/ptep/ptac097
– ident: CR18
– volume: 65
  start-page: 1321
  year: 1990
  end-page: 1324
  ident: CR75
  article-title: Finding gluon jets with a neural trigger
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.1321
– volume: 08
  start-page: 080
  year: 2021
  ident: CR169
  article-title: Anomaly detection with convolutional Graph Neural Networks
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)080
– volume: 04
  start-page: 104
  year: 2023
  ident: CR91
  publication-title: Lund multiplicity in QCD jets. JHEP
  doi: 10.1007/JHEP04(2023)104
– volume: 55
  start-page: 291
  issue: 1
  year: 2022
  end-page: 322
  ident: CR57
  article-title: A review on weight initialization strategies for neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10033-z
– volume: 84
  issue: 12
  year: 2021
  ident: CR22
  article-title: The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/ac36b9
– start-page: 259
  year: 1994
  end-page: 265
  ident: CR71
  article-title: A conservation law for generalization performance
  publication-title: Machine Learning Proceedings 1994
  doi: 10.1016/B978-1-55860-335-6.50039-8
– ident: CR30
– volume: 103
  issue: 7
  year: 2021
  ident: CR94
  article-title: Equivariant Energy Flow Networks for Jet Tagging
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.074022
– ident: CR137
– volume: 05
  start-page: 145
  year: 2017
  ident: CR20
  article-title: Weakly Supervised Classification in High Energy Physics
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)145
– volume: 5
  year: 2022
  ident: CR99
  article-title: IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2022.943135
– volume: 125
  issue: 12
  year: 2020
  ident: CR84
  article-title: Equivariant flow-based sampling for lattice gauge theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.121601
– ident: CR86
– year: 2021
  ident: CR80
  publication-title: Geometric Deep Learning: Grids, Groups
– ident: CR63
– volume: 101
  issue: 7
  year: 2020
  ident: CR167
  article-title: Searching for New Physics with Deep Autoencoders
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.075021
– volume: 15
  start-page: 130
  issue: 4
  year: 2023
  ident: CR87
  article-title: EPiC-GAN: Equivariant point cloud generation for particle jets
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.15.4.130
– ident: CR27
– ident: CR165
– volume: 91
  year: 2019
  ident: CR1
  article-title: Machine learning and the physical sciences
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 560
  start-page: 41
  issue: 7716
  year: 2018
  end-page: 48
  ident: CR76
  article-title: Machine learning at the energy and intensity frontiers of particle physics
  publication-title: Nature
  doi: 10.1038/s41586-018-0361-2
– ident: CR123
– ident: CR69
– volume: 09
  start-page: 029
  year: 2013
  ident: CR108
  article-title: Towards an understanding of jet substructure
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)029
– ident: CR44
– volume: 08
  start-page: 055
  year: 2019
  ident: CR155
  article-title: Probing stop pair production at the LHC with graph neural networks
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)055
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  end-page: 589
  ident: CR83
  article-title: Highly accurate protein structure prediction with alphafold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  end-page: 1390
  ident: CR70
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.7.1341
– ident: CR3
– ident: CR38
– ident: CR52
– volume: 80
  start-page: 58
  issue: 1
  year: 2020
  ident: CR132
  article-title: JEDI-net: a jet identification algorithm based on interaction networks
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7608-4
– volume: 03
  start-page: 052
  year: 2021
  ident: CR152
  article-title: Jet tagging in the Lund plane with graph networks
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)052
– ident: CR13
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  end-page: 133
  ident: CR53
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 03
  start-page: 113
  year: 2024
  ident: CR146
  article-title: Explainable equivariant neural networks for particle physics: PELICAN
  publication-title: JHEP
  doi: 10.1007/JHEP03(2024)113
– volume: 10
  start-page: 046
  issue: 2
  year: 2021
  ident: CR149
  article-title: Casting a graph net to catch dark showers
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.10.2.046
– ident: CR162
– ident: CR114
– volume: 135
  start-page: 463
  issue: 6
  year: 2020
  ident: CR134
  article-title: ABCNet: An attention-based method for particle tagging
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00497-3
– ident: CR55
– volume: 82
  start-page: 46
  issue: 1
  year: 2022
  ident: CR41
  article-title: A cautionary tale of decorrelating theory uncertainties
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10012-w
– volume: 13
  start-page: 087
  issue: 4
  year: 2022
  ident: CR8
  article-title: Ephemeral Learning - Augmenting Triggers with Online-Trained Normalizing Flows
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.13.4.087
– ident: CR120
– ident: CR128
– ident: CR145
– ident: CR125
– ident: CR102
– volume: 08
  start-page: 177
  year: 2022
  ident: CR153
  article-title: Quarks and gluons in the Lund plane
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)177
– volume: 03
  start-page: 144
  year: 2024
  ident: CR159
  article-title: Multi-scale cross-attention transformer encoder for event classification
  publication-title: JHEP
  doi: 10.1007/JHEP03(2024)144
– volume: 25
  start-page: 1553
  issue: 8
  year: 2014
  end-page: 1565
  ident: CR66
  article-title: On the complexity of neural network classifiers: A comparison between shallow and deep architectures
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2293637
– volume: 5
  start-page: 4308
  year: 2014
  ident: CR19
  article-title: Searching for Exotic Particles in High-Energy Physics with Deep Learning
  publication-title: Nature Commun.
  doi: 10.1038/ncomms5308
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  end-page: 314
  ident: CR60
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Systems
  doi: 10.1007/BF02551274
– ident: CR4
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  end-page: 42
  ident: CR79
  article-title: Geometric deep learning: Going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– volume: 01
  start-page: 121
  year: 2019
  ident: CR93
  article-title: Energy Flow Networks: Deep Sets for Particle Jets
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)121
– ident: CR119
– ident: CR35
– volume: 09
  start-page: 195
  year: 2020
  ident: CR109
  article-title: Towards Machine Learning Analytics for Jet Substructure
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)195
– volume: 10
  start-page: 156
  year: 2022
  ident: CR90
  article-title: Lund and Cambridge multiplicities for precision physics
  publication-title: JHEP
  doi: 10.1007/JHEP10(2022)156
– ident: CR58
– volume: 125
  issue: 13
  year: 2020
  ident: CR23
  article-title: Dijet resonance search with weak supervision using TeV collisions in the ATLAS detector
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.131801
– volume: 67
  start-page: 637
  year: 2010
  end-page: 686
  ident: CR105
  article-title: Towards Jetography
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-010-1314-6
– ident: CR140
– volume: 109
  issue: 5
  year: 2024
  ident: CR144
  article-title: Does Lorentz-symmetric design boost network performance in jet physics?
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.056003
– volume: 120
  issue: 4
  year: 2018
  ident: CR10
  article-title: Accelerating Science with Generative Adversarial Networks: An Application to 3D Particle Showers in Multilayer Calorimeters
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.042003
– volume: 5
  start-page: 281
  issue: 5
  year: 2023
  end-page: 303
  ident: CR49
  article-title: Graph neural networks at the large hadron collider
  publication-title: Nature Reviews Physics
  doi: 10.1038/s42254-023-00569-0
– volume: 07
  start-page: 006
  year: 2020
  ident: CR148
  article-title: The Hidden Geometry of Particle Collisions
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)006
– ident: CR46
– ident: CR96
– ident: CR67
– volume: 132
  issue: 8
  year: 2024
  ident: CR26
  article-title: Search for New Phenomena in Two-Body Invariant Mass Distributions Using Unsupervised Machine Learning for Anomaly Detection at s=13 TeV with the ATLAS Detector
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.081801
– ident: CR50
– ident: CR157
– volume: 19
  start-page: 03019
  issue: 03
  year: 2024
  ident: CR9
  article-title: Design and implementation of neural network based conditions for the CMS Level-1 Global Trigger upgrade for the HL-LHC
  publication-title: JINST
  doi: 10.1088/1748-0221/19/03/C03019
– volume: 6
  start-page: 045
  year: 2023
  ident: CR40
  article-title: Statistical patterns of theory uncertainties
  publication-title: SciPost Phys. Core
  doi: 10.21468/SciPostPhysCore.6.2.045
– ident: CR136
– ident: CR32
– volume: 5
  year: 2024
  ident: CR33
  article-title: OmniJet-α: the first cross-task foundation model for particle physics
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/ad66ad
– volume: 83
  start-page: 779
  issue: 9
  year: 2023
  ident: CR39
  article-title: The DL Advocate: playing the devil’s advocate with hidden systematic uncertainties
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11925-w
– volume: 6
  start-page: 861
  issue: 6
  year: 1993
  end-page: 867
  ident: CR61
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80131-5
– ident: CR81
– volume: 36
  start-page: 409
  year: 2005
  end-page: 415
  ident: CR104
  article-title: Jet finding algorithms at Tevatron
  publication-title: Acta Phys. Polon. B
– volume: 101
  issue: 5
  year: 2020
  ident: CR131
  article-title: ParticleNet: Jet Tagging via Particle Clouds
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.056019
– volume: 07
  start-page: 030
  year: 2022
  ident: CR143
  article-title: An efficient Lorentz equivariant graph neural network for jet tagging
  publication-title: JHEP
  doi: 10.1007/JHEP07(2022)030
– ident: CR168
– ident: CR122
– volume: 103
  issue: 3
  year: 2021
  ident: CR78
  article-title: Mapping Machine-Learned Physics into a Human-Readable Space
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.036020
– ident: CR160
– volume: 245
  start-page: 06014
  year: 2020
  ident: CR2
  article-title: Evolution of the ATLAS analysis model for Run-3 and prospects for HL-LHC
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/202024506014
– volume: 10
  start-page: 174
  year: 2017
  ident: CR21
  article-title: Classification without labels: Learning from mixed samples in high energy physics
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)174
– ident: CR43
– volume: 7
  start-page: 036
  issue: 3
  year: 2019
  ident: CR77
  article-title: Reports of My Demise Are Greatly Exaggerated: -subjettiness Taggers Take On Jet Images
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.7.3.036
– volume: 3
  start-page: 12
  issue: 1
  year: 2019
  ident: CR6
  article-title: Topology classification with deep learning to improve real-time event selection at the LHC
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-019-0028-1
– volume: 251
  start-page: 03047
  year: 2021
  ident: CR15
  article-title: Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/202125103047
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  ident: CR59
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 91
  issue: 11
  year: 2015
  ident: CR111
  article-title: Sudakov Safety in Perturbative QCD
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.111501
– volume: 81
  start-page: 381
  issue: 5
  year: 2021
  ident: CR156
  article-title: MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09158-w
– year: 1987
  ident: CR64
  publication-title: Computational Limitations of Small-depth Circuits
– volume: 79
  start-page: 608
  issue: 7
  year: 2019
  ident: CR12
  article-title: Learning representations of irregular particle-detector geometry with distance-weighted graph networks
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7113-9
– ident: CR82
– volume: 8
  start-page: 714
  issue: 3
  year: 1997
  end-page: 735
  ident: CR117
  article-title: Supervised neural networks for the classification of structures
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.572108
– volume: 04
  start-page: 063
  year: 2008
  ident: CR103
  article-title: The anti- jet clustering algorithm
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/063
– ident: CR56
– volume: 12
  start-page: 043
  issue: 1
  year: 2022
  ident: CR24
  article-title: The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.1.043
– volume: 5
  start-page: 13
  issue: 1
  year: 2021
  ident: CR14
  article-title: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-021-00056-0
– volume: 107
  issue: 11
  year: 2023
  ident: CR25
  article-title: Resonant anomaly detection without background sculpting
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.114012
– volume: 02
  start-page: 160
  year: 2021
  ident: CR163
  article-title: Does SUSY have friends? A new approach for LHC event analysis
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)160
– ident: CR127
– volume: 43
  start-page: 625
  issue: 4
  year: 1989
  end-page: 632
  ident: CR150
  article-title: Coherence effects in deep inelastic scattering
  publication-title: Zeitschrift für Physik C Particles and Fields
  doi: 10.1007/BF01550942
– ident: CR124
– volume: 108
  issue: 7
  year: 2023
  ident: CR139
  article-title: Jet tagging algorithm of graph network with Haar pooling message passing
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.072007
– volume: 9
  start-page: 768
  issue: 5
  year: 1998
  end-page: 786
  ident: CR118
  article-title: A general framework for adaptive processing of data structures
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.712151
– ident: CR73
– volume: 2
  issue: 3
  year: 2021
  ident: CR142
  article-title: Point cloud transformers applied to collider physics
  publication-title: Mach. Learn. Sci. Tech.
  doi: 10.1088/2632-2153/ac07f6
– volume: 02
  start-page: 060
  year: 2022
  ident: CR98
  article-title: Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)060
– ident: CR130
– volume: 12
  start-page: 045
  issue: 1
  year: 2022
  ident: CR170
  article-title: Deep Set Auto Encoders for Anomaly Detection in Particle Physics
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.1.045
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  end-page: 551
  ident: CR113
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 12
  start-page: 064
  year: 2018
  ident: CR151
  publication-title: The Lund Jet Plane. JHEP
  doi: 10.1007/JHEP12(2018)064
– ident: CR17
– ident: CR31
– volume: 6
  start-page: 030
  issue: 3
  year: 2019
  ident: CR166
  article-title: QCD or What?
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.6.3.030
– ident: CR34
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  end-page: 408
  ident: CR54
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 04
  start-page: 296
  year: 2021
  ident: CR36
  article-title: Combine and Conquer: Event Reconstruction with Bayesian Ensemble Neural Networks
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)296
– volume: 108
  issue: 1
  year: 2023
  ident: CR88
  article-title: Comparing point cloud strategies for collider event classification
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.012001
– ident: CR28
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  ident: CR72
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: CR141
– volume: 83
  start-page: 485
  issue: 6
  year: 2023
  ident: CR171
  article-title: Lorentz group equivariant autoencoders
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11633-5
– volume: 12
  year: 2024
  ident: CR47
  article-title: Machine learning for anomaly detection in particle physics
  publication-title: Rev. Phys.
  doi: 10.1016/j.revip.2024.100091
– volume: 83
  start-page: 1116
  issue: 12
  year: 2023
  ident: CR135
  article-title: Quark/gluon discrimination and top tagging with dual attention transformer
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-12293-1
– ident: 1306_CR81
– volume: 02
  start-page: 160
  year: 2021
  ident: 1306_CR163
  publication-title: JHEP
  doi: 10.1007/JHEP02(2021)160
– volume: 05
  start-page: 145
  year: 2017
  ident: 1306_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP05(2017)145
– volume-title: Computational Limitations of Small-depth Circuits
  year: 1987
  ident: 1306_CR64
– volume: 80
  start-page: 58
  issue: 1
  year: 2020
  ident: 1306_CR132
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-7608-4
– volume-title: Geometric Deep Learning: Grids, Groups
  year: 2021
  ident: 1306_CR80
– volume: 91
  issue: 11
  year: 2015
  ident: 1306_CR111
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.111501
– volume: 6
  start-page: 030
  issue: 3
  year: 2019
  ident: 1306_CR166
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.6.3.030
– volume: 02
  start-page: 060
  year: 2022
  ident: 1306_CR98
  publication-title: JHEP
  doi: 10.1007/JHEP02(2022)060
– start-page: 259
  volume-title: Machine Learning Proceedings 1994
  year: 1994
  ident: 1306_CR71
  doi: 10.1016/B978-1-55860-335-6.50039-8
– volume: 102
  issue: 1
  year: 2020
  ident: 1306_CR133
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.012010
– ident: 1306_CR114
– volume: 12
  start-page: 045
  issue: 1
  year: 2022
  ident: 1306_CR170
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.1.045
– ident: 1306_CR52
– volume: 8
  start-page: 714
  issue: 3
  year: 1997
  ident: 1306_CR117
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.572108
– volume: 08
  start-page: 055
  year: 2019
  ident: 1306_CR155
  publication-title: JHEP
  doi: 10.1007/JHEP08(2019)055
– ident: 1306_CR38
  doi: 10.2172/1886020
– ident: 1306_CR140
– ident: 1306_CR34
– ident: 1306_CR125
– ident: 1306_CR73
  doi: 10.1007/978-3-030-66515-9_13
– ident: 1306_CR55
– ident: 1306_CR86
– volume: 135
  start-page: 463
  issue: 6
  year: 2020
  ident: 1306_CR134
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00497-3
– ident: 1306_CR119
– ident: 1306_CR28
– volume: 04
  start-page: 296
  year: 2021
  ident: 1306_CR36
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)296
– volume: 560
  start-page: 41
  issue: 7716
  year: 2018
  ident: 1306_CR76
  publication-title: Nature
  doi: 10.1038/s41586-018-0361-2
– ident: 1306_CR157
  doi: 10.1007/JHEP10(2022)172
– ident: 1306_CR164
  doi: 10.1007/s41781-024-00122-3
– volume: 9
  start-page: 768
  issue: 5
  year: 1998
  ident: 1306_CR118
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.712151
– volume: 79
  start-page: 608
  issue: 7
  year: 2019
  ident: 1306_CR12
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7113-9
– ident: 1306_CR43
  doi: 10.1142/9789811234033_0007
– ident: 1306_CR69
– volume: 6
  start-page: 861
  issue: 6
  year: 1993
  ident: 1306_CR61
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80131-5
– ident: 1306_CR168
– ident: 1306_CR56
  doi: 10.1109/ICCV.2015.123
– volume: 596
  start-page: 583
  issue: 7873
  year: 2021
  ident: 1306_CR83
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 1306_CR54
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– ident: 1306_CR17
– ident: 1306_CR160
  doi: 10.1140/epjc/s10052-024-12722-9
– ident: 1306_CR31
  doi: 10.1088/2632-2153/ad55a3
– volume: 111
  year: 2013
  ident: 1306_CR110
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.102002
– ident: 1306_CR122
– ident: 1306_CR58
– ident: 1306_CR129
  doi: 10.1109/ICCV48922.2021.01595
– volume: 04
  start-page: 104
  year: 2023
  ident: 1306_CR91
  publication-title: Lund multiplicity in QCD jets. JHEP
  doi: 10.1007/JHEP04(2023)104
– ident: 1306_CR102
  doi: 10.1007/JHEP07(2024)245
– volume: 91
  year: 2019
  ident: 1306_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 107
  issue: 11
  year: 2023
  ident: 1306_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.114012
– volume: 82
  start-page: 46
  issue: 1
  year: 2022
  ident: 1306_CR41
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10012-w
– volume: 64
  start-page: 33
  year: 2023
  ident: 1306_CR62
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2022.12.002
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  ident: 1306_CR70
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.7.1341
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 1306_CR116
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2008.2005605
– ident: 1306_CR16
– volume: 2022
  start-page: 083
  year: 2022
  ident: 1306_CR48
  publication-title: PTEP
  doi: 10.1093/ptep/ptac097
– start-page: 1
  volume-title: Foundations of Software Technology and Theoretical Computer Science
  year: 1996
  ident: 1306_CR65
– volume: 81
  start-page: 381
  issue: 5
  year: 2021
  ident: 1306_CR156
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09158-w
– ident: 1306_CR127
– volume: 04
  start-page: 063
  year: 2008
  ident: 1306_CR103
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/04/063
– ident: 1306_CR4
  doi: 10.1051/epjconf/202429506016
– volume: 83
  start-page: 779
  issue: 9
  year: 2023
  ident: 1306_CR39
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11925-w
– volume: 7
  start-page: 036
  issue: 3
  year: 2019
  ident: 1306_CR77
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.7.3.036
– volume: 67
  start-page: 637
  year: 2010
  ident: 1306_CR105
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-010-1314-6
– volume: 107
  issue: 11
  year: 2023
  ident: 1306_CR161
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.116019
– volume: 104
  issue: 5
  year: 2021
  ident: 1306_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.056026
– volume: 12
  year: 2024
  ident: 1306_CR47
  publication-title: Rev. Phys.
  doi: 10.1016/j.revip.2024.100091
– volume: 43
  start-page: 625
  issue: 4
  year: 1989
  ident: 1306_CR150
  publication-title: Zeitschrift für Physik C Particles and Fields
  doi: 10.1007/BF01550942
– volume: 128
  issue: 3
  year: 2022
  ident: 1306_CR85
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.032003
– volume: 13
  start-page: 087
  issue: 4
  year: 2022
  ident: 1306_CR8
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.13.4.087
– volume: 25
  start-page: 1553
  issue: 8
  year: 2014
  ident: 1306_CR66
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2293637
– ident: 1306_CR63
  doi: 10.7551/mitpress/7496.003.0016
– ident: 1306_CR121
  doi: 10.1145/3326362
– ident: 1306_CR138
– ident: 1306_CR67
– volume: 12
  year: 2024
  ident: 1306_CR51
  publication-title: Rev. Phys.
  doi: 10.1016/j.revip.2024.100092
– volume: 15
  start-page: 455
  issue: 6
  year: 1982
  ident: 1306_CR112
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(82)90024-3
– volume: 03
  start-page: 052
  year: 2021
  ident: 1306_CR152
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)052
– volume: 01
  start-page: 113
  year: 2024
  ident: 1306_CR100
  publication-title: JHEP
  doi: 10.1007/JHEP01(2024)113
– ident: 1306_CR141
– volume: 09
  start-page: 083
  year: 2017
  ident: 1306_CR89
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)083
– ident: 1306_CR11
– volume: 5
  year: 2024
  ident: 1306_CR33
  publication-title: Mach. Learn.: Sci. Technol.
  doi: 10.1088/2632-2153/ad66ad
– volume: 109
  issue: 5
  year: 2024
  ident: 1306_CR144
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.056003
– ident: 1306_CR147
– ident: 1306_CR115
  doi: 10.1109/IJCNN.2005.1555942
– volume: 84
  issue: 12
  year: 2021
  ident: 1306_CR22
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/ac36b9
– volume: 80
  year: 2009
  ident: 1306_CR106
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.094002
– volume: 65
  start-page: 1321
  year: 1990
  ident: 1306_CR75
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.1321
– volume: 01
  start-page: 121
  year: 2019
  ident: 1306_CR93
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)121
– volume: 3
  start-page: 12
  issue: 1
  year: 2019
  ident: 1306_CR6
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-019-0028-1
– volume: 06
  start-page: 184
  year: 2023
  ident: 1306_CR29
  publication-title: JHEP
  doi: 10.1007/JHEP06(2023)184
– volume: 10
  start-page: 156
  year: 2022
  ident: 1306_CR90
  publication-title: JHEP
  doi: 10.1007/JHEP10(2022)156
– volume: 103
  issue: 3
  year: 2021
  ident: 1306_CR78
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.036020
– volume: 03
  start-page: 073
  year: 2005
  ident: 1306_CR107
  publication-title: JHEP
  doi: 10.1088/1126-6708/2005/03/073
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 1306_CR72
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 125
  issue: 12
  year: 2020
  ident: 1306_CR84
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.121601
– volume: 2
  issue: 3
  year: 2021
  ident: 1306_CR142
  publication-title: Mach. Learn. Sci. Tech.
  doi: 10.1088/2632-2153/ac07f6
– volume: 08
  start-page: 177
  year: 2022
  ident: 1306_CR153
  publication-title: JHEP
  doi: 10.1007/JHEP08(2022)177
– volume: 49
  start-page: 429
  issue: 3
  year: 1988
  ident: 1306_CR74
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(88)90004-5
– ident: 1306_CR18
– volume: 83
  start-page: 485
  issue: 6
  year: 2023
  ident: 1306_CR171
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11633-5
– volume: 03
  start-page: 113
  year: 2024
  ident: 1306_CR146
  publication-title: JHEP
  doi: 10.1007/JHEP03(2024)113
– ident: 1306_CR82
– ident: 1306_CR44
  doi: 10.1142/9789811234033_0012
– volume: 108
  issue: 7
  year: 2023
  ident: 1306_CR139
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.072007
– volume: 19
  start-page: 03019
  issue: 03
  year: 2024
  ident: 1306_CR9
  publication-title: JINST
  doi: 10.1088/1748-0221/19/03/C03019
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 1306_CR53
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– ident: 1306_CR27
  doi: 10.1007/JHEP05(2024)004
– volume: 12
  start-page: 064
  year: 2018
  ident: 1306_CR151
  publication-title: The Lund Jet Plane. JHEP
  doi: 10.1007/JHEP12(2018)064
– volume: 07
  start-page: 030
  year: 2022
  ident: 1306_CR143
  publication-title: JHEP
  doi: 10.1007/JHEP07(2022)030
– volume: 09
  start-page: 135
  year: 2023
  ident: 1306_CR95
  publication-title: JHEP
  doi: 10.1007/JHEP09(2023)135
– ident: 1306_CR136
– volume: 09
  start-page: 029
  year: 2013
  ident: 1306_CR108
  publication-title: JHEP
  doi: 10.1007/JHEP09(2013)029
– volume: 10
  start-page: 046
  issue: 2
  year: 2021
  ident: 1306_CR149
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.10.2.046
– volume: 5
  start-page: 13
  issue: 1
  year: 2021
  ident: 1306_CR14
  publication-title: Comput. Softw. Big Sci.
  doi: 10.1007/s41781-021-00056-0
– ident: 1306_CR5
  doi: 10.22323/1.449.0534
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 1306_CR113
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 09
  start-page: 195
  year: 2020
  ident: 1306_CR109
  publication-title: JHEP
  doi: 10.1007/JHEP09(2020)195
– ident: 1306_CR137
  doi: 10.1007/JHEP07(2024)247
– volume: 08
  start-page: 080
  year: 2021
  ident: 1306_CR169
  publication-title: JHEP
  doi: 10.1007/JHEP08(2021)080
– ident: 1306_CR13
– ident: 1306_CR30
– volume: 83
  start-page: 1116
  issue: 12
  year: 2023
  ident: 1306_CR135
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-12293-1
– volume: 251
  start-page: 03047
  year: 2021
  ident: 1306_CR15
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/202125103047
– volume: 55
  start-page: 291
  issue: 1
  year: 2022
  ident: 1306_CR57
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10033-z
– ident: 1306_CR126
– ident: 1306_CR35
– volume: 5
  start-page: 4308
  year: 2014
  ident: 1306_CR19
  publication-title: Nature Commun.
  doi: 10.1038/ncomms5308
– volume: 10
  start-page: 174
  year: 2017
  ident: 1306_CR21
  publication-title: JHEP
  doi: 10.1007/JHEP10(2017)174
– ident: 1306_CR130
  doi: 10.1007/JHEP07(2016)069
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 1306_CR60
  publication-title: Math. Control Signals Systems
  doi: 10.1007/BF02551274
– volume: 101
  issue: 5
  year: 2020
  ident: 1306_CR131
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.056019
– ident: 1306_CR50
  doi: 10.1038/s41467-024-49104-4] 10.1038/s41467-024-49971-x
– volume: 02
  start-page: 132
  year: 2019
  ident: 1306_CR92
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)132
– volume: 21
  start-page: 1
  issue: 184
  year: 2020
  ident: 1306_CR68
  publication-title: J. Mach. Learn. Res.
– ident: 1306_CR165
– volume: 120
  issue: 4
  year: 2018
  ident: 1306_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.042003
– ident: 1306_CR96
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 1306_CR59
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: 1306_CR101
  doi: 10.1103/PhysRevD.109.076012
– volume: 12
  start-page: 043
  issue: 1
  year: 2022
  ident: 1306_CR24
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.12.1.043
– volume: 15
  start-page: 130
  issue: 4
  year: 2023
  ident: 1306_CR87
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.15.4.130
– volume: 101
  issue: 7
  year: 2020
  ident: 1306_CR167
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.075021
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 1306_CR79
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– volume: 132
  issue: 8
  year: 2024
  ident: 1306_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.081801
– volume: 245
  start-page: 06014
  year: 2020
  ident: 1306_CR2
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/202024506014
– ident: 1306_CR123
– volume: 6
  start-page: 045
  year: 2023
  ident: 1306_CR40
  publication-title: SciPost Phys. Core
  doi: 10.21468/SciPostPhysCore.6.2.045
– volume: 04
  start-page: 137
  year: 2022
  ident: 1306_CR154
  publication-title: JHEP
  doi: 10.1007/JHEP04(2022)137
– volume: 841
  start-page: 1
  year: 2020
  ident: 1306_CR42
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2019.11.001
– volume: 36
  start-page: 409
  year: 2005
  ident: 1306_CR104
  publication-title: Acta Phys. Polon. B
– ident: 1306_CR32
  doi: 10.1088/2632-2153/ad64a8
– ident: 1306_CR45
  doi: 10.1088/2632-2153/abbf9a
– volume: 07
  start-page: 006
  year: 2020
  ident: 1306_CR148
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)006
– ident: 1306_CR46
– ident: 1306_CR162
– volume: 03
  start-page: 144
  year: 2024
  ident: 1306_CR159
  publication-title: JHEP
  doi: 10.1007/JHEP03(2024)144
– volume: 5
  year: 2022
  ident: 1306_CR99
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2022.943135
– ident: 1306_CR3
  doi: 10.5281/zenodo.4009114
– volume: 13
  start-page: 07027
  issue: 07
  year: 2018
  ident: 1306_CR7
  publication-title: JINST
  doi: 10.1088/1748-0221/13/07/P07027
– ident: 1306_CR120
– volume: 125
  issue: 13
  year: 2020
  ident: 1306_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.131801
– ident: 1306_CR124
  doi: 10.18653/v1/N19-1423
– ident: 1306_CR145
– volume: 103
  issue: 7
  year: 2021
  ident: 1306_CR94
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.074022
– ident: 1306_CR128
– ident: 1306_CR158
  doi: 10.1103/PhysRevD.108.035001
– volume: 5
  start-page: 281
  issue: 5
  year: 2023
  ident: 1306_CR49
  publication-title: Nature Reviews Physics
  doi: 10.1038/s42254-023-00569-0
– volume: 108
  issue: 1
  year: 2023
  ident: 1306_CR88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.012001
– ident: 1306_CR97
  doi: 10.1103/PhysRevD.110.074020
SSID ssj0056293
Score 2.399368
SecondaryResourceType review_article
Snippet Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from fast and...
Abstract Deep learning algorithms will play a key role in the upcoming runs of the Large Hadron Collider (LHC), helping bolster various fronts ranging from...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2619
SubjectTerms Algorithms
Approximation
Atomic
Classical and Continuum Physics
Condensed Matter Physics
Datasets
Deep learning
Feature extraction
Graphical representations
Large Hadron Collider
Machine learning
Materials Science
Measurement Science and Instrumentation
Modern Machine Learning and Particle Physics: An In-Depth Review
Molecular
Neural networks
Optical and Plasma Physics
Phenomenology
Physics
Physics and Astronomy
Review
Sensors
Variables
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BAhIX3o_QgozE1dokTjb2CaGKqoeqQgKk3iw_xaIq2a6zHHriP_AP-SWMnWRXC4geOPsh2-PxfGOPvwF4Uy5Y471VtDaa0YoZTrU1ljpULNdYixBJp2QTzdkZPz8XH8YLtzCGVU5nYjqobWfiHfmcoW0WNfbA364uacwaFV9XxxQaN-FWZEkoUujex-kkRtOeSHeLmEo-GtYxvgt9irlbfQ3zUBQNqyiaKRof8Bb0as86zTrUsr8hzz8DKH97RU3G6fj-_07rAdwbYSl5N-yjh3DDtY_gTgoPNeExnO6yLwXSeaI2fZe4Xol3iRmU4Bm_Hv5IENWT05Ojn99_rLpl2xNz0W1sIKq1JLFjhyfw-fj9p6MTOuZhoAbRWU-NL72LNDx1nuuSe4QgXOjCcOYFUxXzC6PQTePCeYX2nlvtceWFzistasRU7CnM2q51z4FwVeuK6cJzLhC6YTumqwohklNFroTKYDGtvzQjSXnMlXEhhw_UuYyCk4PgJApOJsHJqwzybcPVwNNxfZODKGCJUCPy5ZoYWGR6WUa6orLK4HASmBzVOsidtDJ4vS1GhYyvLKp13QbroNffMARW2MWzYZtsR8TQX0QPDlvzvQ20rRDJvvdL2uWXRPqNyJ1zXjQZFNNe243rmpm--PdcDuBuGXUg_bA8hFm_3riXcNt865dh_Sqp1C-jgylJ
  priority: 102
  providerName: ProQuest
Title Foundations of automatic feature extraction at LHC–point clouds and graphs
URI https://link.springer.com/article/10.1140/epjs/s11734-024-01306-z
https://www.ncbi.nlm.nih.gov/pubmed/39605978
https://www.proquest.com/docview/3256959118
https://www.proquest.com/docview/3133738204
https://www.osti.gov/biblio/2478724
https://pubmed.ncbi.nlm.nih.gov/PMC11588817
Volume 233
WOSCitedRecordID wos001320716800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: KB.
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1951-6401
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056293
  issn: 1951-6355
  databaseCode: RSV
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB6aTQu99L-Nm3RRoVc1tmWv5WMTEgIJy5K0ZelFSLJEtgR7WXtzyKnv0Dfsk3Qk25tsUxJoLwYjj5HHM5pv0OgbgA_xiGXWFpKmWjGaMM2pKnRBDTqWyYoCIZLyzSay8ZhPp_nkZqsvV-3eb0n6lbrlsw13zfx7vVtHUcYSioGFui23Eb3agE2Medx1bTg9-9ovwhjVPd9u5LrIu5jalXbd8aK1wDSo0MH-Bjpv107-sYHq49Lh0__4omfwpAOj5FNrPc_hgSlfwCNfFKrrl3By3XOpJpUlctlUnuGVWOP5QAmu7Iv2ZASRDTk52v_14-e8mpUN0RfVsqiJLAviObHrV_Dl8ODz_hHtui9QjZisodrG1jjynTQMVcwtAg-eq0hzZnMmE2ZHWmJyxnNjJUZ5XiiLSs9VmKg8RSTFXsOgrEqzBYTLVCVMRZbzHAEbyjGVJAiMjIxCmcsARr3qhe6oyV2HjAvRHpsOhVOVaFUlUFXCq0pcBRCuBOctO8f9Itvu3woEGI4lV7tyIt2I2JEUxUkAO_0vF50z14IhLMxTNF4ewPvVMLqh21uRpamW-Azm-hlDOIWveNNayGpGDLNEzNtQmq_ZzuoBR_G9PlLOzj3VN-J1znmUBRD1JnQ9r3u-9O0_yGzD49iZoj9suQODZrE07-Chvmxm9WIIG9mUD2Fz72A8OcW7472PQ1cse4bXSfpt6F3wNwxKKxY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tBQQX_n_CLmAkOJomcX6cA0KwsOpqS8VhkfZmbMcWRaukNCmIPfEOvAcPxZMwdppWBcSe9sA5sRs338x8zoy_AXgcZyy3tpQ01YrRhGlOValLatCwTF6WSJGUbzaRTyb86Kh4uwU_-rMwrqyy94neUZe1dt_Ihwxjc5HiDPz57BN1XaNcdrVvodHB4sB8_YJbtubZ_it8v0_ieO_14e6ILrsKUI1co6XaxtY4UZk0DFXMLQZUXqhIc2YLJhNmMy1x08ELYyVGL14qm6HPVmGiihQZAsN5z8H5hCE3dUngl097z49Uwov8Rq51vQvky3oy_LGhmX1shk0U5SyhGBapSxhm9GQjGg5qtOq_Md0_CzZ_y9r6YLh39X_7G6_BlSXtJi86O7kOW6a6ARd9-atubsJ43V2qIbUlctHWXsuWWOOVTwnGsHl3BoTIloxHuz-_fZ_V06ol-rhelA2RVUm8-ndzC96dyVJuw6CqK3MXCJepSpiKLOcFUlMcx1SSIAU0MgplIQPI-vct9FKE3fUCORbdAfFQOKCIDigCgSI8UMRJAOFq4KzTITl9yLYDlEAq5fSAtSuc0q2InRxTnASw0wNELN1WI9boCODR6jI6HJdFkpWpF3hPxJwaVhziFHc6WK6eiOF-GHeoOJpvAHZ1gxMz37xSTT94UXPcmXDOozyAqMf2-rlOWem9f6_lIVwaHb4Zi_H-5GAbLsfO_vxp0h0YtPOFuQ8X9Od22swfeHMm8P6sgf8L8h-ECQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V5SEu5Q2hBYzE1dokTjb2EbVdFbFaVeKh3izbsdVFVbLaZDn0xH_gH_aXdOwkWy0gKiHO9lh-zHg-yzPfALxLJ6xwrlQ0N5rRjBlOdWlKatGwbFGWCJF0KDZRzOf89FSc7MDRkAsTot2HL8kup8GzNFXteFm6nts2Htvlt2bcJEnBMopOhvrvtwm9uAW3Mx9N7x_tn74OFzJ6-MC9m_iK8t6_9mFefxloy0mNajS2PwHQ3-Mof_lMDT5q-uA_re4h7PYglbzvtOoR7NjqMdwNwaKmeQKz61pMDakdUeu2DsyvxNnAE0rwxl91GRNEtWR2fHD54-eyXlQtMef1umyIqkoSuLKbp_BlevT54Jj2VRmoQazWUuNSZz0pTx7HOuUOAQkXOjGcOcFUxtzEKHy0cWGdQu_PS-3wAISOMy1yRFjsGYyqurIvgHCV64zpxHEuEMihHNNZhoDJqiRWQkUwGY5Bmp6y3FfOOJddOnUs_VbJbqskbpUMWyUvIog3gsuOteNmkT1_zhKBh2fPNT7MyLQy9eRFaRbB_nD8sjfyRjKEiyJHpeYRvN00o3n6PxdV2XqNfRLmuaPSGId43mnLZkYMX4_4nkNpvqVHmw6e-nu7pVqcBQpwxPGc86SIIBnU6XpeN6z05T_IvIF7J4dTOfsw_7gH91OvlSEfcx9G7WptX8Ed871dNKvXwfKuAFXyMYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foundations+of+automatic+feature+extraction+at+LHC%E2%80%93point+clouds+and+graphs&rft.jtitle=The+European+physical+journal.+ST%2C+Special+topics&rft.au=Bhardwaj%2C+Akanksha&rft.au=Konar%2C+Partha&rft.au=Ngairangbam%2C+Vishal&rft.date=2024-11-01&rft.pub=Springer+Science+%2B+Business+Media&rft.issn=1951-6355&rft.volume=233&rft.issue=15-16&rft_id=info:doi/10.1140%2Fepjs%2Fs11734-024-01306-z&rft.externalDocID=2478724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1951-6355&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1951-6355&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1951-6355&client=summon