Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy

A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular‐specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biophotonics Vol. 10; no. 3; pp. 377 - 384
Main Authors: Chandler, John E., Stypula‐Cyrus, Yolanda, Almassalha, Luay, Bauer, Greta, Bowen, Leah, Subramanian, Hariharan, Szleifer, Igal, Backman, Vadim
Format: Journal Article
Language:English
Published: Weinheim WILEY‐VCH Verlag 01.03.2017
Wiley Subscription Services, Inc
Subjects:
ISSN:1864-063X, 1864-0648, 1864-0648
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular‐specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti‐mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular‐specific sites. Instrumentation has been developed enabling colocalization of confocal fluorescence and nanoscale‐sensitive spectroscopic microscopy modalities. This combination allows sensing of the heterogeneity of nanoscale intracellular structure within specific fluorescently labeled organelles or molecular structures. To demonstrate the capabilities of this multimodal instrument, the effects on the heterogeneity of nanoscale structure were examined in the nuclei and mitochondria of HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation.
AbstractList A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular‐specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti‐mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular‐specific sites. Instrumentation has been developed enabling colocalization of confocal fluorescence and nanoscale‐sensitive spectroscopic microscopy modalities. This combination allows sensing of the heterogeneity of nanoscale intracellular structure within specific fluorescently labeled organelles or molecular structures. To demonstrate the capabilities of this multimodal instrument, the effects on the heterogeneity of nanoscale structure were examined in the nuclei and mitochondria of HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation.
A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites.
A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity ( capital sigma ), while no significant change in capital sigma was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites. Instrumentation has been developed enabling colocalization of confocal fluorescence and nanoscale-sensitive spectroscopic microscopy modalities. This combination allows sensing of the heterogeneity of nanoscale intracellular structure within specific fluorescently labeled organelles or molecular structures. To demonstrate the capabilities of this multimodal instrument, the effects on the heterogeneity of nanoscale structure were examined in the nuclei and mitochondria of HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation.
A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites.A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular-specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti-mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity (Σ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular-specific sites.
A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of modalities allows molecular‐specific sensing of nanoscale intracellular structure using fluorescent labels. Combining molecular specificity and sensitivity to nanoscale structure allows localization of nanostructural intracellular changes, which is critical for understanding the mechanisms of diseases such as cancer. To demonstrate the capabilities of this multimodal instrument, we imaged HeLa cells treated with valinomycin, a potassium ionophore that uncouples oxidative phosphorylation. Colocalization of fluorescence images of the nuclei (Hoechst 33342) and mitochondria (anti‐mitochondria conjugated to Alexa Fluor 488) with PWS measurements allowed us to detect a significant decrease in nuclear nanoscale heterogeneity ( Σ ), while no significant change in Σ was observed at mitochondrial sites. In addition, application of the new multimodal imaging approach was demonstrated on human buccal samples prepared using a cancer screening protocol. These images demonstrate that nanoscale intracellular structure can be studied in healthy and diseased cells at molecular‐specific sites. magnified image
Author Chandler, John E.
Stypula‐Cyrus, Yolanda
Almassalha, Luay
Bauer, Greta
Szleifer, Igal
Bowen, Leah
Subramanian, Hariharan
Backman, Vadim
Author_xml – sequence: 1
  givenname: John E.
  surname: Chandler
  fullname: Chandler, John E.
  organization: Northwestern University
– sequence: 2
  givenname: Yolanda
  surname: Stypula‐Cyrus
  fullname: Stypula‐Cyrus, Yolanda
  organization: Northwestern University
– sequence: 3
  givenname: Luay
  surname: Almassalha
  fullname: Almassalha, Luay
  organization: Northwestern University
– sequence: 4
  givenname: Greta
  surname: Bauer
  fullname: Bauer, Greta
  organization: Northwestern University
– sequence: 5
  givenname: Leah
  surname: Bowen
  fullname: Bowen, Leah
  organization: Northwestern University
– sequence: 6
  givenname: Hariharan
  surname: Subramanian
  fullname: Subramanian, Hariharan
  organization: Northwestern University
– sequence: 7
  givenname: Igal
  surname: Szleifer
  fullname: Szleifer, Igal
  organization: Northwestern University
– sequence: 8
  givenname: Vadim
  surname: Backman
  fullname: Backman, Vadim
  email: v-backman@northwestern.edu
  organization: Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27111884$$D View this record in MEDLINE/PubMed
BookMark eNqNks1vFCEYxompsR969WhIvHjZla8B5mJiN1ZrmvSiiTfCMExlw8IIQ5v1r5fp1lWbqD0BeX_Py5vnfY7BQYjBAvAcoyVGiLxedy4uCcJNfbTyETjCkrMF4kwe7O_0yyE4znmNEEe0oU_AIREYYynZEehW0UejvfuuJxcDjAM01vvidYJBh5inVMxUkoUlu3AFTQzDzMPBl5hsNjYYC3Xo4ajT5GrhRl9bmEdrphSzieP2KXg8aJ_ts7vzBHw-e_dp9WFxcfn-fPX2YmEaQuRCaEZbzQdLu561pA7YN4hiajRDg9CI1gJtu67rKaJSYGkZ4y0TveiQZYbTE_Bm13cs3cb2dbIpaa_G5DY6bVXUTv1ZCe6ruorXqsGYYDY3eHXXIMVvxeZJbVye3dDBxpIVli2VUlLWPgTFUiDCmweghHPeIkEr-vIeuo4lhWqaIkJK0tQh0b-oulOChMR07vXidzf2NvxcfQWWO8DUPeVkhz2CkZqzpeZsqX22qoDdExg33aamuun832XtTnbjvN3-5xP18fT88pf2B88848o
CitedBy_id crossref_primary_10_1016_j_mehy_2019_109511
crossref_primary_10_1038_s41467_019_09717_6
crossref_primary_10_3390_biomedicines11010191
crossref_primary_10_1002_cyto_a_23521
crossref_primary_10_1073_pnas_1816459115
crossref_primary_10_1088_1478_3975_ab6abb
Cites_doi 10.1117/1.3523618
10.1186/1471-2407-14-189
10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q
10.1371/journal.pone.0115999
10.1158/0008-5472.CAN-10-1686
10.1073/pnas.0804723105
10.1364/OL.39.004290
10.1007/s10495-011-0642-9
10.1038/nrm3382
10.1038/nmeth.2089
10.1002/ijc.28122
10.1016/j.bpj.2010.05.023
10.1364/OL.34.000518
10.1038/sj.bmt.1701815
10.1016/j.cell.2012.02.035
10.1038/sj.embor.7400488
10.1103/PhysRevLett.111.033903
10.1016/j.mrrev.2003.06.008
10.1158/0008-5472.CAN-08-3895
10.7150/jca.5838
10.1371/journal.pone.0064600
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
5PM
DOI 10.1002/jbio.201500298
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Technology Research Database
Electronics & Communications Abstracts
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

Engineering Research Database
MEDLINE - Academic
CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1864-0648
EndPage 384
ExternalDocumentID PMC5112146
4321290003
27111884
10_1002_jbio_201500298
JBIO201500298
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation Graduate Research Fellowship
  funderid: DGE‐0824162
– fundername: National Institutes of Health
  funderid: U54CA193419; R01CA155284; R01CA200064; R01EB016983
– fundername: NCI NIH HHS
  grantid: R01 CA200064
– fundername: NCI NIH HHS
  grantid: R01 CA155284
– fundername: NIBIB NIH HHS
  grantid: R01 EB016983
– fundername: NIGMS NIH HHS
  grantid: T32 GM008152
– fundername: NCI NIH HHS
  grantid: P30 CA060553
– fundername: NCI NIH HHS
  grantid: U54 CA193419
GroupedDBID ---
05W
0R~
1OC
31~
33P
3SF
4.4
52U
52V
53G
5DZ
5GY
66C
8-0
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SP
7SR
7U5
8FD
FR3
JG9
K9.
L7M
P64
7X8
5PM
ID FETCH-LOGICAL-c5228-7a439a6fe3bd492111d50313ca40f7a03e3b39bbbd3038718e446947d7b0e4c63
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398216200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-063X
1864-0648
IngestDate Tue Nov 04 01:52:52 EST 2025
Thu Oct 02 06:31:48 EDT 2025
Tue Oct 07 09:59:42 EDT 2025
Thu Jul 10 17:36:36 EDT 2025
Sat Nov 29 14:37:04 EST 2025
Sat Nov 29 14:51:12 EST 2025
Mon Jul 21 05:35:58 EDT 2025
Tue Nov 18 21:05:08 EST 2025
Sat Nov 29 03:11:23 EST 2025
Wed Jan 22 16:20:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords hyperspectral microscopy
chromatin
confocal microscopy
nanocytology
mitochondria
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5228-7a439a6fe3bd492111d50313ca40f7a03e3b39bbbd3038718e446947d7b0e4c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27111884
PQID 1882078133
PQPubID 1006377
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5112146
proquest_miscellaneous_1893888349
proquest_miscellaneous_1891870265
proquest_miscellaneous_1826669073
proquest_journals_2788254630
proquest_journals_1882078133
pubmed_primary_27111884
crossref_primary_10_1002_jbio_201500298
crossref_citationtrail_10_1002_jbio_201500298
wiley_primary_10_1002_jbio_201500298_JBIO201500298
PublicationCentury 2000
PublicationDate March 2017
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: March 2017
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
– name: Jena
PublicationTitle Journal of biophotonics
PublicationTitleAlternate J Biophotonics
PublicationYear 2017
Publisher WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References 2009; 34
2010; 99
2009; 69
2010; 15
2013; 4
2015; 10
1999; 24
2013; 111
2013; 133
2014; 14
1953; 6
2005; 6
2008; 105
2014; 39
2010; 70
2003; 544
2013; 8
2012; 148
2012; 13
2011; 16
2012; 9
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
21877215 - Apoptosis. 2011 Nov;16(11):1101-17
19373360 - Opt Lett. 2009 Feb 15;34(4):518-20
24629088 - BMC Cancer. 2014 Mar 14;14:189
23459690 - J Cancer. 2013;4(3):251-61
25706755 - PLoS One. 2015 Feb 23;10(2):e0115999
21198202 - J Biomed Opt. 2010 Nov-Dec;15(6):066028
23724067 - PLoS One. 2013 May 28;8(5):e64600
14644334 - Mutat Res. 2003 Nov;544(2-3):321-9
20924114 - Cancer Res. 2010 Oct 15;70(20):7748-54
22424226 - Cell. 2012 Mar 16;148(6):1145-59
25078159 - Opt Lett. 2014 Aug 1;39(15):4290-3
19549915 - Cancer Res. 2009 Jul 1;69(13):5357-63
20682278 - Biophys J. 2010 Aug 4;99(3):989-96
10435742 - Bone Marrow Transplant. 1999 Jul;24(1):95-8
22930834 - Nat Methods. 2012 Jul;9(7):671-5
16113651 - EMBO Rep. 2005 Sep;6(9):853-9
23436651 - Int J Cancer. 2013 Sep 1;133(5):1143-52
19073935 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20118-23
22722606 - Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47
23909326 - Phys Rev Lett. 2013 Jul 19;111(3):033903
13094644 - Cancer. 1953 Sep;6(5):963-8
References_xml – volume: 69
  start-page: 5357
  year: 2009
  end-page: 5363
  publication-title: Cancer Research
– volume: 10
  start-page: e0115999
  year: 2015
  publication-title: PLoS ONE
– volume: 13
  start-page: 436
  year: 2012
  end-page: 447
  publication-title: Nature reviews Molecular cell biology
– volume: 15
  start-page: 066028
  year: 2010
  publication-title: J Biomed Opt
– volume: 6
  start-page: 963
  year: 1953
  end-page: 968
  publication-title: Cancer
– volume: 111
  start-page: 033903
  year: 2013
  publication-title: Phys Rev Lett
– volume: 70
  start-page: 7748
  year: 2010
  end-page: 7754
  publication-title: Cancer Research
– volume: 14
  start-page: 189
  year: 2014
  publication-title: BMC Cancer
– volume: 148
  start-page: 1145
  year: 2012
  end-page: 1159
  publication-title: Cell
– volume: 8
  start-page: e64600
  year: 2013
  publication-title: PLoS ONE
– volume: 16
  start-page: 1101
  year: 2011
  end-page: 1117
  publication-title: Apoptosis
– volume: 6
  start-page: 853
  year: 2005
  end-page: 859
  publication-title: Embo Rep
– volume: 39
  start-page: 4290
  year: 2014
  end-page: 4293
  publication-title: Opt Lett
– volume: 34
  start-page: 518
  year: 2009
  end-page: 520
  publication-title: Opt Lett
– volume: 105
  start-page: 20118
  year: 2008
  end-page: 20123
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 133
  start-page: 1143
  year: 2013
  end-page: 1152
  publication-title: Int. J. Cancer
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  publication-title: Nat Methods
– volume: 4
  start-page: 251
  year: 2013
  end-page: 261
  publication-title: J. Cancer
– volume: 24
  start-page: 95
  year: 1999
  end-page: 98
  publication-title: Bone Marrow Transpl
– volume: 99
  start-page: 989
  year: 2010
  end-page: 996
  publication-title: Biophys J
– volume: 544
  start-page: 321
  year: 2003
  end-page: 329
  publication-title: Mutat Res‐Rev Mutat
– ident: e_1_2_6_6_1
  doi: 10.1117/1.3523618
– ident: e_1_2_6_13_1
  doi: 10.1186/1471-2407-14-189
– ident: e_1_2_6_7_1
  doi: 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q
– ident: e_1_2_6_9_1
  doi: 10.1371/journal.pone.0115999
– ident: e_1_2_6_20_1
  doi: 10.1158/0008-5472.CAN-10-1686
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.0804723105
– ident: e_1_2_6_3_1
  doi: 10.1364/OL.39.004290
– ident: e_1_2_6_16_1
  doi: 10.1007/s10495-011-0642-9
– ident: e_1_2_6_15_1
  doi: 10.1038/nrm3382
– ident: e_1_2_6_17_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_6_8_1
  doi: 10.1002/ijc.28122
– ident: e_1_2_6_11_1
  doi: 10.1016/j.bpj.2010.05.023
– ident: e_1_2_6_5_1
  doi: 10.1364/OL.34.000518
– ident: e_1_2_6_21_1
  doi: 10.1038/sj.bmt.1701815
– ident: e_1_2_6_14_1
  doi: 10.1016/j.cell.2012.02.035
– ident: e_1_2_6_18_1
  doi: 10.1038/sj.embor.7400488
– ident: e_1_2_6_2_1
  doi: 10.1103/PhysRevLett.111.033903
– ident: e_1_2_6_22_1
  doi: 10.1016/j.mrrev.2003.06.008
– ident: e_1_2_6_19_1
  doi: 10.1158/0008-5472.CAN-08-3895
– ident: e_1_2_6_10_1
  doi: 10.7150/jca.5838
– ident: e_1_2_6_12_1
  doi: 10.1371/journal.pone.0064600
– reference: 24629088 - BMC Cancer. 2014 Mar 14;14:189
– reference: 19073935 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20118-23
– reference: 14644334 - Mutat Res. 2003 Nov;544(2-3):321-9
– reference: 20682278 - Biophys J. 2010 Aug 4;99(3):989-96
– reference: 22722606 - Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47
– reference: 25706755 - PLoS One. 2015 Feb 23;10(2):e0115999
– reference: 13094644 - Cancer. 1953 Sep;6(5):963-8
– reference: 23909326 - Phys Rev Lett. 2013 Jul 19;111(3):033903
– reference: 20924114 - Cancer Res. 2010 Oct 15;70(20):7748-54
– reference: 10435742 - Bone Marrow Transplant. 1999 Jul;24(1):95-8
– reference: 23436651 - Int J Cancer. 2013 Sep 1;133(5):1143-52
– reference: 19373360 - Opt Lett. 2009 Feb 15;34(4):518-20
– reference: 21877215 - Apoptosis. 2011 Nov;16(11):1101-17
– reference: 22424226 - Cell. 2012 Mar 16;148(6):1145-59
– reference: 21198202 - J Biomed Opt. 2010 Nov-Dec;15(6):066028
– reference: 23459690 - J Cancer. 2013;4(3):251-61
– reference: 23724067 - PLoS One. 2013 May 28;8(5):e64600
– reference: 16113651 - EMBO Rep. 2005 Sep;6(9):853-9
– reference: 19549915 - Cancer Res. 2009 Jul 1;69(13):5357-63
– reference: 22930834 - Nat Methods. 2012 Jul;9(7):671-5
– reference: 25078159 - Opt Lett. 2014 Aug 1;39(15):4290-3
SSID ssj0060353
Score 2.1684434
Snippet A new multimodal confocal microscope has been developed, which includes a parallel Partial Wave Spectroscopic (PWS) microscopy path. This combination of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 377
SubjectTerms Cancer
Cancer screening
Cell Nucleus - drug effects
Cell Nucleus - ultrastructure
Cheek
chromatin
Confocal
confocal microscopy
Fluorescence
HeLa Cells
Heterogeneity
Humans
hyperspectral microscopy
Image Processing, Computer-Assisted
Intracellular
Ionophores - pharmacology
Localization
Medical imaging
Medical screening
Microscopy, Confocal - instrumentation
Microscopy, Confocal - methods
Microscopy, Fluorescence - instrumentation
Microscopy, Fluorescence - methods
Mitochondria
Mitochondria - drug effects
Mitochondria - ultrastructure
Molecular structure
Multimodal Imaging
nanocytology
Nanostructure
Oxidative phosphorylation
Phosphorylation
Spectroscopy
Spectrum Analysis - instrumentation
Spectrum Analysis - methods
Valinomycin
Valinomycin - pharmacology
Title Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbio.201500298
https://www.ncbi.nlm.nih.gov/pubmed/27111884
https://www.proquest.com/docview/1882078133
https://www.proquest.com/docview/2788254630
https://www.proquest.com/docview/1826669073
https://www.proquest.com/docview/1891870265
https://www.proquest.com/docview/1893888349
https://pubmed.ncbi.nlm.nih.gov/PMC5112146
Volume 10
WOSCitedRecordID wos000398216200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-0648
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060353
  issn: 1864-063X
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xjgd42PhN2JiMhMRTtMR2EvsRBhWgaSDEUN8i23FG0ZRULR3af8-dk4ZWgyHBY3RnKznf-T47vs8AzzNtMoTJIsZknsTSZS62Dn05tdIlHlOmC7UwX46LkxM1meiPa1X8HT_EsOFGkRHmawpwYxeHv0hDv9kpFe8hoCEW8S3Y5ui82Qi2X38anx6vZmN8jcBEmapcxpiOJyvixoQfbvawmZiuoM2rhybXwWzIRuPd__-OO7DTI1H2snOdu3DDN_fg9ho_4X2wR23IdX2tJmtrRhv9dHKVNaZpO_LZ5dwzOj5_xnBtXZM-q8-X7TwQRTnPTFOxGXkoCn6YC89CdSexaLazywdwOn7z-eht3F_KEDuEaiouDEIYk9de2EpqXD6mVUb8j87IpC5MIlAgtLW2EvRnPFUeF5xaFlVhEy9dLh7CqGkb_xiY9JJbrXJCkdLVSmPzVBqdOcFFltQRxKsRKV3PWE4XZ5yXHdcyL8l25WC7CF4M-rOOq-OPmvurAS77mF2UKS42iPpIiN-KeaG6ywOSCJ4NYgxGMrxpfLukLhDv0H6DuE5HpzhJ8jy7VkcopYTUETzq3G74Il6gzZWSERQbDjkoEGH4pqSZfg3E4QSuMTNGwIND_sVI5ftX7z4MT0_-pdEe3OIEg8KZvX0YoVf6p3DTXXyfLuYHsFVM1EEfsD8BxNdA9Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLdgQ2I88P1RGBAkJJ6qtUnaJo8wOG1wHAht6N6qJE3hpqk93bgh_nvstFd2GgwJ8VjZqVrXjn9J7V8AnmfaZAiTRYzJPImly1xsHfpyaqVLPKZMF3phPo-LyURNp_pjX01IvTAdP8Sw4UaREeZrCnDakN75xRp6ZGfUvYeIhmjEL8OmRF9CJ998_Wl0OF5Nx_gcgYoyVbmMMR9PV8yNCd9Zv8N6ZjoHN89XTZ5FsyEdjW78hxe5Cdd7LMpeds5zCy755jZcO8NQeAfsbhuyXd-tydqa0VY_1a6yxjRtRz-7XHhGBfRfGK6ua9Jn9fGyXQSqKOeZaSo2Jx9FwXdz6lno7yQezXb-4y4cjt4c7O7F_bEMsUOwpuLCIIgxee2FraTGBWRaZcQA6YxM6sIkAgVCW2srQf_GU-VxyallURU28dLl4h5sNG3jHwCTXnKrVU44UrpaaRyeSqMzJ7jIkjqCePVJStdzltPRGcdlx7bMS7JdOdgugheD_rxj6_ij5vbqC5d91J6UKS43iPxIiN-KeaG64wOSCJ4NYgxHMrxpfLukWyDioR0HcZGOTnGa5Hl2oY5QSgmpI7jf-d3wRrxAmyslIyjWPHJQIMrwdUkz-xqowwleY26MgAeP_IuRyrev9j8MVw__ZdBTuLp38H5cjvcn7x7BFidQFCr4tmEDPdQ_hivu9NvsZPGkj9ufXSFD_Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5BhxA88HNAYICRkHiKlthOYj_CRsWgKhNiqG-R7ThQNCVVR4f477lz0rBqMCTEY3TnKLnc-T47d58BnmfaZAiTRYzJPImly1xsHfpyaqVLPKZMF3phPk2K6VTNZvqwryakXpiOH2LYcKPICPM1BbhfVPXuL9bQr3ZO3XuIaIhG_DJsSTpJZgRb-x_GR5P1dIzPEagoU5XLGPPxbM3cmPDdzTtsZqZzcPN81eRZNBvS0fjmf3iRW3Cjx6LsZec8t-GSb-7A9TMMhXfB7rUh2_XdmqytGW31U-0qa0zTdvSzq6VnVED_meHquiZ9Vh-v2mWginKemaZiC_JRFHw3p56F_k7i0WwXP7bhaPz6496buD-WIXYI1lRcGAQxJq-9sJXUuIBMq4wYIJ2RSV2YRKBAaGttJejfeKo8Ljm1LKrCJl66XNyDUdM2_gEw6SW3WuWEI6WrlcbhqTQ6c4KLLKkjiNefpHQ9ZzkdnXFcdmzLvCTblYPtIngx6C86to4_au6sv3DZR-1JmeJyg8iPhPitmBeqOz4gieDZIMZwJMObxrcrugUiHtpxEBfp6BSnSZ5nF-oIpZSQOoL7nd8Nb8QLtLlSMoJiwyMHBaIM35Q08y-BOpzgNebGCHjwyL8YqXz76uD9cPXwXwY9hauH--NycjB99wiuccJEoYBvB0booP4xXHGn3-Ynyyd92P4EhGtDeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colocalization+of+cellular+nanostructure+using+confocal+fluorescence+and+partial+wave+spectroscopy&rft.jtitle=Journal+of+biophotonics&rft.au=Chandler%2C+John+E.&rft.au=Stypula%E2%80%90Cyrus%2C+Yolanda&rft.au=Almassalha%2C+Luay&rft.au=Bauer%2C+Greta&rft.date=2017-03-01&rft.issn=1864-063X&rft.eissn=1864-0648&rft.volume=10&rft.issue=3&rft.spage=377&rft.epage=384&rft_id=info:doi/10.1002%2Fjbio.201500298&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jbio_201500298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-063X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-063X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-063X&client=summon