Automated segmentation of lungs and lung tumors in mouse micro-CT scans
Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/v...
Saved in:
| Published in: | iScience Vol. 25; no. 12; p. 105712 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
22.12.2022
Elsevier |
| Subjects: | |
| ISSN: | 2589-0042, 2589-0042 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions.
[Display omitted]
•Manually segmenting lungs/tumors in murine CT images is subjective and time consuming•Automated algorithm segments lungs and identifies individual lung tumors•Automated algorithm reduces bias and image processing time•Facilitates translational investigation of intra-subject tumor heterogeneity
Cancer; Artificial intelligence; Machine learning |
|---|---|
| AbstractList | Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions.Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions. Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions. Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions. [Display omitted] •Manually segmenting lungs/tumors in murine CT images is subjective and time consuming•Automated algorithm segments lungs and identifies individual lung tumors•Automated algorithm reduces bias and image processing time•Facilitates translational investigation of intra-subject tumor heterogeneity Cancer; Artificial intelligence; Machine learning Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions. Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions. • Manually segmenting lungs/tumors in murine CT images is subjective and time consuming • Automated algorithm segments lungs and identifies individual lung tumors • Automated algorithm reduces bias and image processing time • Facilitates translational investigation of intra-subject tumor heterogeneity Cancer; Artificial intelligence; Machine learning |
| ArticleNumber | 105712 |
| Author | Malamut, Evelyn J. Junttila, Melissa R. Long, Jason E. Patil, Jasmine Cheng, Jason H. Carano, Richard A.D. Lima, Anthony Ferl, Gregory Z. Jemaa, Skander Barck, Kai H. |
| Author_xml | – sequence: 1 givenname: Gregory Z. orcidid: 0000-0002-9943-1569 surname: Ferl fullname: Ferl, Gregory Z. email: ferlg@gene.com organization: Preclinical & Translational PKPD, Genentech, South San Francisco, CA 94080, USA – sequence: 2 givenname: Kai H. orcidid: 0000-0003-1052-5719 surname: Barck fullname: Barck, Kai H. email: kbarck@gene.com organization: Department of Translational Imaging, Genentech, South San Francisco, CA 94080, USA – sequence: 3 givenname: Jasmine surname: Patil fullname: Patil, Jasmine organization: Genetic Science Group, Thermo Fisher Scientific, South San Francisco, CA 94080, USA – sequence: 4 givenname: Skander surname: Jemaa fullname: Jemaa, Skander organization: Data, Analytics and Imaging, Product Development, Genentech, South San Francisco, CA 94080, USA – sequence: 5 givenname: Evelyn J. surname: Malamut fullname: Malamut, Evelyn J. organization: Preclinical & Translational PKPD, Genentech, South San Francisco, CA 94080, USA – sequence: 6 givenname: Anthony surname: Lima fullname: Lima, Anthony organization: Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA – sequence: 7 givenname: Jason E. orcidid: 0000-0002-8229-0341 surname: Long fullname: Long, Jason E. organization: ORIC Pharmaceuticals, South San Francisco, CA 94080, USA – sequence: 8 givenname: Jason H. surname: Cheng fullname: Cheng, Jason H. organization: Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA – sequence: 9 givenname: Melissa R. orcidid: 0000-0003-3538-1192 surname: Junttila fullname: Junttila, Melissa R. organization: ORIC Pharmaceuticals, South San Francisco, CA 94080, USA – sequence: 10 givenname: Richard A.D. orcidid: 0000-0002-6799-4367 surname: Carano fullname: Carano, Richard A.D. organization: Data, Analytics and Imaging, Product Development, Genentech, South San Francisco, CA 94080, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36582483$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV9rFDEUxYNUbK39Aj7IPPoya_5vAiKURWuh4Mu-h2xyZ80yk9QkU_DbN9tppfWhEMjl5p5zyP29RycxRUDoI8Ergon8cliF4sKKYkpbQ6wJfYPOqFC6x5jTk2f1Kboo5YAxpu1wLd-hUyaFolyxM3R1Odc02Qq-K7CfIFZbQ4pdGrpxjvvS2egfqq7OU8qlC7Gb0lygm4LLqd9su-JsLB_Q28GOBS4e73O0_fF9u_nZ3_y6ut5c3vROUFL7wUnhvZPDjjOvQIP2SmBwAIJZIj1nQmMuiJXeeckGQahiWO6kJYI6xs7R9WLrkz2Y2xwmm_-aZIN5aKS8NzbX4EYwWK6dllQR4luY9lZ7NlAOYB0ZJN01r2-L1-28m8C79vdsxxemL19i-G326c7otaZKkWbw-dEgpz8zlGqmxgTG0UZoKzJ0LbRuZDhvo5-eZ_0LeQLRBtQy0JZaSobBuLCgaNFhNASbI3ZzMEfs5ojdLNiblP4nfXJ_VfR1EUGDdRcgmzYB0YEPGVxt6wyvye8BKcTGKQ |
| CitedBy_id | crossref_primary_10_1055_a_2111_8415 crossref_primary_10_1016_j_celrep_2024_114569 crossref_primary_10_1016_j_ebiom_2025_105904 crossref_primary_10_3390_cancers17071139 crossref_primary_10_1007_s12530_023_09554_5 crossref_primary_10_1158_0008_5472_CAN_24_3662 crossref_primary_10_1002_mp_17762 crossref_primary_10_1183_16000617_0012_2025 crossref_primary_10_3390_diagnostics13203262 crossref_primary_10_1016_j_tranon_2023_101833 crossref_primary_10_1371_journal_pone_0317996 crossref_primary_10_7717_peerj_cs_2444 crossref_primary_10_3390_cancers17050882 crossref_primary_10_1016_j_cell_2023_05_022 crossref_primary_10_1152_ajpcell_00604_2024 |
| Cites_doi | 10.1016/j.mri.2012.05.001 10.1038/nbt.1640 10.1088/1361-6560/ab59a4 10.1148/ryai.210095 10.1007/s00330-005-0036-x 10.1371/journal.pone.0207555 10.1371/journal.pone.0185862 10.1038/s41467-020-19449-7 10.1593/neo.81030 10.1016/j.tranon.2015.03.003 10.1118/1.4921618 10.1023/A:1010933404324 10.3390/tomography7030032 10.1006/jcss.1997.1504 10.1023/A:1018054314350 10.1371/journal.pone.0252950 10.1145/3459665 10.1002/ijc.33588 10.1016/j.media.2013.07.002 10.1038/s41598-022-05868-7 10.1016/j.nbd.2018.12.002 10.1038/s41592-020-01008-z 10.2741/3353 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
| Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.isci.2022.105712 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2589-0042 |
| ExternalDocumentID | oai_doaj_org_article_067c962811db439da9d3f24eeac1f62b PMC9792881 36582483 10_1016_j_isci_2022_105712 S258900422201985X |
| Genre | Journal Article |
| GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c521t-fc65ddc6fb43d8e9e9d850ecee53a16d43590451a6dcd63f5128306b6a152c33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929772300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2589-0042 |
| IngestDate | Fri Oct 03 12:53:26 EDT 2025 Tue Sep 30 17:17:33 EDT 2025 Fri Jul 11 14:52:28 EDT 2025 Thu Apr 03 07:11:00 EDT 2025 Tue Nov 18 22:45:16 EST 2025 Thu Nov 13 04:34:53 EST 2025 Tue Jul 25 20:56:58 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Artificial intelligence Machine learning Cancer |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2022 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c521t-fc65ddc6fb43d8e9e9d850ecee53a16d43590451a6dcd63f5128306b6a152c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
| ORCID | 0000-0003-1052-5719 0000-0003-3538-1192 0000-0002-9943-1569 0000-0002-8229-0341 0000-0002-6799-4367 |
| OpenAccessLink | https://doaj.org/article/067c962811db439da9d3f24eeac1f62b |
| PMID | 36582483 |
| PQID | 2759957144 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_067c962811db439da9d3f24eeac1f62b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9792881 proquest_miscellaneous_2759957144 pubmed_primary_36582483 crossref_citationtrail_10_1016_j_isci_2022_105712 crossref_primary_10_1016_j_isci_2022_105712 elsevier_sciencedirect_doi_10_1016_j_isci_2022_105712 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-22 |
| PublicationDateYYYYMMDD | 2022-12-22 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | iScience |
| PublicationTitleAlternate | iScience |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Cunningham, Delany (bib27) 2022; 54 Malimban, Lathouwers, Qian, Verhaegen, Wiedemann, Brandenburg, Staring (bib15) 2022; 12 Barck, Bou-Reslan, Rastogi, Sakhuja, Long, Molina, Lima, Hamilton, Junttila, Johnson, Carano (bib3) 2015; 8 Yang, Wang, Zuo (bib24) 2012; 7 Blocker, Mowery, Holbrook, Qi, Kirsch, Johnson, Badea (bib19) 2019; 14 Rudyanto, Bastarrika, de Biurrun, Agorreta, Montuenga, Ortiz-de Solorzano, Muñoz-Barrutia (bib8) 2013; 17 Cristianini, Shawe-Taylor (bib28) 2000 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib16) 2021; 18 Chollet (bib33) 2015 Wang, Han, Chen, Hu, Chatziioannou, Zhang (bib11) 2019; 64 Sengupta-Ghosh, Dominguez, Xie, Barck, Jiang, Earr, Imperio, Phu, Budayeva, Kirkpatrick (bib25) 2019; 124 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin (bib32) 2016 Montgomery, David, Zhang, Ram, Deng, Premkumar, Manzuk, Jiang, Giddabasappa (bib21) 2021; 16 Rodt, von Falck, Halter, Ringe, Shin, Galanski, Borlak (bib17) 2009; 14 Xu, Bagci, Mansoor, Kramer-Marek, Luna, Kubler, Dey, Foster, Papadakis, Camp (bib9) 2015; 42 Freund, Schapire (bib31) 1997; 55 Breiman (bib30) 2001; 45 Marten, Auer, Schmidt, Kohl, Rummeny, Engelke (bib5) 2006; 16 Merchant, Moffat, Schaefer, Chan, Wang, Orr, Cheng, Hunsaker, Shao, Wang (bib4) 2017; 12 Haines, Bettano, Chenard, Sevilla, Ware, Angagaw, Winkelmann, Tong, Reilly, Sur, Zhang (bib6) 2009; 11 Li, Jirapatnakul, Biancardi, Riccio, Weiss, Reeves (bib22) 2013; 8 Sforazzini, Salome, Moustafa, Zhou, Schwager, Rein, Bougatf, Kudak, Woodruff, Dubois (bib14) 2022; 4 Holbrook, Clark, Patel, Qi, Bassil, Mowery, Badea (bib23) 2021; 7 Lalwani, Giddabasappa, Li, Olson, Simmons, Shojaei, Van Arsdale, Christensen, Jackson-Fisher, Wong (bib18) 2013; 63 Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka (bib20) 2012; 30 Ferlay, Colombet, Soerjomataram, Parkin, Piñeros, Znaor, Bray (bib1) 2021; 149 Schoppe, Pan, Coronel, Mai, Rong, Todorov, Müskes, Navarro, Li, Ertürk, Menze (bib13) 2020; 11 Singh, Lima, Molina, Hamilton, Clermont, Devasthali, Thompson, Cheng, Bou Reslan, Ho (bib2) 2010; 28 Ronneberger, Fischer, Brox (bib26) 2015 Ren, Somayajula, Sevilla, Vanko, Wiener, Dogdas, Zhang (bib7) 2013 Dou, Chen, Jin, Lin, Qin, Heng (bib12) 2017 Yan, Zhang, Luo, Yang (bib10) 2017; 12 Breiman (bib29) 1996; 24 Yang (10.1016/j.isci.2022.105712_bib24) 2012; 7 Cristianini (10.1016/j.isci.2022.105712_bib28) 2000 Li (10.1016/j.isci.2022.105712_bib22) 2013; 8 Ferlay (10.1016/j.isci.2022.105712_bib1) 2021; 149 Sforazzini (10.1016/j.isci.2022.105712_bib14) 2022; 4 Schoppe (10.1016/j.isci.2022.105712_bib13) 2020; 11 Cunningham (10.1016/j.isci.2022.105712_bib27) 2022; 54 Haines (10.1016/j.isci.2022.105712_bib6) 2009; 11 Ren (10.1016/j.isci.2022.105712_bib7) 2013 Yan (10.1016/j.isci.2022.105712_bib10) 2017; 12 Fedorov (10.1016/j.isci.2022.105712_bib20) 2012; 30 Chollet (10.1016/j.isci.2022.105712_bib33) Marten (10.1016/j.isci.2022.105712_bib5) 2006; 16 Isensee (10.1016/j.isci.2022.105712_bib16) 2021; 18 Dou (10.1016/j.isci.2022.105712_bib12) 2017 Blocker (10.1016/j.isci.2022.105712_bib19) 2019; 14 Breiman (10.1016/j.isci.2022.105712_bib29) 1996; 24 Freund (10.1016/j.isci.2022.105712_bib31) 1997; 55 Xu (10.1016/j.isci.2022.105712_bib9) 2015; 42 Ronneberger (10.1016/j.isci.2022.105712_bib26) 2015 Abadi (10.1016/j.isci.2022.105712_bib32) 2016 Breiman (10.1016/j.isci.2022.105712_bib30) 2001; 45 Barck (10.1016/j.isci.2022.105712_bib3) 2015; 8 Holbrook (10.1016/j.isci.2022.105712_bib23) 2021; 7 Rodt (10.1016/j.isci.2022.105712_bib17) 2009; 14 Lalwani (10.1016/j.isci.2022.105712_bib18) 2013; 63 Montgomery (10.1016/j.isci.2022.105712_bib21) 2021; 16 Merchant (10.1016/j.isci.2022.105712_bib4) 2017; 12 Singh (10.1016/j.isci.2022.105712_bib2) 2010; 28 Rudyanto (10.1016/j.isci.2022.105712_bib8) 2013; 17 Malimban (10.1016/j.isci.2022.105712_bib15) 2022; 12 Sengupta-Ghosh (10.1016/j.isci.2022.105712_bib25) 2019; 124 Wang (10.1016/j.isci.2022.105712_bib11) 2019; 64 |
| References_xml | – volume: 63 start-page: 482 year: 2013 end-page: 490 ident: bib18 article-title: Contrast agents for quantitative microCT of lung tumors in mice publication-title: Comp. Med. – volume: 16 year: 2021 ident: bib21 article-title: Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography publication-title: PLoS One – volume: 12 year: 2017 ident: bib4 article-title: Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors publication-title: PLoS One – volume: 16 start-page: 781 year: 2006 end-page: 790 ident: bib5 article-title: Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria publication-title: Eur. Radiol. – volume: 8 year: 2013 ident: bib22 article-title: Growth pattern analysis of murine lung neoplasms by advanced semi-automated quantification of micro-CT images publication-title: PLoS One – volume: 149 start-page: 778 year: 2021 end-page: 789 ident: bib1 article-title: Cancer statistics for the year 2020: an overview publication-title: Int. J. Cancer – volume: 14 start-page: 1939 year: 2009 end-page: 1944 ident: bib17 article-title: In vivo microCT quantification of lung tumor growth in SPC-raf transgenic mice publication-title: Front. Biosci. – volume: 64 year: 2019 ident: bib11 article-title: Prediction of major torso organs in low-contrast micro-CT images of mice using a two-stage deeply supervised fully convolutional network publication-title: Phys. Med. Biol. – year: 2016 ident: bib32 article-title: TensorFlow: large-scale machine learning on heterogeneous systems publication-title: arXiv – year: 2015 ident: bib26 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: bib16 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib31 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – year: 2000 ident: bib28 article-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods – year: 2015 ident: bib33 article-title: Keras – volume: 11 start-page: 39 year: 2009 end-page: 47 ident: bib6 article-title: A quantitative volumetric micro-computed tomography method to analyze lung tumors in genetically engineered mouse models publication-title: Neoplasia – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib30 article-title: Random forests publication-title: Mach. Learn. – volume: 4 start-page: e210095 year: 2022 ident: bib14 article-title: Deep learning–based automatic lung segmentation on multiresolution CT from healthy and fibrotic lungs in mice publication-title: Radiol. Artif. Intell. – year: 2017 ident: bib12 article-title: Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2017 – volume: 14 year: 2019 ident: bib19 article-title: Bridging the translational gap: implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial publication-title: PLoS One – volume: 54 start-page: 1 year: 2022 end-page: 25 ident: bib27 article-title: k-Nearest neighbour classifiers - a Tutorial publication-title: ACM Comput. Surv. – volume: 12 year: 2017 ident: bib10 article-title: A novel mouse segmentation method based on dynamic contrast enhanced micro-CT images publication-title: PLoS One – volume: 12 start-page: 1822 year: 2022 end-page: 1912 ident: bib15 article-title: Deep learning-based segmentation of the thorax in mouse micro-CT scans publication-title: Sci. Rep. – volume: 124 start-page: 340 year: 2019 end-page: 352 ident: bib25 article-title: Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1G93A mouse model of ALS publication-title: Neurobiol. Dis. – volume: 7 start-page: 161 year: 2012 end-page: 168 ident: bib24 article-title: Neighborhood component feature selection for high-dimensional data publication-title: J. Comput. – year: 2013 ident: bib7 article-title: Automated 3D mouse lung segmentation from CT images for extracting quantitative tumor progression biomarkers publication-title: Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging SPIE – volume: 17 start-page: 1095 year: 2013 end-page: 1105 ident: bib8 article-title: Individual nodule tracking in micro-CT images of a longitudinal lung cancer mouse model publication-title: Med. Image Anal. – volume: 28 start-page: 585 year: 2010 end-page: 593 ident: bib2 article-title: Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models publication-title: Nat. Biotechnol. – volume: 7 start-page: 358 year: 2021 end-page: 372 ident: bib23 article-title: Detection of lung nodules in micro-CT imaging using deep learning publication-title: Tomography – volume: 42 start-page: 3896 year: 2015 end-page: 3910 ident: bib9 article-title: Computer-aided pulmonary image analysis in small animal models publication-title: Med. Phys. – volume: 30 start-page: 1323 year: 2012 end-page: 1341 ident: bib20 article-title: 3D slicer as an image computing platform for the quantitative imaging network publication-title: Magn. Reson. Imaging – volume: 8 start-page: 126 year: 2015 end-page: 135 ident: bib3 article-title: Quantification of tumor burden in a genetically engineered mouse model of lung cancer by micro-CT and automated analysis publication-title: Transl. Oncol. – volume: 11 start-page: 5626 year: 2020 end-page: 5714 ident: bib13 article-title: Deep learning-enabled multi-organ segmentation in whole-body mouse scans publication-title: Nat. Commun. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib29 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 7 start-page: 161 year: 2012 ident: 10.1016/j.isci.2022.105712_bib24 article-title: Neighborhood component feature selection for high-dimensional data publication-title: J. Comput. – year: 2015 ident: 10.1016/j.isci.2022.105712_bib26 article-title: U-Net: convolutional networks for biomedical image segmentation – volume: 30 start-page: 1323 year: 2012 ident: 10.1016/j.isci.2022.105712_bib20 article-title: 3D slicer as an image computing platform for the quantitative imaging network publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 28 start-page: 585 year: 2010 ident: 10.1016/j.isci.2022.105712_bib2 article-title: Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1640 – volume: 64 year: 2019 ident: 10.1016/j.isci.2022.105712_bib11 article-title: Prediction of major torso organs in low-contrast micro-CT images of mice using a two-stage deeply supervised fully convolutional network publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab59a4 – volume: 4 start-page: e210095 year: 2022 ident: 10.1016/j.isci.2022.105712_bib14 article-title: Deep learning–based automatic lung segmentation on multiresolution CT from healthy and fibrotic lungs in mice publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.210095 – volume: 16 start-page: 781 year: 2006 ident: 10.1016/j.isci.2022.105712_bib5 article-title: Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria publication-title: Eur. Radiol. doi: 10.1007/s00330-005-0036-x – volume: 12 year: 2017 ident: 10.1016/j.isci.2022.105712_bib10 article-title: A novel mouse segmentation method based on dynamic contrast enhanced micro-CT images publication-title: PLoS One – volume: 14 year: 2019 ident: 10.1016/j.isci.2022.105712_bib19 article-title: Bridging the translational gap: implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial publication-title: PLoS One doi: 10.1371/journal.pone.0207555 – volume: 12 year: 2017 ident: 10.1016/j.isci.2022.105712_bib4 article-title: Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors publication-title: PLoS One doi: 10.1371/journal.pone.0185862 – volume: 11 start-page: 5626 year: 2020 ident: 10.1016/j.isci.2022.105712_bib13 article-title: Deep learning-enabled multi-organ segmentation in whole-body mouse scans publication-title: Nat. Commun. doi: 10.1038/s41467-020-19449-7 – year: 2016 ident: 10.1016/j.isci.2022.105712_bib32 article-title: TensorFlow: large-scale machine learning on heterogeneous systems publication-title: arXiv – volume: 11 start-page: 39 year: 2009 ident: 10.1016/j.isci.2022.105712_bib6 article-title: A quantitative volumetric micro-computed tomography method to analyze lung tumors in genetically engineered mouse models publication-title: Neoplasia doi: 10.1593/neo.81030 – volume: 8 start-page: 126 year: 2015 ident: 10.1016/j.isci.2022.105712_bib3 article-title: Quantification of tumor burden in a genetically engineered mouse model of lung cancer by micro-CT and automated analysis publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2015.03.003 – volume: 42 start-page: 3896 year: 2015 ident: 10.1016/j.isci.2022.105712_bib9 article-title: Computer-aided pulmonary image analysis in small animal models publication-title: Med. Phys. doi: 10.1118/1.4921618 – volume: 8 year: 2013 ident: 10.1016/j.isci.2022.105712_bib22 article-title: Growth pattern analysis of murine lung neoplasms by advanced semi-automated quantification of micro-CT images publication-title: PLoS One – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.isci.2022.105712_bib30 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2017 ident: 10.1016/j.isci.2022.105712_bib12 article-title: Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning – year: 2000 ident: 10.1016/j.isci.2022.105712_bib28 – volume: 7 start-page: 358 year: 2021 ident: 10.1016/j.isci.2022.105712_bib23 article-title: Detection of lung nodules in micro-CT imaging using deep learning publication-title: Tomography doi: 10.3390/tomography7030032 – volume: 55 start-page: 119 year: 1997 ident: 10.1016/j.isci.2022.105712_bib31 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.isci.2022.105712_bib29 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 – volume: 16 year: 2021 ident: 10.1016/j.isci.2022.105712_bib21 article-title: Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography publication-title: PLoS One doi: 10.1371/journal.pone.0252950 – volume: 54 start-page: 1 year: 2022 ident: 10.1016/j.isci.2022.105712_bib27 article-title: k-Nearest neighbour classifiers - a Tutorial publication-title: ACM Comput. Surv. doi: 10.1145/3459665 – volume: 149 start-page: 778 year: 2021 ident: 10.1016/j.isci.2022.105712_bib1 article-title: Cancer statistics for the year 2020: an overview publication-title: Int. J. Cancer doi: 10.1002/ijc.33588 – year: 2013 ident: 10.1016/j.isci.2022.105712_bib7 article-title: Automated 3D mouse lung segmentation from CT images for extracting quantitative tumor progression biomarkers – volume: 17 start-page: 1095 year: 2013 ident: 10.1016/j.isci.2022.105712_bib8 article-title: Individual nodule tracking in micro-CT images of a longitudinal lung cancer mouse model publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.07.002 – volume: 63 start-page: 482 year: 2013 ident: 10.1016/j.isci.2022.105712_bib18 article-title: Contrast agents for quantitative microCT of lung tumors in mice publication-title: Comp. Med. – volume: 12 start-page: 1822 year: 2022 ident: 10.1016/j.isci.2022.105712_bib15 article-title: Deep learning-based segmentation of the thorax in mouse micro-CT scans publication-title: Sci. Rep. doi: 10.1038/s41598-022-05868-7 – volume: 124 start-page: 340 year: 2019 ident: 10.1016/j.isci.2022.105712_bib25 article-title: Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1G93A mouse model of ALS publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2018.12.002 – volume: 18 start-page: 203 year: 2021 ident: 10.1016/j.isci.2022.105712_bib16 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – ident: 10.1016/j.isci.2022.105712_bib33 – volume: 14 start-page: 1939 year: 2009 ident: 10.1016/j.isci.2022.105712_bib17 article-title: In vivo microCT quantification of lung tumor growth in SPC-raf transgenic mice publication-title: Front. Biosci. doi: 10.2741/3353 |
| SSID | ssj0002002496 |
| Score | 2.3285675 |
| Snippet | Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT)... Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in micro-computed tomography (micro-CT) scans... Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT)... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105712 |
| SubjectTerms | Artificial intelligence Cancer Machine learning |
| Title | Automated segmentation of lungs and lung tumors in mouse micro-CT scans |
| URI | https://dx.doi.org/10.1016/j.isci.2022.105712 https://www.ncbi.nlm.nih.gov/pubmed/36582483 https://www.proquest.com/docview/2759957144 https://pubmed.ncbi.nlm.nih.gov/PMC9792881 https://doaj.org/article/067c962811db439da9d3f24eeac1f62b |
| Volume | 25 |
| WOSCitedRecordID | wos000929772300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa2Yoddhg7dw-tWqMBuhTFbsi3p2BV9HIqih6DITZAleUvROEOc9PeXtJwgXoHuspthyw-RlD7Soj4CfA9cSInWm4ZC2LQQWZbWWVOmBQZuXubOR4qNu2t5c6OmU327U-qLcsIiPXAU3A-cTZ2uuMpzXyN4equ9aHgRcMLIm4rXNPtmUu8EU_f98hpR4fWV5UrKCULTHHbMxOQu2vGKwSHnfZ3bnI9QqSfvH4HTc-fz7xzKHVC62Id3gzfJTmMv3sOr0B7A5el6tUBHNHjWhV_zYXNRyxYNe8Ch3THb-v6IrdbzxbJjs5bRD4DA5pSdl55NWIcC7z7A5OJ8cnaVDvUSUkdlCdLGVaX3rmpQUF4FHbRXZRYQBkth88qjZ6SJTsZW3vlKNIj1CiOGurII4k6Ij7DXLtrwGRgXImSO19Y3iF46q0WNgQ9qU1iih_cJ5BtxGTdwiVNJiwezSRq7NyRiQyI2UcQJnGzv-ROZNF5s_ZO0sG1JLNj9CbQNM9iG-ZdtJFBudGgGhyI6Cvio2YsvP94o3OBooyUU2wZUhOGSCNokRqEJfIoGsP1Egc4cL5RIQI5MY9SH8ZV29rtn9NZSc6XyL_-j04fwlrpCKTecf4W91XIdvsEb97iadcsjeC2n6qgfLE9kRhbX |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+of+lungs+and+lung+tumors+in+mouse+micro-CT+scans&rft.jtitle=iScience&rft.au=Ferl%2C+Gregory+Z.&rft.au=Barck%2C+Kai+H.&rft.au=Patil%2C+Jasmine&rft.au=Jemaa%2C+Skander&rft.date=2022-12-22&rft.pub=Elsevier&rft.eissn=2589-0042&rft.volume=25&rft.issue=12&rft_id=info:doi/10.1016%2Fj.isci.2022.105712&rft.externalDocID=PMC9792881 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |