Automated segmentation of lungs and lung tumors in mouse micro-CT scans

Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/v...

Full description

Saved in:
Bibliographic Details
Published in:iScience Vol. 25; no. 12; p. 105712
Main Authors: Ferl, Gregory Z., Barck, Kai H., Patil, Jasmine, Jemaa, Skander, Malamut, Evelyn J., Lima, Anthony, Long, Jason E., Cheng, Jason H., Junttila, Melissa R., Carano, Richard A.D.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 22.12.2022
Elsevier
Subjects:
ISSN:2589-0042, 2589-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions. [Display omitted] •Manually segmenting lungs/tumors in murine CT images is subjective and time consuming•Automated algorithm segments lungs and identifies individual lung tumors•Automated algorithm reduces bias and image processing time•Facilitates translational investigation of intra-subject tumor heterogeneity Cancer; Artificial intelligence; Machine learning
AbstractList Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions.Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions.
Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions.
Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions. [Display omitted] •Manually segmenting lungs/tumors in murine CT images is subjective and time consuming•Automated algorithm segments lungs and identifies individual lung tumors•Automated algorithm reduces bias and image processing time•Facilitates translational investigation of intra-subject tumor heterogeneity Cancer; Artificial intelligence; Machine learning
Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions.
Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT) scans of mouse models of non-small cell lung cancer and lung fibrosis. Over 3000 scans acquired across multiple studies were used to train/validate a 3D U-net lung segmentation model and a Support Vector Machine (SVM) classifier to segment individual lung tumors. The U-net lung segmentation algorithm can be used to estimate changes in soft tissue volume within lungs (primarily tumors and blood vessels), whereas the trained SVM is able to discriminate between tumors and blood vessels and identify individual tumors. The trained segmentation algorithms (1) significantly reduce time required for lung and tumor segmentation, (2) reduce bias and error associated with manual image segmentation, and (3) facilitate identification of individual lung tumors and objective assessment of changes in lung and individual tumor volumes under different experimental conditions. • Manually segmenting lungs/tumors in murine CT images is subjective and time consuming • Automated algorithm segments lungs and identifies individual lung tumors • Automated algorithm reduces bias and image processing time • Facilitates translational investigation of intra-subject tumor heterogeneity Cancer; Artificial intelligence; Machine learning
ArticleNumber 105712
Author Malamut, Evelyn J.
Junttila, Melissa R.
Long, Jason E.
Patil, Jasmine
Cheng, Jason H.
Carano, Richard A.D.
Lima, Anthony
Ferl, Gregory Z.
Jemaa, Skander
Barck, Kai H.
Author_xml – sequence: 1
  givenname: Gregory Z.
  orcidid: 0000-0002-9943-1569
  surname: Ferl
  fullname: Ferl, Gregory Z.
  email: ferlg@gene.com
  organization: Preclinical & Translational PKPD, Genentech, South San Francisco, CA 94080, USA
– sequence: 2
  givenname: Kai H.
  orcidid: 0000-0003-1052-5719
  surname: Barck
  fullname: Barck, Kai H.
  email: kbarck@gene.com
  organization: Department of Translational Imaging, Genentech, South San Francisco, CA 94080, USA
– sequence: 3
  givenname: Jasmine
  surname: Patil
  fullname: Patil, Jasmine
  organization: Genetic Science Group, Thermo Fisher Scientific, South San Francisco, CA 94080, USA
– sequence: 4
  givenname: Skander
  surname: Jemaa
  fullname: Jemaa, Skander
  organization: Data, Analytics and Imaging, Product Development, Genentech, South San Francisco, CA 94080, USA
– sequence: 5
  givenname: Evelyn J.
  surname: Malamut
  fullname: Malamut, Evelyn J.
  organization: Preclinical & Translational PKPD, Genentech, South San Francisco, CA 94080, USA
– sequence: 6
  givenname: Anthony
  surname: Lima
  fullname: Lima, Anthony
  organization: Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA
– sequence: 7
  givenname: Jason E.
  orcidid: 0000-0002-8229-0341
  surname: Long
  fullname: Long, Jason E.
  organization: ORIC Pharmaceuticals, South San Francisco, CA 94080, USA
– sequence: 8
  givenname: Jason H.
  surname: Cheng
  fullname: Cheng, Jason H.
  organization: Department of Translational Oncology, Genentech, South San Francisco, CA 94080, USA
– sequence: 9
  givenname: Melissa R.
  orcidid: 0000-0003-3538-1192
  surname: Junttila
  fullname: Junttila, Melissa R.
  organization: ORIC Pharmaceuticals, South San Francisco, CA 94080, USA
– sequence: 10
  givenname: Richard A.D.
  orcidid: 0000-0002-6799-4367
  surname: Carano
  fullname: Carano, Richard A.D.
  organization: Data, Analytics and Imaging, Product Development, Genentech, South San Francisco, CA 94080, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36582483$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rFDEUxYNUbK39Aj7IPPoya_5vAiKURWuh4Mu-h2xyZ80yk9QkU_DbN9tppfWhEMjl5p5zyP29RycxRUDoI8Ergon8cliF4sKKYkpbQ6wJfYPOqFC6x5jTk2f1Kboo5YAxpu1wLd-hUyaFolyxM3R1Odc02Qq-K7CfIFZbQ4pdGrpxjvvS2egfqq7OU8qlC7Gb0lygm4LLqd9su-JsLB_Q28GOBS4e73O0_fF9u_nZ3_y6ut5c3vROUFL7wUnhvZPDjjOvQIP2SmBwAIJZIj1nQmMuiJXeeckGQahiWO6kJYI6xs7R9WLrkz2Y2xwmm_-aZIN5aKS8NzbX4EYwWK6dllQR4luY9lZ7NlAOYB0ZJN01r2-L1-28m8C79vdsxxemL19i-G326c7otaZKkWbw-dEgpz8zlGqmxgTG0UZoKzJ0LbRuZDhvo5-eZ_0LeQLRBtQy0JZaSobBuLCgaNFhNASbI3ZzMEfs5ojdLNiblP4nfXJ_VfR1EUGDdRcgmzYB0YEPGVxt6wyvye8BKcTGKQ
CitedBy_id crossref_primary_10_1055_a_2111_8415
crossref_primary_10_1016_j_celrep_2024_114569
crossref_primary_10_1016_j_ebiom_2025_105904
crossref_primary_10_3390_cancers17071139
crossref_primary_10_1007_s12530_023_09554_5
crossref_primary_10_1158_0008_5472_CAN_24_3662
crossref_primary_10_1002_mp_17762
crossref_primary_10_1183_16000617_0012_2025
crossref_primary_10_3390_diagnostics13203262
crossref_primary_10_1016_j_tranon_2023_101833
crossref_primary_10_1371_journal_pone_0317996
crossref_primary_10_7717_peerj_cs_2444
crossref_primary_10_3390_cancers17050882
crossref_primary_10_1016_j_cell_2023_05_022
crossref_primary_10_1152_ajpcell_00604_2024
Cites_doi 10.1016/j.mri.2012.05.001
10.1038/nbt.1640
10.1088/1361-6560/ab59a4
10.1148/ryai.210095
10.1007/s00330-005-0036-x
10.1371/journal.pone.0207555
10.1371/journal.pone.0185862
10.1038/s41467-020-19449-7
10.1593/neo.81030
10.1016/j.tranon.2015.03.003
10.1118/1.4921618
10.1023/A:1010933404324
10.3390/tomography7030032
10.1006/jcss.1997.1504
10.1023/A:1018054314350
10.1371/journal.pone.0252950
10.1145/3459665
10.1002/ijc.33588
10.1016/j.media.2013.07.002
10.1038/s41598-022-05868-7
10.1016/j.nbd.2018.12.002
10.1038/s41592-020-01008-z
10.2741/3353
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2022.105712
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_067c962811db439da9d3f24eeac1f62b
PMC9792881
36582483
10_1016_j_isci_2022_105712
S258900422201985X
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-fc65ddc6fb43d8e9e9d850ecee53a16d43590451a6dcd63f5128306b6a152c33
IEDL.DBID DOA
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000929772300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2589-0042
IngestDate Fri Oct 03 12:53:26 EDT 2025
Tue Sep 30 17:17:33 EDT 2025
Fri Jul 11 14:52:28 EDT 2025
Thu Apr 03 07:11:00 EDT 2025
Tue Nov 18 22:45:16 EST 2025
Thu Nov 13 04:34:53 EST 2025
Tue Jul 25 20:56:58 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Artificial intelligence
Machine learning
Cancer
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-fc65ddc6fb43d8e9e9d850ecee53a16d43590451a6dcd63f5128306b6a152c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ORCID 0000-0003-1052-5719
0000-0003-3538-1192
0000-0002-9943-1569
0000-0002-8229-0341
0000-0002-6799-4367
OpenAccessLink https://doaj.org/article/067c962811db439da9d3f24eeac1f62b
PMID 36582483
PQID 2759957144
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_067c962811db439da9d3f24eeac1f62b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9792881
proquest_miscellaneous_2759957144
pubmed_primary_36582483
crossref_citationtrail_10_1016_j_isci_2022_105712
crossref_primary_10_1016_j_isci_2022_105712
elsevier_sciencedirect_doi_10_1016_j_isci_2022_105712
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cunningham, Delany (bib27) 2022; 54
Malimban, Lathouwers, Qian, Verhaegen, Wiedemann, Brandenburg, Staring (bib15) 2022; 12
Barck, Bou-Reslan, Rastogi, Sakhuja, Long, Molina, Lima, Hamilton, Junttila, Johnson, Carano (bib3) 2015; 8
Yang, Wang, Zuo (bib24) 2012; 7
Blocker, Mowery, Holbrook, Qi, Kirsch, Johnson, Badea (bib19) 2019; 14
Rudyanto, Bastarrika, de Biurrun, Agorreta, Montuenga, Ortiz-de Solorzano, Muñoz-Barrutia (bib8) 2013; 17
Cristianini, Shawe-Taylor (bib28) 2000
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (bib16) 2021; 18
Chollet (bib33) 2015
Wang, Han, Chen, Hu, Chatziioannou, Zhang (bib11) 2019; 64
Sengupta-Ghosh, Dominguez, Xie, Barck, Jiang, Earr, Imperio, Phu, Budayeva, Kirkpatrick (bib25) 2019; 124
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin (bib32) 2016
Montgomery, David, Zhang, Ram, Deng, Premkumar, Manzuk, Jiang, Giddabasappa (bib21) 2021; 16
Rodt, von Falck, Halter, Ringe, Shin, Galanski, Borlak (bib17) 2009; 14
Xu, Bagci, Mansoor, Kramer-Marek, Luna, Kubler, Dey, Foster, Papadakis, Camp (bib9) 2015; 42
Freund, Schapire (bib31) 1997; 55
Breiman (bib30) 2001; 45
Marten, Auer, Schmidt, Kohl, Rummeny, Engelke (bib5) 2006; 16
Merchant, Moffat, Schaefer, Chan, Wang, Orr, Cheng, Hunsaker, Shao, Wang (bib4) 2017; 12
Haines, Bettano, Chenard, Sevilla, Ware, Angagaw, Winkelmann, Tong, Reilly, Sur, Zhang (bib6) 2009; 11
Li, Jirapatnakul, Biancardi, Riccio, Weiss, Reeves (bib22) 2013; 8
Sforazzini, Salome, Moustafa, Zhou, Schwager, Rein, Bougatf, Kudak, Woodruff, Dubois (bib14) 2022; 4
Holbrook, Clark, Patel, Qi, Bassil, Mowery, Badea (bib23) 2021; 7
Lalwani, Giddabasappa, Li, Olson, Simmons, Shojaei, Van Arsdale, Christensen, Jackson-Fisher, Wong (bib18) 2013; 63
Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka (bib20) 2012; 30
Ferlay, Colombet, Soerjomataram, Parkin, Piñeros, Znaor, Bray (bib1) 2021; 149
Schoppe, Pan, Coronel, Mai, Rong, Todorov, Müskes, Navarro, Li, Ertürk, Menze (bib13) 2020; 11
Singh, Lima, Molina, Hamilton, Clermont, Devasthali, Thompson, Cheng, Bou Reslan, Ho (bib2) 2010; 28
Ronneberger, Fischer, Brox (bib26) 2015
Ren, Somayajula, Sevilla, Vanko, Wiener, Dogdas, Zhang (bib7) 2013
Dou, Chen, Jin, Lin, Qin, Heng (bib12) 2017
Yan, Zhang, Luo, Yang (bib10) 2017; 12
Breiman (bib29) 1996; 24
Yang (10.1016/j.isci.2022.105712_bib24) 2012; 7
Cristianini (10.1016/j.isci.2022.105712_bib28) 2000
Li (10.1016/j.isci.2022.105712_bib22) 2013; 8
Ferlay (10.1016/j.isci.2022.105712_bib1) 2021; 149
Sforazzini (10.1016/j.isci.2022.105712_bib14) 2022; 4
Schoppe (10.1016/j.isci.2022.105712_bib13) 2020; 11
Cunningham (10.1016/j.isci.2022.105712_bib27) 2022; 54
Haines (10.1016/j.isci.2022.105712_bib6) 2009; 11
Ren (10.1016/j.isci.2022.105712_bib7) 2013
Yan (10.1016/j.isci.2022.105712_bib10) 2017; 12
Fedorov (10.1016/j.isci.2022.105712_bib20) 2012; 30
Chollet (10.1016/j.isci.2022.105712_bib33)
Marten (10.1016/j.isci.2022.105712_bib5) 2006; 16
Isensee (10.1016/j.isci.2022.105712_bib16) 2021; 18
Dou (10.1016/j.isci.2022.105712_bib12) 2017
Blocker (10.1016/j.isci.2022.105712_bib19) 2019; 14
Breiman (10.1016/j.isci.2022.105712_bib29) 1996; 24
Freund (10.1016/j.isci.2022.105712_bib31) 1997; 55
Xu (10.1016/j.isci.2022.105712_bib9) 2015; 42
Ronneberger (10.1016/j.isci.2022.105712_bib26) 2015
Abadi (10.1016/j.isci.2022.105712_bib32) 2016
Breiman (10.1016/j.isci.2022.105712_bib30) 2001; 45
Barck (10.1016/j.isci.2022.105712_bib3) 2015; 8
Holbrook (10.1016/j.isci.2022.105712_bib23) 2021; 7
Rodt (10.1016/j.isci.2022.105712_bib17) 2009; 14
Lalwani (10.1016/j.isci.2022.105712_bib18) 2013; 63
Montgomery (10.1016/j.isci.2022.105712_bib21) 2021; 16
Merchant (10.1016/j.isci.2022.105712_bib4) 2017; 12
Singh (10.1016/j.isci.2022.105712_bib2) 2010; 28
Rudyanto (10.1016/j.isci.2022.105712_bib8) 2013; 17
Malimban (10.1016/j.isci.2022.105712_bib15) 2022; 12
Sengupta-Ghosh (10.1016/j.isci.2022.105712_bib25) 2019; 124
Wang (10.1016/j.isci.2022.105712_bib11) 2019; 64
References_xml – volume: 63
  start-page: 482
  year: 2013
  end-page: 490
  ident: bib18
  article-title: Contrast agents for quantitative microCT of lung tumors in mice
  publication-title: Comp. Med.
– volume: 16
  year: 2021
  ident: bib21
  article-title: Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography
  publication-title: PLoS One
– volume: 12
  year: 2017
  ident: bib4
  article-title: Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors
  publication-title: PLoS One
– volume: 16
  start-page: 781
  year: 2006
  end-page: 790
  ident: bib5
  article-title: Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria
  publication-title: Eur. Radiol.
– volume: 8
  year: 2013
  ident: bib22
  article-title: Growth pattern analysis of murine lung neoplasms by advanced semi-automated quantification of micro-CT images
  publication-title: PLoS One
– volume: 149
  start-page: 778
  year: 2021
  end-page: 789
  ident: bib1
  article-title: Cancer statistics for the year 2020: an overview
  publication-title: Int. J. Cancer
– volume: 14
  start-page: 1939
  year: 2009
  end-page: 1944
  ident: bib17
  article-title: In vivo microCT quantification of lung tumor growth in SPC-raf transgenic mice
  publication-title: Front. Biosci.
– volume: 64
  year: 2019
  ident: bib11
  article-title: Prediction of major torso organs in low-contrast micro-CT images of mice using a two-stage deeply supervised fully convolutional network
  publication-title: Phys. Med. Biol.
– year: 2016
  ident: bib32
  article-title: TensorFlow: large-scale machine learning on heterogeneous systems
  publication-title: arXiv
– year: 2015
  ident: bib26
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: bib16
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib31
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– year: 2000
  ident: bib28
  article-title: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods
– year: 2015
  ident: bib33
  article-title: Keras
– volume: 11
  start-page: 39
  year: 2009
  end-page: 47
  ident: bib6
  article-title: A quantitative volumetric micro-computed tomography method to analyze lung tumors in genetically engineered mouse models
  publication-title: Neoplasia
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib30
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 4
  start-page: e210095
  year: 2022
  ident: bib14
  article-title: Deep learning–based automatic lung segmentation on multiresolution CT from healthy and fibrotic lungs in mice
  publication-title: Radiol. Artif. Intell.
– year: 2017
  ident: bib12
  article-title: Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2017
– volume: 14
  year: 2019
  ident: bib19
  article-title: Bridging the translational gap: implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial
  publication-title: PLoS One
– volume: 54
  start-page: 1
  year: 2022
  end-page: 25
  ident: bib27
  article-title: k-Nearest neighbour classifiers - a Tutorial
  publication-title: ACM Comput. Surv.
– volume: 12
  year: 2017
  ident: bib10
  article-title: A novel mouse segmentation method based on dynamic contrast enhanced micro-CT images
  publication-title: PLoS One
– volume: 12
  start-page: 1822
  year: 2022
  end-page: 1912
  ident: bib15
  article-title: Deep learning-based segmentation of the thorax in mouse micro-CT scans
  publication-title: Sci. Rep.
– volume: 124
  start-page: 340
  year: 2019
  end-page: 352
  ident: bib25
  article-title: Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1G93A mouse model of ALS
  publication-title: Neurobiol. Dis.
– volume: 7
  start-page: 161
  year: 2012
  end-page: 168
  ident: bib24
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: J. Comput.
– year: 2013
  ident: bib7
  article-title: Automated 3D mouse lung segmentation from CT images for extracting quantitative tumor progression biomarkers
  publication-title: Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging SPIE
– volume: 17
  start-page: 1095
  year: 2013
  end-page: 1105
  ident: bib8
  article-title: Individual nodule tracking in micro-CT images of a longitudinal lung cancer mouse model
  publication-title: Med. Image Anal.
– volume: 28
  start-page: 585
  year: 2010
  end-page: 593
  ident: bib2
  article-title: Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models
  publication-title: Nat. Biotechnol.
– volume: 7
  start-page: 358
  year: 2021
  end-page: 372
  ident: bib23
  article-title: Detection of lung nodules in micro-CT imaging using deep learning
  publication-title: Tomography
– volume: 42
  start-page: 3896
  year: 2015
  end-page: 3910
  ident: bib9
  article-title: Computer-aided pulmonary image analysis in small animal models
  publication-title: Med. Phys.
– volume: 30
  start-page: 1323
  year: 2012
  end-page: 1341
  ident: bib20
  article-title: 3D slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn. Reson. Imaging
– volume: 8
  start-page: 126
  year: 2015
  end-page: 135
  ident: bib3
  article-title: Quantification of tumor burden in a genetically engineered mouse model of lung cancer by micro-CT and automated analysis
  publication-title: Transl. Oncol.
– volume: 11
  start-page: 5626
  year: 2020
  end-page: 5714
  ident: bib13
  article-title: Deep learning-enabled multi-organ segmentation in whole-body mouse scans
  publication-title: Nat. Commun.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib29
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 7
  start-page: 161
  year: 2012
  ident: 10.1016/j.isci.2022.105712_bib24
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: J. Comput.
– year: 2015
  ident: 10.1016/j.isci.2022.105712_bib26
  article-title: U-Net: convolutional networks for biomedical image segmentation
– volume: 30
  start-page: 1323
  year: 2012
  ident: 10.1016/j.isci.2022.105712_bib20
  article-title: 3D slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 28
  start-page: 585
  year: 2010
  ident: 10.1016/j.isci.2022.105712_bib2
  article-title: Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1640
– volume: 64
  year: 2019
  ident: 10.1016/j.isci.2022.105712_bib11
  article-title: Prediction of major torso organs in low-contrast micro-CT images of mice using a two-stage deeply supervised fully convolutional network
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab59a4
– volume: 4
  start-page: e210095
  year: 2022
  ident: 10.1016/j.isci.2022.105712_bib14
  article-title: Deep learning–based automatic lung segmentation on multiresolution CT from healthy and fibrotic lungs in mice
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.210095
– volume: 16
  start-page: 781
  year: 2006
  ident: 10.1016/j.isci.2022.105712_bib5
  article-title: Inadequacy of manual measurements compared to automated CT volumetry in assessment of treatment response of pulmonary metastases using RECIST criteria
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-005-0036-x
– volume: 12
  year: 2017
  ident: 10.1016/j.isci.2022.105712_bib10
  article-title: A novel mouse segmentation method based on dynamic contrast enhanced micro-CT images
  publication-title: PLoS One
– volume: 14
  year: 2019
  ident: 10.1016/j.isci.2022.105712_bib19
  article-title: Bridging the translational gap: implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0207555
– volume: 12
  year: 2017
  ident: 10.1016/j.isci.2022.105712_bib4
  article-title: Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0185862
– volume: 11
  start-page: 5626
  year: 2020
  ident: 10.1016/j.isci.2022.105712_bib13
  article-title: Deep learning-enabled multi-organ segmentation in whole-body mouse scans
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19449-7
– year: 2016
  ident: 10.1016/j.isci.2022.105712_bib32
  article-title: TensorFlow: large-scale machine learning on heterogeneous systems
  publication-title: arXiv
– volume: 11
  start-page: 39
  year: 2009
  ident: 10.1016/j.isci.2022.105712_bib6
  article-title: A quantitative volumetric micro-computed tomography method to analyze lung tumors in genetically engineered mouse models
  publication-title: Neoplasia
  doi: 10.1593/neo.81030
– volume: 8
  start-page: 126
  year: 2015
  ident: 10.1016/j.isci.2022.105712_bib3
  article-title: Quantification of tumor burden in a genetically engineered mouse model of lung cancer by micro-CT and automated analysis
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2015.03.003
– volume: 42
  start-page: 3896
  year: 2015
  ident: 10.1016/j.isci.2022.105712_bib9
  article-title: Computer-aided pulmonary image analysis in small animal models
  publication-title: Med. Phys.
  doi: 10.1118/1.4921618
– volume: 8
  year: 2013
  ident: 10.1016/j.isci.2022.105712_bib22
  article-title: Growth pattern analysis of murine lung neoplasms by advanced semi-automated quantification of micro-CT images
  publication-title: PLoS One
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.isci.2022.105712_bib30
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2017
  ident: 10.1016/j.isci.2022.105712_bib12
  article-title: Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning
– year: 2000
  ident: 10.1016/j.isci.2022.105712_bib28
– volume: 7
  start-page: 358
  year: 2021
  ident: 10.1016/j.isci.2022.105712_bib23
  article-title: Detection of lung nodules in micro-CT imaging using deep learning
  publication-title: Tomography
  doi: 10.3390/tomography7030032
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.isci.2022.105712_bib31
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.isci.2022.105712_bib29
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– volume: 16
  year: 2021
  ident: 10.1016/j.isci.2022.105712_bib21
  article-title: Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0252950
– volume: 54
  start-page: 1
  year: 2022
  ident: 10.1016/j.isci.2022.105712_bib27
  article-title: k-Nearest neighbour classifiers - a Tutorial
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3459665
– volume: 149
  start-page: 778
  year: 2021
  ident: 10.1016/j.isci.2022.105712_bib1
  article-title: Cancer statistics for the year 2020: an overview
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.33588
– year: 2013
  ident: 10.1016/j.isci.2022.105712_bib7
  article-title: Automated 3D mouse lung segmentation from CT images for extracting quantitative tumor progression biomarkers
– volume: 17
  start-page: 1095
  year: 2013
  ident: 10.1016/j.isci.2022.105712_bib8
  article-title: Individual nodule tracking in micro-CT images of a longitudinal lung cancer mouse model
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.07.002
– volume: 63
  start-page: 482
  year: 2013
  ident: 10.1016/j.isci.2022.105712_bib18
  article-title: Contrast agents for quantitative microCT of lung tumors in mice
  publication-title: Comp. Med.
– volume: 12
  start-page: 1822
  year: 2022
  ident: 10.1016/j.isci.2022.105712_bib15
  article-title: Deep learning-based segmentation of the thorax in mouse micro-CT scans
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-05868-7
– volume: 124
  start-page: 340
  year: 2019
  ident: 10.1016/j.isci.2022.105712_bib25
  article-title: Muscle specific kinase (MuSK) activation preserves neuromuscular junctions in the diaphragm but is not sufficient to provide a functional benefit in the SOD1G93A mouse model of ALS
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2018.12.002
– volume: 18
  start-page: 203
  year: 2021
  ident: 10.1016/j.isci.2022.105712_bib16
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– ident: 10.1016/j.isci.2022.105712_bib33
– volume: 14
  start-page: 1939
  year: 2009
  ident: 10.1016/j.isci.2022.105712_bib17
  article-title: In vivo microCT quantification of lung tumor growth in SPC-raf transgenic mice
  publication-title: Front. Biosci.
  doi: 10.2741/3353
SSID ssj0002002496
Score 2.3285675
Snippet Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT)...
Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in micro-computed tomography (micro-CT) scans...
Here, we have developed an automated image processing algorithm for segmenting lungs and individual lung tumors in in vivo micro-computed tomography (micro-CT)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105712
SubjectTerms Artificial intelligence
Cancer
Machine learning
Title Automated segmentation of lungs and lung tumors in mouse micro-CT scans
URI https://dx.doi.org/10.1016/j.isci.2022.105712
https://www.ncbi.nlm.nih.gov/pubmed/36582483
https://www.proquest.com/docview/2759957144
https://pubmed.ncbi.nlm.nih.gov/PMC9792881
https://doaj.org/article/067c962811db439da9d3f24eeac1f62b
Volume 25
WOSCitedRecordID wos000929772300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZK1QMXBIJCClRG4lZFje3Ej2OpKJwqDnvYm-X4UbbqZtFmt7-fGSe72oBULtyixHnMw56ZeOYbQj6HmCLHPcM2SFHWqo2l8y0rQdRVUzlX61jlZhPq9lbP5-bHQasvzAkb4IEHxl3CauqN5Jqx0ILxDM4EkXgdYcFgSfIWV99KmYNg6j5vryEUXu4s12BOEKjmWDEzJHdhxSsEh5znPreMT6xSBu-fGKe_nc8_cygPjNLNS_Ji9Cbp1UDFK3IUu9fk29V2swJHNAbax7vlWFzU0VWiDzC1e-q6kI_oZrtcrXu66Cj-AIh0idl55fWM9sDw_g2Z3XydXX8vx34Jpce2BGXysgnBywSMCjqaaIJuqghmsBGOyQCekUE4GSeDB8kksPUaIoZWOjDiXohTctytuviOUJ8qL7lrQ51MDcuhE00roqpTwspa5grCduyyfsQSx5YWD3aXNHZvkcUWWWwHFhfkYn_PrwFJ48nRX1AK-5GIgp1PgG7YUTfsv3SjIM1OhnZ0KAZHAR61ePLln3YCtzDbcAvFdREEYblCgDYFUWhB3g4KsP9EAc4cr7UoiJqoxoSG6ZVu8TMjehtluNbs7H8Q_Z48R1Iw5YbzD-R4s97Gj-TEP24W_fqcPFNzfZ4ny28fxxfJ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+of+lungs+and+lung+tumors+in+mouse+micro-CT+scans&rft.jtitle=iScience&rft.au=Ferl%2C+Gregory+Z&rft.au=Barck%2C+Kai+H&rft.au=Patil%2C+Jasmine&rft.au=Jemaa%2C+Skander&rft.date=2022-12-22&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=12&rft.spage=105712&rft_id=info:doi/10.1016%2Fj.isci.2022.105712&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon