Multi-pole modeling and simulation of an electro-hydraulic servo-system in an intelligent programming environment
The paper presents composing of models and simulation of an electro-hydraulic servo-system, including hydraulic servo-drive with feedback regulator, electro-hydraulic servo-valve and constant pressure feeding system with variable displacement pump. For composing mathematical models of the fluid powe...
Gespeichert in:
| Veröffentlicht in: | International journal of fluid power Jg. 17; H. 1; S. 1 - 13 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Abingdon
Taylor & Francis
01.03.2016
River Publishers |
| Schlagworte: | |
| ISSN: | 1439-9776, 2332-1180 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The paper presents composing of models and simulation of an electro-hydraulic servo-system, including hydraulic servo-drive with feedback regulator, electro-hydraulic servo-valve and constant pressure feeding system with variable displacement pump. For composing mathematical models of the fluid power system multi-pole models with different oriented causalities are used. Using multi-pole models allows describe models of required complexity for each component. Using a Java based intelligent programming environment CoCoViLa as a tool, enables one graphically describe multi-pole models of the system and perform simulations in a user-friendly manner. Solving large equation systems during simulations can be avoided. Models of four-way sliding spool throttling slot pairs describe open slot and overlapped slot characteristics of various causalities. For correcting the control signal to the electro-hydraulic servo-valve a non-linear differential regulator is used. An intelligent simulation environment CoCoViLa supporting declarative programming in a high-level language and automatic program synthesis is shortly described. It is convenient to describe simulation tasks visually using visual images of multi-pole models. The designer does not need to focus on programming, but instead can use the models with the generated code. Simulations of subsystems of electro-hydraulic servo-system and the entire system are considered and simulation results are presented and discussed. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1439-9776 2332-1180 |
| DOI: | 10.1080/14399776.2015.1110093 |