Discrete Morse Theoretic Algorithms for Computing Homology of Complexes and Maps

We provide explicit and efficient reduction algorithms based on discrete Morse theory to simplify homology computation for a very general class of complexes. A set-valued map of top-dimensional cells between such complexes is a natural discrete approximation of an underlying (and possibly unknown) c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics Jg. 14; H. 1; S. 151 - 184
Hauptverfasser: Harker, Shaun, Mischaikow, Konstantin, Mrozek, Marian, Nanda, Vidit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.02.2014
Springer Nature B.V
Schlagworte:
ISSN:1615-3375, 1615-3383
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide explicit and efficient reduction algorithms based on discrete Morse theory to simplify homology computation for a very general class of complexes. A set-valued map of top-dimensional cells between such complexes is a natural discrete approximation of an underlying (and possibly unknown) continuous function, especially when the evaluation of that function is subject to measurement errors. We introduce a new Morse theoretic preprocessing framework for deriving chain maps from such set-valued maps, and hence provide an effective scheme for computing the morphism induced on homology by the approximated continuous function.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-013-9145-0