An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics

This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao metrics and generalizes optimal transport to measures with different masses. It is defined as a generalization of the dynamical formulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics Jg. 18; H. 1; S. 1 - 44
Hauptverfasser: Chizat, Lénaïc, Peyré, Gabriel, Schmitzer, Bernhard, Vialard, François-Xavier
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.02.2018
Springer Nature B.V
Schlagworte:
ISSN:1615-3375, 1615-3383
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper defines a new transport metric over the space of nonnegative measures. This metric interpolates between the quadratic Wasserstein and the Fisher–Rao metrics and generalizes optimal transport to measures with different masses. It is defined as a generalization of the dynamical formulation of optimal transport of Benamou and Brenier, by introducing a source term in the continuity equation. The influence of this source term is measured using the Fisher–Rao metric and is averaged with the transportation term. This gives rise to a convex variational problem defining the new metric. Our first contribution is a proof of the existence of geodesics (i.e., solutions to this variational problem). We then show that (generalized) optimal transport and Hellinger metrics are obtained as limiting cases of our metric. Our last theoretical contribution is a proof that geodesics between mixtures of sufficiently close Dirac measures are made of translating mixtures of Dirac masses. Lastly, we propose a numerical scheme making use of first-order proximal splitting methods and we show an application of this new distance to image interpolation.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-016-9331-y