Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions

Convolutional neural networks (CNNs) are one of the main types of neural networks used for image recognition and classification. CNNs have several uses, some of which are object recognition, image processing, computer vision, and face recognition. Input for convolutional neural networks is provided...

Full description

Saved in:
Bibliographic Details
Published in:Computation Vol. 11; no. 3; p. 52
Main Author: Taye, Mohammad Mustafa
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.03.2023
Subjects:
ISSN:2079-3197, 2079-3197
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Convolutional neural networks (CNNs) are one of the main types of neural networks used for image recognition and classification. CNNs have several uses, some of which are object recognition, image processing, computer vision, and face recognition. Input for convolutional neural networks is provided through images. Convolutional neural networks are used to automatically learn a hierarchy of features that can then be utilized for classification, as opposed to manually creating features. In achieving this, a hierarchy of feature maps is constructed by iteratively convolving the input image with learned filters. Because of the hierarchical method, higher layers can learn more intricate features that are also distortion and translation invariant. The main goals of this study are to help academics understand where there are research gaps and to talk in-depth about CNN’s building blocks, their roles, and other vital issues.
AbstractList Convolutional neural networks (CNNs) are one of the main types of neural networks used for image recognition and classification. CNNs have several uses, some of which are object recognition, image processing, computer vision, and face recognition. Input for convolutional neural networks is provided through images. Convolutional neural networks are used to automatically learn a hierarchy of features that can then be utilized for classification, as opposed to manually creating features. In achieving this, a hierarchy of feature maps is constructed by iteratively convolving the input image with learned filters. Because of the hierarchical method, higher layers can learn more intricate features that are also distortion and translation invariant. The main goals of this study are to help academics understand where there are research gaps and to talk in-depth about CNN’s building blocks, their roles, and other vital issues.
Audience Academic
Author Taye, Mohammad Mustafa
Author_xml – sequence: 1
  givenname: Mohammad Mustafa
  orcidid: 0009-0000-9248-7423
  surname: Taye
  fullname: Taye, Mohammad Mustafa
BookMark eNp9Uk1v1DAQjVCRKKW_gEskrmyx4_UXt9VCoVIFl_ZsOePx1ks2DrZTxL_H6SK-VGEfxvPmvWeNPc-bkzGO2DQvKblgTJM3EA_TXGwJcaSUMEJ496Q57YjUK0a1PPnj_Kw5z3lP6tKUqY6cNvnmDmPCEsAO7e3oMOViRxfGXRt9u43jfRzmxbqWP-GcHkL5FtOXt0sVcCr5dbtJcBcKQpkTLuk0DdVwkdXscl7g9l1IlbBAL5qn3g4Zz3_Gs-b28v3N9uPq-vOHq-3megW8o2UlgFurteDSSdEBMquQdqJmWimtGHjlBZHOOm97Do71oBxThAhOgFnLzpqro6-Ldm-mFA42fTfRBvMAxLQzNtXOBzREcgrYr50TYs2Fth1D7HupADsvmKxer45eU4pfZ8zF7OOc6qtk00lNudaK0N-sna2mYfSxJAuHkMFs5JrVNtZ0YV08wqrb4SFA_VwfKv6XgB0FkGLOCf2vZigxywyYR2agqvQ_KghHSr0uDP_V_gBaar3d
CitedBy_id crossref_primary_10_1007_s10586_025_05194_3
crossref_primary_10_1016_j_asej_2025_103677
crossref_primary_10_3390_jimaging11020059
crossref_primary_10_1021_acs_analchem_4c06014
crossref_primary_10_1016_j_heliyon_2024_e36067
crossref_primary_10_4018_IJeC_357998
crossref_primary_10_1016_j_radphyschem_2025_112536
crossref_primary_10_3390_app14167192
crossref_primary_10_3390_pr13030672
crossref_primary_10_1002_uar2_20053
crossref_primary_10_7717_peerj_cs_2124
crossref_primary_10_3390_app14199118
crossref_primary_10_3390_app15084586
crossref_primary_10_17150_2713_1734_2024_6_3__269_281
crossref_primary_10_1016_j_heliyon_2024_e38008
crossref_primary_10_3390_s23187893
crossref_primary_10_3390_photonics12080789
crossref_primary_10_1109_ACCESS_2025_3535411
crossref_primary_10_3390_s24123758
crossref_primary_10_1002_jbio_202300244
crossref_primary_10_3390_app13148239
crossref_primary_10_3390_geomatics4020007
crossref_primary_10_3390_agriculture15080837
crossref_primary_10_3390_app15147674
crossref_primary_10_1002_dac_5850
crossref_primary_10_3390_app15052604
crossref_primary_10_1088_1361_6501_ade27c
crossref_primary_10_1098_rsos_242149
crossref_primary_10_1103_wz7j_lzvs
crossref_primary_10_1016_j_jhydrol_2025_132887
crossref_primary_10_1016_j_fuel_2023_129265
crossref_primary_10_3390_electronics13122361
crossref_primary_10_1016_j_envsoft_2025_106658
crossref_primary_10_3390_a17080347
crossref_primary_10_1371_journal_pone_0324861
crossref_primary_10_1002_adma_202504796
crossref_primary_10_1007_s11042_024_18723_w
crossref_primary_10_1177_00368504251331706
crossref_primary_10_1177_09544089241262945
crossref_primary_10_1016_j_neunet_2024_106999
crossref_primary_10_1007_s10462_024_10890_4
crossref_primary_10_1016_j_cmpb_2025_108826
crossref_primary_10_1016_j_ijpharm_2024_124001
crossref_primary_10_1080_10589759_2024_2429691
crossref_primary_10_1016_j_catena_2024_108086
crossref_primary_10_3390_rs15194788
crossref_primary_10_3390_app15169217
crossref_primary_10_1109_ACCESS_2024_3420707
crossref_primary_10_1109_ACCESS_2025_3582055
crossref_primary_10_32604_cmc_2023_042107
crossref_primary_10_3390_s25082520
crossref_primary_10_1007_s11042_024_20161_7
crossref_primary_10_3390_diagnostics15030377
crossref_primary_10_1016_j_jrras_2025_101332
crossref_primary_10_3390_a16070344
crossref_primary_10_1186_s40359_025_02615_1
crossref_primary_10_3390_s25020527
crossref_primary_10_1007_s11227_025_07380_x
crossref_primary_10_3390_app15147697
crossref_primary_10_3390_diagnostics15131728
crossref_primary_10_3390_math13040605
crossref_primary_10_3390_pr13082559
crossref_primary_10_32604_cmes_2024_048714
crossref_primary_10_3390_math13172903
crossref_primary_10_1029_2024JH000553
crossref_primary_10_3390_math12040616
crossref_primary_10_3390_electronics14142855
crossref_primary_10_1007_s11760_025_04210_8
crossref_primary_10_3390_sym16111516
crossref_primary_10_1109_ACCESS_2025_3542014
crossref_primary_10_1109_ACCESS_2023_3347336
crossref_primary_10_1016_j_fmre_2025_01_018
crossref_primary_10_1016_j_jtice_2024_105852
crossref_primary_10_3390_physchem4040035
crossref_primary_10_1016_j_ecmx_2025_101108
crossref_primary_10_1186_s44147_023_00212_w
crossref_primary_10_3389_ffutr_2025_1545411
crossref_primary_10_3390_mca30040074
crossref_primary_10_1016_j_measurement_2025_119047
crossref_primary_10_1007_s12083_025_02052_2
crossref_primary_10_1134_S1068162024607225
crossref_primary_10_3390_math12111661
crossref_primary_10_3390_electronics12204263
crossref_primary_10_1016_j_marpolbul_2024_116549
crossref_primary_10_3390_app15031336
crossref_primary_10_1038_s41598_024_81437_4
crossref_primary_10_54097_ja67wk60
crossref_primary_10_1007_s00521_024_10931_7
crossref_primary_10_3390_s23229051
crossref_primary_10_56211_sudo_v3i1_483
crossref_primary_10_20517_ais_2025_22
crossref_primary_10_1007_s10489_025_06374_9
crossref_primary_10_1016_j_engappai_2025_112335
crossref_primary_10_1016_j_aej_2025_03_051
crossref_primary_10_1109_ACCESS_2025_3528215
crossref_primary_10_3390_app142210501
crossref_primary_10_3390_info15120755
crossref_primary_10_32604_cmes_2024_052549
crossref_primary_10_3390_computers12050091
crossref_primary_10_3390_w17152269
crossref_primary_10_3390_metabo15030174
crossref_primary_10_1016_j_commatsci_2025_113909
crossref_primary_10_1109_ACCESS_2025_3547847
crossref_primary_10_1007_s40998_025_00878_3
crossref_primary_10_3390_computation13060149
crossref_primary_10_3390_buildings15121982
crossref_primary_10_1016_j_heliyon_2024_e29583
crossref_primary_10_1186_s12880_025_01892_x
crossref_primary_10_3390_s24216899
crossref_primary_10_3390_drones8100585
crossref_primary_10_1016_j_heliyon_2024_e38947
crossref_primary_10_2478_bsrj_2024_0003
crossref_primary_10_3390_electronics14091818
crossref_primary_10_3390_computation12010009
crossref_primary_10_37394_232014_2025_21_5
crossref_primary_10_1016_j_measurement_2024_114515
crossref_primary_10_1007_s00024_025_03764_5
crossref_primary_10_1007_s10462_024_10855_7
crossref_primary_10_1177_14759217251316623
crossref_primary_10_3390_app14198774
crossref_primary_10_1049_tje2_70060
crossref_primary_10_1007_s00603_024_04189_7
crossref_primary_10_1016_j_meaene_2024_100015
crossref_primary_10_3390_act14010016
crossref_primary_10_3390_jcm13226913
crossref_primary_10_1007_s11042_024_20481_8
crossref_primary_10_20965_jaciii_2024_p0668
crossref_primary_10_3390_ani15172500
crossref_primary_10_1007_s00170_025_15886_0
crossref_primary_10_4103_ija_ija_549_24
crossref_primary_10_4028_p_6W4IXl
crossref_primary_10_1088_1741_2552_adba8a
crossref_primary_10_4018_IJISMD_378678
crossref_primary_10_48198_NJPAS_24_B05
crossref_primary_10_1049_cit2_12356
crossref_primary_10_3390_machines12010045
crossref_primary_10_3390_drones7120694
crossref_primary_10_1038_s41598_024_72998_5
crossref_primary_10_1080_01431161_2024_2318773
crossref_primary_10_4018_IJKM_385215
crossref_primary_10_1177_18724981251356644
crossref_primary_10_3390_fractalfract8070423
crossref_primary_10_3390_diagnostics15030319
crossref_primary_10_3390_fi17040169
crossref_primary_10_1109_ACCESS_2024_3390209
crossref_primary_10_1016_j_actpsy_2025_105324
crossref_primary_10_1587_transinf_2024EDL8061
crossref_primary_10_23887_jstundiksha_v13i2_83416
crossref_primary_10_3390_app15105511
crossref_primary_10_1371_journal_pone_0304017
crossref_primary_10_1007_s00521_024_10862_3
crossref_primary_10_15622_ia_24_2_1
crossref_primary_10_1007_s40808_024_02090_4
crossref_primary_10_1007_s10664_025_10711_4
crossref_primary_10_1109_ACCESS_2025_3574835
crossref_primary_10_3390_signals5020018
crossref_primary_10_1016_j_neunet_2024_106114
crossref_primary_10_1371_journal_pone_0311036
crossref_primary_10_1063_5_0253284
crossref_primary_10_3390_polym16121752
crossref_primary_10_3390_agriengineering6020102
crossref_primary_10_3390_app132011127
crossref_primary_10_1016_j_atech_2024_100726
crossref_primary_10_1016_j_eswa_2025_128658
crossref_primary_10_1016_j_procs_2023_12_155
crossref_primary_10_3390_en17071781
crossref_primary_10_3390_s24185965
crossref_primary_10_1016_j_ecoinf_2024_102923
crossref_primary_10_3390_ijms25031364
crossref_primary_10_52846_ami_v52i1_2118
crossref_primary_10_3389_fpls_2024_1322920
crossref_primary_10_1038_s41598_024_63025_8
crossref_primary_10_1007_s40808_023_01934_9
crossref_primary_10_3390_math13132088
crossref_primary_10_1109_ACCESS_2024_3409818
crossref_primary_10_2478_ijssis_2024_0036
crossref_primary_10_1038_s41598_025_99357_2
crossref_primary_10_1016_j_foar_2025_06_008
crossref_primary_10_28948_ngumuh_1603421
crossref_primary_10_3390_diagnostics14010089
crossref_primary_10_1016_j_patcog_2024_110572
crossref_primary_10_1016_j_eja_2024_127423
crossref_primary_10_3390_jmse13030599
crossref_primary_10_1051_e3sconf_202454803023
crossref_primary_10_3390_life15071124
crossref_primary_10_56294_dm2023153
crossref_primary_10_1016_j_neunet_2024_106738
crossref_primary_10_1108_IJICC_09_2024_0414
crossref_primary_10_1016_j_mjafi_2023_10_007
crossref_primary_10_1088_1742_6596_2935_1_012002
crossref_primary_10_3390_w16131771
crossref_primary_10_1109_ACCESS_2024_3386208
crossref_primary_10_3390_atmos16030320
crossref_primary_10_1109_ACCESS_2024_3502293
crossref_primary_10_3748_wjg_v31_i36_111137
crossref_primary_10_3390_rs17142489
crossref_primary_10_1016_j_ecolind_2024_112067
crossref_primary_10_1109_ACCESS_2023_3326367
crossref_primary_10_3390_electronics13163286
crossref_primary_10_3390_buildings14103299
crossref_primary_10_1016_j_media_2024_103376
crossref_primary_10_3390_app14083493
crossref_primary_10_1109_ACCESS_2023_3332243
crossref_primary_10_1007_s42979_024_03123_6
crossref_primary_10_1016_j_procs_2025_04_585
crossref_primary_10_1016_j_heliyon_2024_e37572
crossref_primary_10_1109_JSTARS_2024_3496725
crossref_primary_10_3390_wevj16030168
crossref_primary_10_3390_s25061865
crossref_primary_10_3390_s24248099
crossref_primary_10_3390_s25082449
crossref_primary_10_1016_j_enconman_2025_120473
crossref_primary_10_1007_s42044_025_00270_8
crossref_primary_10_1007_s11227_025_07479_1
crossref_primary_10_56799_jim_v3i10_4955
crossref_primary_10_1007_s42835_025_02373_5
crossref_primary_10_1039_D4MH01909A
crossref_primary_10_3390_info16030195
crossref_primary_10_3390_s24216932
crossref_primary_10_1016_j_jpedsurg_2024_162014
crossref_primary_10_3390_app15010458
crossref_primary_10_1007_s11831_025_10302_y
crossref_primary_10_1016_j_yebeh_2024_109744
crossref_primary_10_1186_s12911_025_02889_w
crossref_primary_10_1109_ACCESS_2025_3555861
crossref_primary_10_1007_s10639_023_12349_5
crossref_primary_10_1177_20552076251320726
crossref_primary_10_1016_j_jag_2024_104040
crossref_primary_10_1007_s10278_025_01608_1
Cites_doi 10.1007/s10462-020-09825-6
10.1109/CVPR.2017.243
10.1155/2021/5548884
10.1109/TNNLS.2021.3132836
10.1109/ACCESS.2017.2788044
10.1016/j.apenergy.2017.01.003
10.1109/CVPR.2017.195
10.1109/ICCV.2017.324
10.1109/LGRS.2017.2778181
10.1109/TNNLS.2018.2815435
10.1007/978-3-030-01264-9_45
10.1109/ACCESS.2019.2912200
10.1007/978-3-030-66519-7
10.1109/TNNLS.2018.2876865
10.1109/ICCV.2017.446
10.1007/s11042-020-08976-6
10.1145/3065386
10.1007/s42979-021-00592-x
10.1109/TIP.2020.3002345
10.1007/978-1-4471-7452-3
10.1109/CVPRW50498.2020.00203
10.1186/s40537-021-00444-8
10.1007/s10462-018-9654-y
10.1038/nmeth.3707
10.3390/electronics10202470
10.1109/TKDE.2020.2981333
10.1109/CVPR.2018.00442
10.1007/978-3-030-66519-7_1
10.1109/CVPR.2018.00644
10.1007/s13748-019-00203-0
10.1109/ICMLA.2018.00092
10.1016/j.eswa.2022.117583
10.1109/ICIP.2017.8297076
10.1109/ACCESS.2019.2945338
10.1109/ICCVW.2019.00007
10.1186/s40537-017-0101-8
10.1007/978-1-4471-7452-3_2
10.1109/IWQoS.2018.8624183
10.1016/j.neucom.2018.09.038
10.1109/CVPR.2017.106
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/computation11030052
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 2079-3197
ExternalDocumentID oai_doaj_org_article_0751ceb4dd664569a23eebb78ce2f637
A743762411
10_3390_computation11030052
GeographicLocations Jordan
GeographicLocations_xml – name: Jordan
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c521t-6c5aa99657d762ce3a8e1267d7988983cf8f607dadfab5cd3bc8d3800650c3aa3
IEDL.DBID P5Z
ISICitedReferencesCount 280
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000955011900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-3197
IngestDate Fri Oct 03 12:50:40 EDT 2025
Sun Nov 09 05:49:38 EST 2025
Tue Nov 11 11:15:40 EST 2025
Tue Nov 04 18:36:43 EST 2025
Tue Nov 18 21:30:47 EST 2025
Sat Nov 29 07:12:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-6c5aa99657d762ce3a8e1267d7988983cf8f607dadfab5cd3bc8d3800650c3aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0000-9248-7423
OpenAccessLink https://www.proquest.com/docview/2791599801?pq-origsite=%requestingapplication%
PQID 2791599801
PQPubID 2032414
ParticipantIDs doaj_primary_oai_doaj_org_article_0751ceb4dd664569a23eebb78ce2f637
proquest_journals_2791599801
gale_infotracmisc_A743762411
gale_infotracacademiconefile_A743762411
crossref_primary_10_3390_computation11030052
crossref_citationtrail_10_3390_computation11030052
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computation
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Batmaz (ref_20) 2019; 52
Adem (ref_55) 2022; 203
Huh (ref_60) 2019; 7
ref_58
ref_13
ref_57
Swapna (ref_44) 2020; 8
ref_53
ref_52
ref_51
ZZhao (ref_3) 2019; 30
Mishra (ref_10) 2021; 2021
Krizhevsky (ref_56) 2017; 60
ref_19
ref_18
Dhillon (ref_12) 2019; 9
ref_17
Khan (ref_14) 2020; 53
ref_16
ref_15
Zhang (ref_24) 2019; 323
Fang (ref_21) 2017; 4
ref_25
ref_23
Alzubaidi (ref_22) 2021; 8
ref_29
ref_28
ref_27
ref_26
Ker (ref_11) 2017; 6
Xiao (ref_54) 2020; 79
Zhang (ref_9) 2022; 34
Cintra (ref_6) 2018; 29
ref_36
ref_35
Chen (ref_50) 2018; 15
ref_34
ref_33
ref_32
Coelho (ref_59) 2017; 201
ref_31
ref_30
ref_39
ref_38
ref_37
Rusk (ref_7) 2017; 13
ref_47
ref_46
ref_45
ref_43
ref_42
ref_41
ref_40
ref_2
ref_49
ref_48
ref_5
Shrestha (ref_8) 2019; 7
Sarker (ref_1) 2021; 2
ref_4
References_xml – volume: 53
  start-page: 5455
  year: 2020
  ident: ref_14
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09825-6
– ident: ref_49
– ident: ref_5
– ident: ref_32
– ident: ref_29
  doi: 10.1109/CVPR.2017.243
– ident: ref_51
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_10
  article-title: The Understanding of Deep Learning: A Comprehensive Review
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/5548884
– ident: ref_13
  doi: 10.1109/TNNLS.2021.3132836
– ident: ref_16
– volume: 6
  start-page: 9375
  year: 2017
  ident: ref_11
  article-title: Deep Learning Applications in Medical Image Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2788044
– ident: ref_39
– volume: 201
  start-page: 412
  year: 2017
  ident: ref_59
  article-title: A GPU deep learning metaheuristic based model for time series forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.003
– ident: ref_41
  doi: 10.1109/CVPR.2017.195
– ident: ref_35
– ident: ref_27
  doi: 10.1109/ICCV.2017.324
– volume: 15
  start-page: 173
  year: 2018
  ident: ref_50
  article-title: Semantic segmentation of aerial images with shuffling convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2778181
– volume: 29
  start-page: 5981
  year: 2018
  ident: ref_6
  article-title: Low-complexity approximate convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2815435
– ident: ref_42
  doi: 10.1007/978-3-030-01264-9_45
– ident: ref_31
– volume: 7
  start-page: 53040
  year: 2019
  ident: ref_8
  article-title: Review of deep learning algorithms and architectures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2912200
– ident: ref_48
– ident: ref_26
  doi: 10.1007/978-3-030-66519-7
– ident: ref_17
– ident: ref_45
– volume: 8
  start-page: 953
  year: 2020
  ident: ref_44
  article-title: CNN Architectures: Alex Net, Le Net, VGG, Google Net, Res Net
  publication-title: Int. J. Recent Technol. Eng.
– volume: 30
  start-page: 3212
  year: 2019
  ident: ref_3
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref_30
  doi: 10.1109/ICCV.2017.446
– volume: 79
  start-page: 23729
  year: 2020
  ident: ref_54
  article-title: A review of object detection based on deep learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-08976-6
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_56
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 2
  start-page: 1
  year: 2021
  ident: ref_1
  article-title: Machine Learning: Algorithms, Real-World Applications, and Research Directions
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00592-x
– ident: ref_33
  doi: 10.1109/TIP.2020.3002345
– ident: ref_47
– ident: ref_23
  doi: 10.1007/978-1-4471-7452-3
– ident: ref_40
– ident: ref_46
  doi: 10.1109/CVPRW50498.2020.00203
– volume: 8
  start-page: 83
  year: 2021
  ident: ref_22
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– ident: ref_37
– volume: 52
  start-page: 137
  year: 2019
  ident: ref_20
  article-title: A review on deep learning for recommender systems: Challenges and remedies
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9654-y
– volume: 13
  start-page: 35
  year: 2017
  ident: ref_7
  article-title: Deep learning
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3707
– ident: ref_25
  doi: 10.3390/electronics10202470
– volume: 34
  start-page: 249
  year: 2022
  ident: ref_9
  article-title: Deep Learning on Graphs: A Survey
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2981333
– ident: ref_28
  doi: 10.1109/CVPR.2018.00442
– ident: ref_4
  doi: 10.1007/978-3-030-66519-7_1
– ident: ref_38
  doi: 10.1109/CVPR.2018.00644
– volume: 9
  start-page: 85
  year: 2019
  ident: ref_12
  article-title: Convolutional neural network: A review of models, methodologies, and applications to object detection
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-019-00203-0
– ident: ref_53
  doi: 10.1109/ICMLA.2018.00092
– volume: 203
  start-page: 117583
  year: 2022
  ident: ref_55
  article-title: Impact of activation functions and number of layers on detection of exudates using circular Hough transform and convolutional neural networks
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2022.117583
– ident: ref_52
  doi: 10.1109/ICIP.2017.8297076
– volume: 7
  start-page: 164229
  year: 2019
  ident: ref_60
  article-title: Understanding edge computing: Engineering evolution with artificial intelligence
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2945338
– ident: ref_15
– ident: ref_18
  doi: 10.1109/ICCVW.2019.00007
– volume: 4
  start-page: 40
  year: 2017
  ident: ref_21
  article-title: Understanding deep learning via back-tracking and deconvolution
  publication-title: J. Big Data
  doi: 10.1186/s40537-017-0101-8
– ident: ref_36
– ident: ref_19
– ident: ref_43
– ident: ref_2
  doi: 10.1007/978-1-4471-7452-3_2
– ident: ref_58
  doi: 10.1109/IWQoS.2018.8624183
– volume: 323
  start-page: 37
  year: 2019
  ident: ref_24
  article-title: Recent advances in convolutional neural network acceleration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.038
– ident: ref_57
– ident: ref_34
  doi: 10.1109/CVPR.2017.106
SSID ssj0000913820
Score 2.659734
SecondaryResourceType review_article
Snippet Convolutional neural networks (CNNs) are one of the main types of neural networks used for image recognition and classification. CNNs have several uses, some...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 52
SubjectTerms Algorithms
Artificial intelligence
artificial intelligence (AI)
Artificial neural networks
Brain
Computer vision
convolution neural network (CNN)
Deep learning
deep learning (DL)
deep learning applications
Face recognition
Feature maps
Image classification
Image filters
Image processing
Machine learning
machine learning (ML)
Neural networks
Object recognition
Object recognition (Computers)
Pattern recognition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K6KE9lCRt6TZp0SHQFtasLdmW1NtmyZJLQg8J5Cb0MhTKbok3-_s7IytbLzTtpScjSwZJ89CMNfMNwBnaxGVoZFUoi-5qHZUoXOx0wUUXgw70q0GlYhPy-lrd3elvo1JfFBM2wAMPGzfDI63y0dUhtC0e9tpyEaNzUvnIu1akPPJS6pEzlXSwJmy9coAZEujXz3wqkpBWW1FprbLhe0dRQux_Si-nw2Z5CK-ylcjmw-yO4FlcHcPLqx3Ean8MR1kqe_Y5Q0d_eQ39ze-8RHY7zlth644t1qtt5jTsJliO9Ehx4F-pl0Jc-imbjy4XqDm6456yZQIhYVlV4qs3cLu8uFlcFrmsQuGpekHR-sZadHMaGVAT-iisihVvsaWV0kr4TnVtKYMNnXWND8J5FYRKxpwX1oq3cLBar-I7YEiN0sXa-VZXaNkp5aysW665tc4JGSfAH3fY-Iw5TqUvfhj0PYgs5g9kmcB099HPAXLj78PPiXS7oYSXnV4gF5nMReZfXDSBT0R4Q1KNE_Q2JyfgMgkfy8zR0MLNqqtqAqd7I1Ea_X73I-uYrA16w6VGq1GjMfD-f0z2BF5Q0fshEu4UDjb3D_EDPPfbzff-_mMShF_44hCj
  priority: 102
  providerName: Directory of Open Access Journals
Title Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions
URI https://www.proquest.com/docview/2791599801
https://doaj.org/article/0751ceb4dd664569a23eebb78ce2f637
Volume 11
WOSCitedRecordID wos000955011900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: P5Z
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2079-3197
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913820
  issn: 2079-3197
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH6CjQMcgA0mykaVAxIgNVpjJ7HNBXVTKxBqFaFNGlwi_wpCQs1oxo787XvPdbtWgl24JLKfI9nx8_Pzs_19AK_RJx66QmSp1Lhczb3kqfGNShlvvFOOQg0ykE2I2UxeXKgqBty6eKxyZRODoXatpRj5MRMKZ16FBvXD5a-UWKNodzVSaNyHXUJJIOqGqvi2jrEQ5iXOcEuwIY6r-2MbqBJCmzMi2BoWbGtCCrj9_7LOYcqZPPnfyj6Fx9HZTEZL7diDe36-D4-ma6TWbh_24uDukrcRgfrdM-jObq83Jueb11-StklO2_l1VFgUE7pHeIXj5O9JSidlukEy2tijoOTGVvkgmQQskyRaXMx6DueT8dnpxzSyM6SWSBDS0hZa42qpEA4NqvVcS5-xElNKSiW5bWRTDoXTrtGmsI4bKx2XwSe0XGt-ADvzdu5fQKI0GxqfG1uqDB1EKY0WeckU09oYLnwP2KqLahuhy4lB42eNSxjq1_ov_dqDwfqjyyVyx93FT6jv10UJdjtktIvvdRzFNfpXmfUmd64s0fPEenPvjRHSetaUXPTgDWlOTcYBK2h1vOOAzSSYrXqE_hr-rDzLenC0VRIHtd0WrxSrjkalq2-16uXd4kN4yNAXWx6VO4Kdq8Vv_woe2OurH92iD7sn41n1pR_CD_j8LFJ8Tv-M-2H0oLz6NK2-3gBybCSc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAwk4ABsgCgNyAAFSoyV2GttICJVBtalbxaGTdvP8K2jS1IxmDPFP8Tfy7DhdK8FuO3CKEjuR43z-3rPz_D2AV-gTZ3bA8pQrnK4WjtNUu0qkhFbOCuuXGnhINsEmE350JL6uwe9uL4wPq-w4MRC1rY1fI98mTKDlFUioH8--pz5rlP-72qXQaGExdr9-4pSt-bD3Gb_va0JGX6Y7u2nMKpAaL96flmagFHr5A2aRCIyjiruclHgmOBecmopXZcasspXSA2OpNtxSHnwZQ5Wi-NwbcLOgnPlxNWbpYk3Ha2yiRW3FjSgV2bYJqRlCH-c-oVc2ICsGMOQJ-Jc1CCZudP9_65wHcC8608mwRf8GrLnZJtw9WCjRNpuwEcmrSd5Ghe13D6GZXm7fTA6Xt_ckdZXs1LOLOCCx2KuXhEMIl3_vS30kUNNPhkv_YPzpUihAPxkFrZYkWhS89AgOr6UrHsP6rJ65J5AIRTLtCm1KkaMDzLlWrCiJIEppTZnrAekgIU2UZvcZQk4lTtE8juRfcNSD_uKms1aZ5OrqnzzWFlW9rHi4UM-_ychSEv3H3DhdWFuW6Flju6lzWjNuHKlKynrwxiNVevLDBhoV93Dga3oZMTlEfxQ7q8jzHmyt1ETSMqvFHZBlJM1GXqL46dXFL-H27vRgX-7vTcbP4A5Bv7MNC9yC9fP5D_ccbpmL85Nm_iKMzwSOrxvzfwBjFXv8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH4aAyE4ABsgCgN8AAFSoyZ2k9hICJWNimlQ9bBJ0y7GvzJNQs1oxhD_Gn8dz47TtRLstgOnKLETOc7n7z07z98DeIE-cWrzMku4wunq0HGWaFeJhLLKWWH9UgMPySbKyYQfHorpGvzu9sL4sMqOEwNR29r4NfIBLQVaXoGEOqhiWMR0Z_z-9HviM0j5P61dOo0WInvu10-cvjXvdnfwW7-kdPxxf_tTEjMMJMYL-SeFyZVCjz8vLZKCcUxxl9ECzwTngjNT8apIS6tspXRuLNOGW8aDX2OYUgyfew2ulzjH9OGE0_xosb7j9TbRurZCR4yJdGBCmobQ35lP7pXmdMUYhpwB_7IMwdyN7_7PHXUP7kQnm4zaUbEBa262Cbe_LBRqm03YiKTWkNdRefvNfWj2L7Z1koPlbT-krsh2PTuPAxWLvapJOIQw-re-1EcINX0yWvo340-XQgT6ZBw0XEi0NHjpARxcSVc8hPVZPXOPgAhFU-2G2hQiQ8eYc60QSlRQpbRmpesB7eAhTZRs95lDvkmcunlMyb9gqgf9xU2nrWLJ5dU_eNwtqnq58XChnh_LyF4S_crMOD20tijQ48Z2M-e0LrlxtCpY2YNXHrXSkyI20Ki4twNf08uLyRH6qdhZwyzrwdZKTSQzs1rcgVpGMm3kBaIfX178HG4i1OXn3cneE7hF0R1towW3YP1s_sM9hRvm_OykmT8LQ5XA16uG_B8evYUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Understanding+of+Convolutional+Neural+Network%3A+Concepts%2C+Architectures%2C+Applications%2C+Future+Directions&rft.jtitle=Computation&rft.au=Taye%2C+Mohammad+Mustafa&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=2079-3197&rft.eissn=2079-3197&rft.volume=11&rft.issue=3&rft_id=info:doi/10.3390%2Fcomputation11030052&rft.externalDocID=A743762411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-3197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-3197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-3197&client=summon