Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions

Convolutional neural networks (CNNs) are one of the main types of neural networks used for image recognition and classification. CNNs have several uses, some of which are object recognition, image processing, computer vision, and face recognition. Input for convolutional neural networks is provided...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computation Ročník 11; číslo 3; s. 52
Hlavní autor: Taye, Mohammad Mustafa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.03.2023
Témata:
ISSN:2079-3197, 2079-3197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Convolutional neural networks (CNNs) are one of the main types of neural networks used for image recognition and classification. CNNs have several uses, some of which are object recognition, image processing, computer vision, and face recognition. Input for convolutional neural networks is provided through images. Convolutional neural networks are used to automatically learn a hierarchy of features that can then be utilized for classification, as opposed to manually creating features. In achieving this, a hierarchy of feature maps is constructed by iteratively convolving the input image with learned filters. Because of the hierarchical method, higher layers can learn more intricate features that are also distortion and translation invariant. The main goals of this study are to help academics understand where there are research gaps and to talk in-depth about CNN’s building blocks, their roles, and other vital issues.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-3197
2079-3197
DOI:10.3390/computation11030052