Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review

Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biology (Basel, Switzerland) Ročník 10; číslo 12; s. 1255
Hlavní autoři: Saradadevi, Gargi Prasad, Das, Debajit, Mangrauthia, Satendra K., Mohapatra, Sridev, Chikkaputtaiah, Channakeshavaiah, Roorkiwal, Manish, Solanki, Manish, Sundaram, Raman Meenakshi, Chirravuri, Neeraja N., Sakhare, Akshay S., Kota, Suneetha, Varshney, Rajeev K., Mohannath, Gireesha
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 01.12.2021
MDPI
Témata:
ISSN:2079-7737, 2079-7737
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Equal contribution.
ISSN:2079-7737
2079-7737
DOI:10.3390/biology10121255