Novel Greylag Goose Optimization Algorithm with Evolutionary Game Theory (EGGO)
In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment...
Saved in:
| Published in: | Biomimetics (Basel, Switzerland) Vol. 10; no. 8; p. 545 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
19.08.2025
MDPI |
| Subjects: | |
| ISSN: | 2313-7673, 2313-7673 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms. |
|---|---|
| AbstractList | In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms.In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms. In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms. |
| Audience | Academic |
| Author | Zhang, Yiwen Wang, Lei Yao, Yuqi Zang, Zihao Zhang, Xinming Yang, Yuanting Yu, Zhenglei |
| AuthorAffiliation | 3 Jilin Provincial Institute of Product Quality Supervision and Inspection, Changchun 130103, China; yangyuanting1984@163.com 1 School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China; wlcust@163.com (L.W.); yaoyq@mails.cust.edu.cn (Y.Y.); zzh9948014@163.com (Z.Z.) 5 College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; zlyu@jlu.edu.cn 2 School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China 4 Automotive Parts Intelligent Manufacturing Assembly Inspection Technology and Equipment University—Enterprise Joint Innovation Laboratory, Changchun University of Science and Technology, Changchun 130022, China |
| AuthorAffiliation_xml | – name: 3 Jilin Provincial Institute of Product Quality Supervision and Inspection, Changchun 130103, China; yangyuanting1984@163.com – name: 2 School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China – name: 4 Automotive Parts Intelligent Manufacturing Assembly Inspection Technology and Equipment University—Enterprise Joint Innovation Laboratory, Changchun University of Science and Technology, Changchun 130022, China – name: 5 College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; zlyu@jlu.edu.cn – name: 1 School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China; wlcust@163.com (L.W.); yaoyq@mails.cust.edu.cn (Y.Y.); zzh9948014@163.com (Z.Z.) |
| Author_xml | – sequence: 1 givenname: Lei surname: Wang fullname: Wang, Lei – sequence: 2 givenname: Yuqi orcidid: 0009-0004-3514-2129 surname: Yao fullname: Yao, Yuqi – sequence: 3 givenname: Yuanting surname: Yang fullname: Yang, Yuanting – sequence: 4 givenname: Zihao orcidid: 0009-0008-6266-2153 surname: Zang fullname: Zang, Zihao – sequence: 5 givenname: Xinming orcidid: 0000-0002-6713-1430 surname: Zhang fullname: Zhang, Xinming – sequence: 6 givenname: Yiwen orcidid: 0009-0005-7387-917X surname: Zhang fullname: Zhang, Yiwen – sequence: 7 givenname: Zhenglei surname: Yu fullname: Yu, Zhenglei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40862917$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1rGzEQhkVJadI0v6BQFnpJD05Hq-9TMcHdBkJ9Sc9Cq9XaMrsrV9p1SH995TpN4xIE0jDz6JVmeN-ikyEMDqH3GK4IUfC59qH3vRu9TRhAAqPsFTorCSYzwQU5eRafoouUNgCAFWeUwht0SkHyUmFxhpbfw851RRXdQ2dWRRVCcsVyO_re_zKjD0Mx71Yh-nHdF_d5Lxa70E37gokPRWV6V9ytXcjx5aKqlp_eodet6ZK7eDzP0Y-vi7vrb7PbZXVzPb-dWYbVOOOtbblUjbJlaYC6BphTqmGkhBorUqoWGmPrRjJbS0xr0WKwHAxzpBayKck5ujnoNsFs9Db6Pv9HB-P1n0SIK21ink7nNFgAIa0SmGBqs3xeNQNOFRirMM9aXw5a26nuXWPdMEbTHYkeVwa_1quw07gkknCMs8Llo0IMPyeXRt37ZF3XmcGFKWlSUk4UkSAy-vE_dBOmOORZ7SmiJJVC_aNWJnfghzbkh-1eVM8lI0wAYSxTVy9QeTWu9zYbpvU5f3Thw_NOn1r864cMkANgY0gpuvYJwaD3xtMvGI_8BjNIyrA |
| Cites_doi | 10.1016/j.asoc.2012.11.026 10.1007/s10489-020-02081-9 10.1007/s11831-022-09800-0 10.3390/biomimetics9070417 10.1007/s00366-022-01638-1 10.3389/fenrg.2024.1401330 10.1162/106454699568728 10.1016/j.asoc.2019.105744 10.1016/j.knosys.2015.07.006 10.1016/0025-5564(78)90077-9 10.1038/s41598-025-00796-8 10.1016/j.eswa.2023.122147 10.1016/j.ins.2009.03.004 10.1002/nme.1620210904 10.1016/j.advengsoft.2017.01.004 10.1016/j.asoc.2015.10.048 10.1016/j.asoc.2018.08.028 10.1038/s41598-025-99472-0 10.1007/s40747-022-00794-7 10.1016/j.future.2019.02.028 10.1155/2022/5191758 10.1080/21642583.2019.1708830 10.1016/j.advengsoft.2013.12.007 10.1016/j.advengsoft.2016.01.008 10.1007/s00366-011-0241-y 10.3390/a14040122 10.1515/mt-2024-0516 10.3390/math13030373 10.3390/biomimetics9080478 10.1007/s12065-024-01011-9 10.1016/j.engappai.2019.08.025 10.1016/j.advengsoft.2015.01.010 10.1016/j.asoc.2020.106086 10.3390/biomimetics8020235 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/biomimetics10080545 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_0c0078c971314cb19191b506490ac916 PMC12383611 A853570355 40862917 10_3390_biomimetics10080545 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: the Jilin Province and Changchun City Major Science and Technology Special grantid: 20240301008ZD – fundername: the Jilin Province and Changchun City Major Science and Technology Special Project grantid: 20240301008ZD |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM PUEGO ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c519t-6fcf689d9c22a04ed05e99d5320b19329f0dacbd85cb814b7f10c60a5e3b78d23 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001557863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:52:06 EDT 2025 Tue Nov 04 02:05:34 EST 2025 Thu Sep 04 12:32:25 EDT 2025 Sat Nov 01 15:01:35 EDT 2025 Tue Nov 11 10:47:24 EST 2025 Tue Nov 04 18:11:36 EST 2025 Tue Sep 16 01:45:52 EDT 2025 Sat Nov 29 07:14:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | evolutionary game theory global search capability optimization algorithm robustness greylag goose optimization algorithm |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c519t-6fcf689d9c22a04ed05e99d5320b19329f0dacbd85cb814b7f10c60a5e3b78d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6713-1430 0009-0004-3514-2129 0009-0005-7387-917X 0009-0008-6266-2153 |
| OpenAccessLink | https://www.proquest.com/docview/3243984879?pq-origsite=%requestingapplication% |
| PMID | 40862917 |
| PQID | 3243984879 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0c0078c971314cb19191b506490ac916 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12383611 proquest_miscellaneous_3246393807 proquest_journals_3243984879 gale_infotracmisc_A853570355 gale_infotracacademiconefile_A853570355 pubmed_primary_40862917 crossref_primary_10_3390_biomimetics10080545 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-19 |
| PublicationDateYYYYMMDD | 2025-08-19 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationTitleAlternate | Biomimetics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Chu (ref_13) 2023; 9 Khodadadi (ref_10) 2024; 238 Heidari (ref_24) 2019; 97 Mirjalili (ref_7) 2014; 69 Taylor (ref_21) 1978; 40 Elhosseini (ref_26) 2018; 73 ref_11 Wu (ref_25) 2022; 2022 Dorigo (ref_8) 1999; 5 Mirjalili (ref_22) 2015; 89 Sun (ref_14) 2019; 85 ref_17 Gandomi (ref_29) 2013; 29 ref_16 ref_15 Mirjalili (ref_27) 2015; 83 Liu (ref_12) 2023; 39 Rashedi (ref_31) 2009; 179 Mashru (ref_18) 2025; 18 Belegundu (ref_34) 1985; 21 Sadollah (ref_30) 2013; 13 Xue (ref_23) 2020; 8 Casella (ref_4) 2024; 11 Mehta (ref_19) 2025; 67 Ma (ref_33) 2021; 51 ref_20 Saremi (ref_28) 2017; 105 ref_1 ref_3 Guedria (ref_32) 2016; 40 ref_2 Bardsiri (ref_35) 2019; 86 Xu (ref_36) 2020; 89 ref_5 Mirjalili (ref_9) 2016; 95 Mohammadi (ref_6) 2023; 30 |
| References_xml | – volume: 13 start-page: 2592 year: 2013 ident: ref_30 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2012.11.026 – volume: 51 start-page: 1 year: 2021 ident: ref_33 article-title: Moth-flame optimization algorithm based on diversity and mutation strategy publication-title: Appl. Intell. doi: 10.1007/s10489-020-02081-9 – volume: 30 start-page: 331 year: 2023 ident: ref_6 article-title: Nature-Inspired Metaheuristic Search Algorithms for Optimizing BenchmarkProblems: Inclined Planes System Optimization to State-of-the-Art Methods publication-title: Arch. Computat. Methods Eng. doi: 10.1007/s11831-022-09800-0 – ident: ref_2 doi: 10.3390/biomimetics9070417 – volume: 39 start-page: 2433 year: 2023 ident: ref_12 article-title: A novel enhanced global exploration whale optimization algorithm based on Lévy flights and judgment mechanism for global continuous optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-022-01638-1 – ident: ref_16 doi: 10.3389/fenrg.2024.1401330 – ident: ref_3 – volume: 5 start-page: 137 year: 1999 ident: ref_8 article-title: Ant Algorithms for Discrete Optimization publication-title: Artif. Life doi: 10.1162/106454699568728 – volume: 85 start-page: 105744 year: 2019 ident: ref_14 article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105744 – volume: 89 start-page: 228 year: 2015 ident: ref_22 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 40 start-page: 145 year: 1978 ident: ref_21 article-title: Evolutionary stable strategies and game dynamics publication-title: Math. Biosci. doi: 10.1016/0025-5564(78)90077-9 – ident: ref_15 doi: 10.1038/s41598-025-00796-8 – volume: 238 start-page: 122147 year: 2024 ident: ref_10 article-title: Greylag Goose Optimization: Nature-inspired optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122147 – volume: 179 start-page: 2232 year: 2009 ident: ref_31 article-title: GSA: A Gravitational Search Algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 21 start-page: 1583 year: 1985 ident: ref_34 article-title: A study of mathematical programming methods for structural optimization. Part I: Theory publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620210904 – volume: 105 start-page: 30 year: 2017 ident: ref_28 article-title: Grasshopper Optimisation Algorithm: Theory and application publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.01.004 – volume: 40 start-page: 455 year: 2016 ident: ref_32 article-title: Improved accelerated PSO algorithm for mechanical engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.048 – volume: 11 start-page: 2381828 year: 2024 ident: ref_4 article-title: A modified binary bat algorithm for machine loading in flexible manufacturing systems: A case study publication-title: Int. J. Syst. Sci. Oper. Logist. – volume: 73 start-page: 24 year: 2018 ident: ref_26 article-title: A new ABC variant for solving inverse kinematics problem in 5 DOF robot arm publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.08.028 – ident: ref_17 doi: 10.1038/s41598-025-99472-0 – volume: 9 start-page: 213 year: 2023 ident: ref_13 article-title: Architecture entropy sampling-based evolutionary neural architecture search and its application in osteoporosis diagnosis publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00794-7 – volume: 97 start-page: 849 year: 2019 ident: ref_24 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 2022 start-page: 5191758 year: 2022 ident: ref_25 article-title: Wild Geese Migration Optimization Algorithm: A New Meta-Heuristic Algorithm for Solving Inverse Kinematics of Robot publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/5191758 – volume: 8 start-page: 22 year: 2020 ident: ref_23 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control. Eng. doi: 10.1080/21642583.2019.1708830 – volume: 69 start-page: 46 year: 2014 ident: ref_7 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 95 start-page: 51 year: 2016 ident: ref_9 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 29 start-page: 17 year: 2013 ident: ref_29 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – ident: ref_5 doi: 10.3390/a14040122 – volume: 67 start-page: 900 year: 2025 ident: ref_19 article-title: Enhanced Greylag Goose optimizer for solving constrained engineering design problems publication-title: Mater. Test. doi: 10.1515/mt-2024-0516 – ident: ref_20 doi: 10.3390/math13030373 – ident: ref_1 doi: 10.3390/biomimetics9080478 – volume: 18 start-page: 25 year: 2025 ident: ref_18 article-title: Reliability-based multi-objective optimization of trusses with greylag goose algorithm publication-title: Evol. Intell. doi: 10.1007/s12065-024-01011-9 – volume: 86 start-page: 165 year: 2019 ident: ref_35 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – volume: 83 start-page: 80 year: 2015 ident: ref_27 article-title: The Ant Lion Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 89 start-page: 106086 year: 2020 ident: ref_36 article-title: Multivariable grey prediction evolution algorithm: A new metaheuristic publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2020.106086 – ident: ref_11 doi: 10.3390/biomimetics8020235 |
| SSID | ssj0001965440 |
| Score | 2.3008084 |
| Snippet | In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 545 |
| SubjectTerms | Accuracy Adjustment Algorithms Analysis Anser anser Convergence Cooperation Design optimization Efficiency evolutionary game theory Exploitation Foraging behavior Game theory global search capability greylag goose optimization algorithm Heuristic Mathematical optimization Mutation optimization algorithm robustness Optimization algorithms Ordinary differential equations Swarm intelligence Waterfowl |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hFQcuCFgegQUZCfGQiNZp4sQ-FtQNB9RyALQ3y6_sdtUkqO1W2n_PTJKtGoHEhWvsyM6Mx_ON4_kG4E1qvFAVt3Hi0yLOXGJjI7iJs0rKoKwVafcH_-fXYj6X5-fq20GpL7oT1tMD94I75Y68mFMYTCWZsxheqMQSy5rixiG2od2XF-ogmLrqSV9ElvGeZijF8U4pm31ZU2LghvhsEKmIkSvqGPv_3JcPHNP40uSBFzp7APcH-Mim_bQfwp3QPILjaYOhc33D3rLuQmd3Un4Mi3m7CytWorJW5oKVbbsJbIFbRD3kXrLp6qJdL7eXNaPjWDbbDevQrG9YaerA-sx99n5WlosPj-HH2ez75y_xUD8hdojLtnFeuSqXyis3mRieBc9FUMpTKQhLuA115I2zXgpnZZLZokq4y7kRIbWF9JP0CRw1bROeAaMK1ZX1VhIbfoFGLwjLKEQPEv1_XkXw8VaU-ldPk6ExvCDJ679IPoJPJO59V-K47h6g5vWgef0vzUfwjpSlyRJRI84MCQU4Y-K00lNEIsQvJnC4k1FPtCA3br5Vtx4seKMRaKZKYjinIni9b6Y36VZaE9rrrg8CPKLsj-Bpvzr2n5RRrIixcARytG5G3zxuaZaXHb83ggmZ5kny_H9I6QXcm1DJYmLxVSdwtF1fh5dw1-22y836VWc1vwHnSxm8 priority: 102 providerName: Directory of Open Access Journals |
| Title | Novel Greylag Goose Optimization Algorithm with Evolutionary Game Theory (EGGO) |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40862917 https://www.proquest.com/docview/3243984879 https://www.proquest.com/docview/3246393807 https://pubmed.ncbi.nlm.nih.gov/PMC12383611 https://doaj.org/article/0c0078c971314cb19191b506490ac916 |
| Volume | 10 |
| WOSCitedRecordID | wos001557863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M7P dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: PROQUEST customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: PIMPY dateStart: 20161201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iGw-8cBuMwKiMhLhIREuam_2EOtQVJGgjBKg8RbbjdJXaZDRdpf17znHSbhGIF5S32JFtffbx55Pj7wC8DGQeicJTrp8HiRtqX7ky8qQbFpwboVQU2D_4Pz4n4zGfTkXaOtzqNqxyaxOtoc4rTT7yE9z4A8GRXov3F79cyhpFf1fbFBp7cEAqCX0bupde-1hEHIWh14gNBdjqCd1pny_pemBNqjbIV6LOhmR1-_-0zje2p27o5I296Oze_47iPtxtWSgbNNPmAdwy5UM4HJR4Al9esVfMxoVah_shTMbVxizYCDFfyBkbVVVt2AQtzbK9wskGixm2sT5fMvLqsuGmnc5ydcVGcmlYIwDA3gxHo8nbR_D9bPjtw0e3TcPgaqR3azcudBFzkQvd70svNLkXGSFyyiihiP4h1LnUKueRVtwPVVL4no49GZlAJTzvB49hv6xK8wQYJbouVK44ieonaDsiokQCSQhHGhEXDrzbYpFdNGobGZ5SCLrsL9A5cEp47aqSVLZ9Ua1mWbvyMk8TDdICT-N-qLHH-CiS6ROe1EiOHXhNaGe0oBFSLdt7CdhjksbKBkhoSKYswuaOOzVxIepu8RbzrDUEdXYNuAMvdsX0JQW3laa6tHWQJ5LyvwNHzfTaDSmkIyceqR3gnYnXGXO3pJyfW5lw5CQ8iH3_6b_79Qzu9CmnMcn8imPYX68uzXO4rTfreb3qwV4y5T04OB2O068967Ho2UWG79JPX9KfvwEK8C8C |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKRJceJVHoMAi8ZSwasev3QNCAdI0aprkUFA5md31Oo2U2CVJg_Kn-I3M-JHWAnHrAeWW3Sg79rcz3z7mG4AXrox9kdjKcmI3tDztKEv6trS8hHMjlPLd_AT_az8cDPjJiRhtwa8qF4auVVY-MXfUcaZpj3wPA78rONJr8eHsh0VVo-h0tSqhUcDi0Kx_4pJt8b73Gd_vy1Zrv3P86cAqqwpYGtnK0goSnQRcxEK3WtL2TGz7RoiYCiQoYjM48lhqFXNfK-54KkwcWwe29I2rQh6T0AG6_G2PwN6A7VHvaPTtYldHBL7n2YW8kYt27lEW_WRGCYkL0tFBhuTXQmBeKeDPeHApINYva16Kfvu3_rfndhtuljybtYuJcQe2THoXdtqpXGazNXvF8puv-ZHCDgwH2cpMWRdRPZVj1s2yhWFD9KWzMkmVtadjtGl5OmO0b806q3LCyvmadeXMsELigL3pdLvDt_fgy5WYdh8aaZaah8ColHeiYsWpbECI3tEn0ieQZnEkSkHShHfVu4_OCj2RCNdhBJXoL1BpwkfCx6YriYHnX2TzcVT6lsjWRPS0CB3X8TSOGD-KhAiFLTXS_ya8JnRF5LIQQlqWmRc4YhL_itpI2UiIzce_2631RFej680VxqLS1S2iC4A14fmmmX5J1_dSk53nfZAJU22DJjwo4LwxyaNFtXCwhdeAXrO53pJOTnMhdGRd3A0c59G_x_UMrh8cH_Wjfm9w-BhutKiCM4kai11oLOfn5glc06vlZDF_Wk5nBt-veib8BtpgiRo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tughx4bU8CgsYiadE1LxjHxAqbFuqXdoeAC2nYDtOt1KbLG23qH-NX8dMknY3AnHbA-otdlRP-3n82Z75BuCZJ5NApLaynMSLLF87ypKBLS0_5dwIpQKvuMH_ehQNBvz4WIx24NcmF4bCKjc-sXDUSa7pjLyFC78nONJr0UqrsIjRQffd6Q-LKkjRTeumnEYJkUOz_onbt8Xb_gH-189dt9v5_OGjVVUYsDQyl6UVpjoNuUiEdl1p-yaxAyNEQsUSFDEbtCKRWiU80Io7vopSx9ahLQPjqYgnJHqA7n8XKbnvNmB31P80-nZ-wiPCwPftUurIQ5tblFE_mVFy4oI0dZAtBbXlsKga8OfacGFxrAduXlgJuzf-59_wJlyv-DdrlxPmFuyY7DbstTO5zGdr9oIVEbHFVcMeDAf5ykxZD9E-lWPWy_OFYUP0sbMqeZW1p2O0aXkyY3SezTqraiLL-Zr15MywUvqAver0esPXd-DLpZh2FxpZnpn7wKjEd6oSxamcQIReMyAyKJB-cSRQYdqENxscxKelzkiM-zOCTfwX2DThPWFl25VEwosH-XwcVz4ntjURQC0ix3N8jSPGjyKBQmFLjduCJrwkpMXkyhBOWlYZGThiEgWL20jlSKAtwK_br_VEF6TrzRu8xZULXMTnYGvC020zvUlhfZnJz4o-yJCp5kET7pXQ3prk02ZbONjCa6Cv2VxvySYnhUA6sjHuhY7z4N_jegJXEf7xUX9w-BCuuVTYmbSOxT40lvMz8wiu6NVyspg_rmY2g--XPRF-A1xakdo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Greylag+Goose+Optimization+Algorithm+with+Evolutionary+Game+Theory+%28EGGO%29&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Lei&rft.au=Yao%2C+Yuqi&rft.au=Yang%2C+Yuanting&rft.au=Zang%2C+Zihao&rft.date=2025-08-19&rft.issn=2313-7673&rft.eissn=2313-7673&rft.volume=10&rft.issue=8&rft_id=info:doi/10.3390%2Fbiomimetics10080545&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |