Novel Greylag Goose Optimization Algorithm with Evolutionary Game Theory (EGGO)

In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment...

Full description

Saved in:
Bibliographic Details
Published in:Biomimetics (Basel, Switzerland) Vol. 10; no. 8; p. 545
Main Authors: Wang, Lei, Yao, Yuqi, Yang, Yuanting, Zang, Zihao, Zhang, Xinming, Zhang, Yiwen, Yu, Zhenglei
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 19.08.2025
MDPI
Subjects:
ISSN:2313-7673, 2313-7673
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics10080545