Novel Greylag Goose Optimization Algorithm with Evolutionary Game Theory (EGGO)

In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomimetics (Basel, Switzerland) Jg. 10; H. 8; S. 545
Hauptverfasser: Wang, Lei, Yao, Yuqi, Yang, Yuanting, Zang, Zihao, Zhang, Xinming, Zhang, Yiwen, Yu, Zhenglei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland MDPI AG 19.08.2025
MDPI
Schlagworte:
ISSN:2313-7673, 2313-7673
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms.
AbstractList In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms.In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms.
In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the traditional Greylag Goose Optimization Algorithm (GGO) in global search ability and convergence speed. By incorporating dynamic strategy adjustment from evolutionary game theory, EGGO improves global search efficiency and convergence speed. Furthermore, EGGO employs dynamic grouping, random mutation, and local search enhancement to boost efficiency and robustness. Experimental comparisons on standard test functions and the CEC 2022 benchmark suite show that EGGO outperforms other classic algorithms and variants in convergence precision and speed. Its effectiveness in practical optimization problems is also demonstrated through applications in engineering design, such as the design of tension/compression springs, gear trains, and three-bar trusses. EGGO offers a novel solution for optimization problems and provides a new theoretical foundation and research framework for swarm intelligence algorithms.
Audience Academic
Author Zhang, Yiwen
Wang, Lei
Yao, Yuqi
Zang, Zihao
Zhang, Xinming
Yang, Yuanting
Yu, Zhenglei
AuthorAffiliation 3 Jilin Provincial Institute of Product Quality Supervision and Inspection, Changchun 130103, China; yangyuanting1984@163.com
1 School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China; wlcust@163.com (L.W.); yaoyq@mails.cust.edu.cn (Y.Y.); zzh9948014@163.com (Z.Z.)
5 College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; zlyu@jlu.edu.cn
2 School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China
4 Automotive Parts Intelligent Manufacturing Assembly Inspection Technology and Equipment University—Enterprise Joint Innovation Laboratory, Changchun University of Science and Technology, Changchun 130022, China
AuthorAffiliation_xml – name: 3 Jilin Provincial Institute of Product Quality Supervision and Inspection, Changchun 130103, China; yangyuanting1984@163.com
– name: 2 School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China
– name: 4 Automotive Parts Intelligent Manufacturing Assembly Inspection Technology and Equipment University—Enterprise Joint Innovation Laboratory, Changchun University of Science and Technology, Changchun 130022, China
– name: 5 College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; zlyu@jlu.edu.cn
– name: 1 School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China; wlcust@163.com (L.W.); yaoyq@mails.cust.edu.cn (Y.Y.); zzh9948014@163.com (Z.Z.)
Author_xml – sequence: 1
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 2
  givenname: Yuqi
  orcidid: 0009-0004-3514-2129
  surname: Yao
  fullname: Yao, Yuqi
– sequence: 3
  givenname: Yuanting
  surname: Yang
  fullname: Yang, Yuanting
– sequence: 4
  givenname: Zihao
  orcidid: 0009-0008-6266-2153
  surname: Zang
  fullname: Zang, Zihao
– sequence: 5
  givenname: Xinming
  orcidid: 0000-0002-6713-1430
  surname: Zhang
  fullname: Zhang, Xinming
– sequence: 6
  givenname: Yiwen
  orcidid: 0009-0005-7387-917X
  surname: Zhang
  fullname: Zhang, Yiwen
– sequence: 7
  givenname: Zhenglei
  surname: Yu
  fullname: Yu, Zhenglei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40862917$$D View this record in MEDLINE/PubMed
BookMark eNptkk1rGzEQhkVJadI0v6BQFnpJD05Hq-9TMcHdBkJ9Sc9Cq9XaMrsrV9p1SH995TpN4xIE0jDz6JVmeN-ikyEMDqH3GK4IUfC59qH3vRu9TRhAAqPsFTorCSYzwQU5eRafoouUNgCAFWeUwht0SkHyUmFxhpbfw851RRXdQ2dWRRVCcsVyO_re_zKjD0Mx71Yh-nHdF_d5Lxa70E37gokPRWV6V9ytXcjx5aKqlp_eodet6ZK7eDzP0Y-vi7vrb7PbZXVzPb-dWYbVOOOtbblUjbJlaYC6BphTqmGkhBorUqoWGmPrRjJbS0xr0WKwHAxzpBayKck5ujnoNsFs9Db6Pv9HB-P1n0SIK21ink7nNFgAIa0SmGBqs3xeNQNOFRirMM9aXw5a26nuXWPdMEbTHYkeVwa_1quw07gkknCMs8Llo0IMPyeXRt37ZF3XmcGFKWlSUk4UkSAy-vE_dBOmOORZ7SmiJJVC_aNWJnfghzbkh-1eVM8lI0wAYSxTVy9QeTWu9zYbpvU5f3Thw_NOn1r864cMkANgY0gpuvYJwaD3xtMvGI_8BjNIyrA
Cites_doi 10.1016/j.asoc.2012.11.026
10.1007/s10489-020-02081-9
10.1007/s11831-022-09800-0
10.3390/biomimetics9070417
10.1007/s00366-022-01638-1
10.3389/fenrg.2024.1401330
10.1162/106454699568728
10.1016/j.asoc.2019.105744
10.1016/j.knosys.2015.07.006
10.1016/0025-5564(78)90077-9
10.1038/s41598-025-00796-8
10.1016/j.eswa.2023.122147
10.1016/j.ins.2009.03.004
10.1002/nme.1620210904
10.1016/j.advengsoft.2017.01.004
10.1016/j.asoc.2015.10.048
10.1016/j.asoc.2018.08.028
10.1038/s41598-025-99472-0
10.1007/s40747-022-00794-7
10.1016/j.future.2019.02.028
10.1155/2022/5191758
10.1080/21642583.2019.1708830
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2016.01.008
10.1007/s00366-011-0241-y
10.3390/a14040122
10.1515/mt-2024-0516
10.3390/math13030373
10.3390/biomimetics9080478
10.1007/s12065-024-01011-9
10.1016/j.engappai.2019.08.025
10.1016/j.advengsoft.2015.01.010
10.1016/j.asoc.2020.106086
10.3390/biomimetics8020235
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomimetics10080545
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (NC Live)
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_0c0078c971314cb19191b506490ac916
PMC12383611
A853570355
40862917
10_3390_biomimetics10080545
Genre Journal Article
GrantInformation_xml – fundername: the Jilin Province and Changchun City Major Science and Technology Special
  grantid: 20240301008ZD
– fundername: the Jilin Province and Changchun City Major Science and Technology Special Project
  grantid: 20240301008ZD
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
PUEGO
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c519t-6fcf689d9c22a04ed05e99d5320b19329f0dacbd85cb814b7f10c60a5e3b78d23
IEDL.DBID M7P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001557863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-7673
IngestDate Fri Oct 03 12:52:06 EDT 2025
Tue Nov 04 02:05:34 EST 2025
Thu Sep 04 12:32:25 EDT 2025
Sat Nov 01 15:01:35 EDT 2025
Tue Nov 11 10:47:24 EST 2025
Tue Nov 04 18:11:36 EST 2025
Tue Sep 16 01:45:52 EDT 2025
Sat Nov 29 07:14:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords evolutionary game theory
global search capability
optimization algorithm robustness
greylag goose optimization algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-6fcf689d9c22a04ed05e99d5320b19329f0dacbd85cb814b7f10c60a5e3b78d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6713-1430
0009-0004-3514-2129
0009-0005-7387-917X
0009-0008-6266-2153
OpenAccessLink https://www.proquest.com/docview/3243984879?pq-origsite=%requestingapplication%
PMID 40862917
PQID 3243984879
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_0c0078c971314cb19191b506490ac916
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12383611
proquest_miscellaneous_3246393807
proquest_journals_3243984879
gale_infotracmisc_A853570355
gale_infotracacademiconefile_A853570355
pubmed_primary_40862917
crossref_primary_10_3390_biomimetics10080545
PublicationCentury 2000
PublicationDate 2025-08-19
PublicationDateYYYYMMDD 2025-08-19
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationTitleAlternate Biomimetics (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chu (ref_13) 2023; 9
Khodadadi (ref_10) 2024; 238
Heidari (ref_24) 2019; 97
Mirjalili (ref_7) 2014; 69
Taylor (ref_21) 1978; 40
Elhosseini (ref_26) 2018; 73
ref_11
Wu (ref_25) 2022; 2022
Dorigo (ref_8) 1999; 5
Mirjalili (ref_22) 2015; 89
Sun (ref_14) 2019; 85
ref_17
Gandomi (ref_29) 2013; 29
ref_16
ref_15
Mirjalili (ref_27) 2015; 83
Liu (ref_12) 2023; 39
Rashedi (ref_31) 2009; 179
Mashru (ref_18) 2025; 18
Belegundu (ref_34) 1985; 21
Sadollah (ref_30) 2013; 13
Xue (ref_23) 2020; 8
Casella (ref_4) 2024; 11
Mehta (ref_19) 2025; 67
Ma (ref_33) 2021; 51
ref_20
Saremi (ref_28) 2017; 105
ref_1
ref_3
Guedria (ref_32) 2016; 40
ref_2
Bardsiri (ref_35) 2019; 86
Xu (ref_36) 2020; 89
ref_5
Mirjalili (ref_9) 2016; 95
Mohammadi (ref_6) 2023; 30
References_xml – volume: 13
  start-page: 2592
  year: 2013
  ident: ref_30
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 51
  start-page: 1
  year: 2021
  ident: ref_33
  article-title: Moth-flame optimization algorithm based on diversity and mutation strategy
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02081-9
– volume: 30
  start-page: 331
  year: 2023
  ident: ref_6
  article-title: Nature-Inspired Metaheuristic Search Algorithms for Optimizing BenchmarkProblems: Inclined Planes System Optimization to State-of-the-Art Methods
  publication-title: Arch. Computat. Methods Eng.
  doi: 10.1007/s11831-022-09800-0
– ident: ref_2
  doi: 10.3390/biomimetics9070417
– volume: 39
  start-page: 2433
  year: 2023
  ident: ref_12
  article-title: A novel enhanced global exploration whale optimization algorithm based on Lévy flights and judgment mechanism for global continuous optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-022-01638-1
– ident: ref_16
  doi: 10.3389/fenrg.2024.1401330
– ident: ref_3
– volume: 5
  start-page: 137
  year: 1999
  ident: ref_8
  article-title: Ant Algorithms for Discrete Optimization
  publication-title: Artif. Life
  doi: 10.1162/106454699568728
– volume: 85
  start-page: 105744
  year: 2019
  ident: ref_14
  article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105744
– volume: 89
  start-page: 228
  year: 2015
  ident: ref_22
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 40
  start-page: 145
  year: 1978
  ident: ref_21
  article-title: Evolutionary stable strategies and game dynamics
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(78)90077-9
– ident: ref_15
  doi: 10.1038/s41598-025-00796-8
– volume: 238
  start-page: 122147
  year: 2024
  ident: ref_10
  article-title: Greylag Goose Optimization: Nature-inspired optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122147
– volume: 179
  start-page: 2232
  year: 2009
  ident: ref_31
  article-title: GSA: A Gravitational Search Algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 21
  start-page: 1583
  year: 1985
  ident: ref_34
  article-title: A study of mathematical programming methods for structural optimization. Part I: Theory
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620210904
– volume: 105
  start-page: 30
  year: 2017
  ident: ref_28
  article-title: Grasshopper Optimisation Algorithm: Theory and application
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 40
  start-page: 455
  year: 2016
  ident: ref_32
  article-title: Improved accelerated PSO algorithm for mechanical engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.048
– volume: 11
  start-page: 2381828
  year: 2024
  ident: ref_4
  article-title: A modified binary bat algorithm for machine loading in flexible manufacturing systems: A case study
  publication-title: Int. J. Syst. Sci. Oper. Logist.
– volume: 73
  start-page: 24
  year: 2018
  ident: ref_26
  article-title: A new ABC variant for solving inverse kinematics problem in 5 DOF robot arm
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.08.028
– ident: ref_17
  doi: 10.1038/s41598-025-99472-0
– volume: 9
  start-page: 213
  year: 2023
  ident: ref_13
  article-title: Architecture entropy sampling-based evolutionary neural architecture search and its application in osteoporosis diagnosis
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00794-7
– volume: 97
  start-page: 849
  year: 2019
  ident: ref_24
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 2022
  start-page: 5191758
  year: 2022
  ident: ref_25
  article-title: Wild Geese Migration Optimization Algorithm: A New Meta-Heuristic Algorithm for Solving Inverse Kinematics of Robot
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/5191758
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_23
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control. Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_7
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_9
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 29
  start-page: 17
  year: 2013
  ident: ref_29
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-011-0241-y
– ident: ref_5
  doi: 10.3390/a14040122
– volume: 67
  start-page: 900
  year: 2025
  ident: ref_19
  article-title: Enhanced Greylag Goose optimizer for solving constrained engineering design problems
  publication-title: Mater. Test.
  doi: 10.1515/mt-2024-0516
– ident: ref_20
  doi: 10.3390/math13030373
– ident: ref_1
  doi: 10.3390/biomimetics9080478
– volume: 18
  start-page: 25
  year: 2025
  ident: ref_18
  article-title: Reliability-based multi-objective optimization of trusses with greylag goose algorithm
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-024-01011-9
– volume: 86
  start-page: 165
  year: 2019
  ident: ref_35
  article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.08.025
– volume: 83
  start-page: 80
  year: 2015
  ident: ref_27
  article-title: The Ant Lion Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 89
  start-page: 106086
  year: 2020
  ident: ref_36
  article-title: Multivariable grey prediction evolution algorithm: A new metaheuristic
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2020.106086
– ident: ref_11
  doi: 10.3390/biomimetics8020235
SSID ssj0001965440
Score 2.3007128
Snippet In this paper, an Enhanced Greylag Goose Optimization Algorithm (EGGO) based on evolutionary game theory is presented to address the limitations of the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 545
SubjectTerms Accuracy
Adjustment
Algorithms
Analysis
Anser anser
Convergence
Cooperation
Design optimization
Efficiency
evolutionary game theory
Exploitation
Foraging behavior
Game theory
global search capability
greylag goose optimization algorithm
Heuristic
Mathematical optimization
Mutation
optimization algorithm robustness
Optimization algorithms
Ordinary differential equations
Swarm intelligence
Waterfowl
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYELAsojUJArIR4SUe3ESezjUm3DAe1yANSb5VfarTYJ2t2u1H_PTJKuNqISl15jR3FmPPb3WTOfCXnPee6zVJnYsFDEQkHMWZ642IsQisC8S7u6td_fi9lMnp-rH3tXfWFOWC8P3BvuhDncxZwCMsWFs0AvFLeosqaYcYBtcPVlhdojU1e96EsmBOtlhlLg9SdYzb6osTBwjXo2gFSy0VbUKfb_uy7vbUzjpMm9XejsCXk8wEc66Yf9lDwIzTNyOGmAOtc39APtEjq7k_JDMp-127CkJThraS5o2bbrQOewRNRD7SWdLC_a1WJzWVM8jqXT7TAPzeqGlqYOtK_cp5-mZTn__Jz8Opv-PP0WD_cnxA5w2SbOK1flUnnlksQwETzLglIer4KwiNtUxbxx1svMWcmFLSrOXM5MFlJbSJ-kL8hB0zbhFaGF5XkefAZwgAlRCcst89IkyouEeZ9G5MutKfWfXiZDA71Ay-s7LB-Rr2juXVfUuO4egOf14Hn9P89H5CM6S2MkgkecGQoKYMSoaaUngERQXyyDzx2NekIEuXHzrbv1EMFrDUAzVRLonIrI8a4Z38SstCa0110fAHgo2R-Rl_3s2P2SQK4IXDgicjRvRv88bmkWl52-N4AJmeacv74PK70hjxK8shhVfNUROdisrsNb8tBtN4v16l0XNX8B0-caiA
  priority: 102
  providerName: Directory of Open Access Journals
Title Novel Greylag Goose Optimization Algorithm with Evolutionary Game Theory (EGGO)
URI https://www.ncbi.nlm.nih.gov/pubmed/40862917
https://www.proquest.com/docview/3243984879
https://www.proquest.com/docview/3246393807
https://pubmed.ncbi.nlm.nih.gov/PMC12383611
https://doaj.org/article/0c0078c971314cb19191b506490ac916
Volume 10
WOSCitedRecordID wos001557863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M7P
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: PIMPY
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQde-BqMwKiMhPiQiOYkzoefUIe6ggRthQCVp8ix3a5Sm4ymq7T_njs37RaBeEF9i13F1vnOv7vc_Q7gZRAkJo6k8hW3qS8k6lwRhNo3wtrUcqMjV7f243M6GGTjsRw1Abe6Savc2kRnqE2lKUZ-ghd_JDOE1_L9xS-fukbR19WmhcYeHBBLQuhS90bXMRaZxELwDdlQhN79CdW0zxZUHlgTqw3ilbh1ITne_j-t843rqZ06eeMuOrv3v7u4D3cbFMq6m2PzAG7Z8iEcdkv0wBdX7BVzeaEu4H4Iw0G1tnPWR5nP1ZT1q6q2bIiWZtGUcLLufIrvWJ0vGEV1WW_dHGe1vGJ9tbBsQwDA3vT6_eHbR_D9rPftw0e_acPga4R3Kz-Z6EmSSSN1GCourOGxldJQR4mC4J-ccKN0YbJYF1kginQScJ1wFduoSDMTRo9hv6xK-wRYWgRJYk2MqIILMRFFUHCTqVAaEXJjIg_ebWWRX2zYNnL0Ukh0-V9E58EpyWs3laiy3YNqOc0bzcu5JhikJXrjgdC4YvwVRNMnudIIjj14TdLOSaFRpFo1dQm4YqLGyrsIaIimLMbXHbdmoiLq9vBW5nljCOr8WuAevNgN0z8pua201aWbgziRmP89ONocr92WBLmc6FJ7kLUOXmvP7ZFydu5owhGTZFESBE__va5ncCeknsZE8yuPYX-1vLTP4bZer2b1sgN76TjrwMFpbzD62nERi45TMnw2-vRl9PM33cUvzg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamDgleuI1LYYCRuEpEsxPn4geECnRdta7tw0DjKTi221Vqk9F2Rf1T_EbOyaVbBOJtDyhvtavYyXfO-ez4fIeQF5wHxvekchSzoSMk2FzCXe0YYW1omdFenrf2tRf2-9HJiRxukV9VLgweq6x8Yu6oTaZxj3wPAr8nI6DX8sPZDwerRuHX1aqERgGLQ7v-CUu2xfvuZ3i_L113v3386cApqwo4GtjK0glGehRE0kjtuooJa5hvpTRYICFBNiNHzCidmMjXScRFEo440wFTvvWSMDIodAAuf1sg2Btke9g9Gn672NWRgS8EK-SNPE-yPcyin8wwIXGBOjrAkPxaCMwrBfwZDy4FxPphzUvRb__W__bcbpObJc-mrcIw7pAtm94lO61ULbPZmr6i-cnX_JPCDhn0s5Wd0g6geqrGtJNlC0sH4EtnZZIqbU3HMKfl6YzivjVtr0qDVfM17aiZpYXEAX3T7nQGb--RL1cytfukkWapfUhomPAgsMYH3sSEGImEJ8xEypVGuMwYr0neVe8-Piv0RGJYhyFU4r9ApUk-Ij42XVEMPP8hm4_j0rfETCPR0zLkHhcaRgxXgkKEkikN9L9JXiO6YnRZACGtyswLGDGKf8UtoGwoxObD7XZrPcHV6HpzhbG4dHWL-AJgTfJ804z_xON7qc3O8z7AhLG2QZM8KOC8mZLARbXk0BLVgF6bc70lnZzmQujAuiIv4PzRv8f1jFw_OD7qxb1u__AxueFiBWcUNZa7pLGcn9sn5JpeLSeL-dPSnCn5ftWW8Bu4gInm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWXYS48FoehQWMxFMiqp04Dx8QKmxbql3aHgAtp-DYTrdSmyxtt6h_jV_HTJJ2NwJx2wPqrXZVu_1m5rMz8w0hzzgPjO9J5ShmQ0dIsLmEu9oxwtrQMqO9om7t61E4GETHx3K0Q35tamEwrXLjEwtHbXKNd-QtCPyejIBey1ZapUWMDrrvTn842EEKn7Ru2mmUEDm0659wfFu87R_Af_3cdbudzx8-OlWHAUcDc1k6QarTIJJGatdVTFjDfCulwWYJCTIbmTKjdGIiXycRF0mYcqYDpnzrJWFkUPQA3P8uUHLhNsjuqP9p9O38hkcGvhCslDryPMlaWFE_mWFx4gI1dYAt-bVwWHQN-DM2XAiO9cTNC5Gwe-N__g1vkusV_6bt0mBukR2b3SZ77Uwt89mavqBFRmzxqGGPDAf5yk5pD9A-VWPay_OFpUPwsbOqeJW2p2PY0_JkRvE-m3ZWlSGr-Zr21MzSUvqAvur0esPXd8iXS9naXdLI8szeJzRMeBBY4wOfYkKkIuEJM5FypREuM8ZrkjcbHMSnpc5IDOczhE38F9g0yXvEynYqioQXb-TzcVz5nJhpJIBahtzjQsOK4ZWgQKFkSsOxoEleItJidGUAJ62qigxYMYqCxW2gcijQ5sPX7ddmggvS9eEN3uLKBS7ic7A1ydPtMH4S0_oym58Vc4AhY8-DJrlXQnu7JYGHbclhJKqBvrbn-kg2OSkE0oGNRV7A-YN_r-sJuQrwj4_6g8OH5JqLjZ1R61juk8ZyfmYfkSt6tZws5o8ry6bk-2Ubwm8zrpKm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Greylag+Goose+Optimization+Algorithm+with+Evolutionary+Game+Theory+%28EGGO%29&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Lei&rft.au=Yao%2C+Yuqi&rft.au=Yang%2C+Yuanting&rft.au=Zang%2C+Zihao&rft.date=2025-08-19&rft.pub=MDPI&rft.eissn=2313-7673&rft.volume=10&rft.issue=8&rft_id=info:doi/10.3390%2Fbiomimetics10080545&rft_id=info%3Apmid%2F40862917&rft.externalDocID=PMC12383611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon