Design of a silicon Mach–Zehnder modulator via deep learning and evolutionary algorithms

As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 13; H. 1; S. 14662 - 12
Hauptverfasser: Aparecido de Paula, Romulo, Aldaya, Ivan, Sutili, Tiago, Figueiredo, Rafael C., Pita, Julian L., Bustamante, Yesica R. R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 05.09.2023
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a 40 GHz bandwidth and a driving voltage of 6.25 V , or, alternatively, 47.5 GHz with a driving voltage of 8 V . Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.
AbstractList As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a $$40~\text {GHz}$$ 40 GHz bandwidth and a driving voltage of $$6.25~\text {V}$$ 6.25 V , or, alternatively, $$47.5~\text {GHz}$$ 47.5 GHz with a driving voltage of $$8~\text {V}$$ 8 V . Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.
As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a 40 GHz bandwidth and a driving voltage of 6.25 V , or, alternatively, 47.5 GHz with a driving voltage of 8 V . Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.
As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a 40GHz bandwidth and a driving voltage of 6.25V, or, alternatively, 47.5GHz with a driving voltage of 8V. Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.
Abstract As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a $$40~\text {GHz}$$ 40 GHz bandwidth and a driving voltage of $$6.25~\text {V}$$ 6.25 V , or, alternatively, $$47.5~\text {GHz}$$ 47.5 GHz with a driving voltage of $$8~\text {V}$$ 8 V . Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.
As an essential block in optical communication systems, silicon (Si) Mach-Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a [Formula: see text] bandwidth and a driving voltage of [Formula: see text], or, alternatively, [Formula: see text] with a driving voltage of [Formula: see text]. Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.As an essential block in optical communication systems, silicon (Si) Mach-Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a [Formula: see text] bandwidth and a driving voltage of [Formula: see text], or, alternatively, [Formula: see text] with a driving voltage of [Formula: see text]. Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.
As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a $$40~\text {GHz}$$ 40GHz bandwidth and a driving voltage of $$6.25~\text {V}$$ 6.25V, or, alternatively, $$47.5~\text {GHz}$$ 47.5GHz with a driving voltage of $$8~\text {V}$$ 8V. Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.
ArticleNumber 14662
Author Aparecido de Paula, Romulo
Sutili, Tiago
Aldaya, Ivan
Figueiredo, Rafael C.
Bustamante, Yesica R. R.
Pita, Julian L.
Author_xml – sequence: 1
  givenname: Romulo
  surname: Aparecido de Paula
  fullname: Aparecido de Paula, Romulo
  email: romulo.aparecido.22@ucl.ac.uk
  organization: Center for Advanced and Sustainable Technologies, State University of Sao Paulo (UNESP), Centre for Research and Development in Telecommunications (CPQD), Department of Electronic and Electrical Engineering, University College London (UCL)
– sequence: 2
  givenname: Ivan
  surname: Aldaya
  fullname: Aldaya, Ivan
  organization: Center for Advanced and Sustainable Technologies, State University of Sao Paulo (UNESP)
– sequence: 3
  givenname: Tiago
  surname: Sutili
  fullname: Sutili, Tiago
  organization: Centre for Research and Development in Telecommunications (CPQD)
– sequence: 4
  givenname: Rafael C.
  surname: Figueiredo
  fullname: Figueiredo, Rafael C.
  organization: Centre for Research and Development in Telecommunications (CPQD)
– sequence: 5
  givenname: Julian L.
  surname: Pita
  fullname: Pita, Julian L.
  organization: Department of Electrical Engineering, École de Technologie Supérieure (ÉTS)
– sequence: 6
  givenname: Yesica R. R.
  surname: Bustamante
  fullname: Bustamante, Yesica R. R.
  organization: Centre for Research and Development in Telecommunications (CPQD), Infinera Unipessoal Lda
BookMark eNp9UsuOFCEUrZgxzjjOD7giceOmlAKKgpUx42uSMW50MxtCwaWaDg0tVHXizn_wD_0S6e4xOrMYWHAD55x7uDlPm5OYIjTN8w6_6jAVrwvreilaTGhbq1604lFzRjDrW0IJOfmvPm0uSlnjunoiWSefNKd04APGkp81N--g-Cmi5JBGxQdvUkSftVn9_vnrBlbRQkabZJeg55TRzmtkAbYogM7RxwnpaBHsUlhmn6LOP5AOU8p-Xm3Ks-ax06HAxe153nz78P7r5af2-svHq8u3163pOzG3xgAMbuicYbRuJrt-xL3AbsAwWG0lJ8zhUfJ-pII46aR1klKMjTWOO0zPm6ujrk16rbbZb6oPlbRXh4uUJ6Xz7E0AhQczGE5GiblhPcWjJo4Z0CNIC4x2VevNUWu7jBuwBuKcdbgjevcl-pWa0k51mAnM2N7Ny1uFnL4vUGa18cVACDpCWooignecUS5Jhb64B12nJcc6qwMK054zWVHiiDI5lZLBKeNnvR93NeBD7az2gVDHQKgaCHUIhBKVSu5R_37kQRI9kkoFxwnyP1cPsP4AtWzKiQ
CitedBy_id crossref_primary_10_1002_lpor_202400624
crossref_primary_10_3390_photonics12080775
Cites_doi 10.1364/OPTICA.415762
10.1016/j.neucom.2017.04.075
10.1364/OL.42.000081
10.1109/JLT.2021.3066203
10.1016/j.yofte.2017.12.006
10.1364/OFC.2020.T3H.4
10.1063/1.5115136
10.1016/j.optlastec.2021.107376
10.1109/JLT.2014.2323954
10.1109/IMOC.2017.8121107
10.1109/JPROC.2018.2877636
10.1109/ICCV.2015.123
10.1109/JLT.2021.3074096
10.1364/OE.390315
10.1016/j.optlastec.2020.106844
10.48550/ARXIV.1505.00387
10.1016/S0378-4371(96)00271-3
10.3390/mi12060625
10.1109/CLEO.2008.4550982
10.48550/ARXIV.1502.03167
10.1364/OE.16.005218
10.1364/OPTICA.5.001354
10.1038/s41598-018-19171-x
10.1364/OE.23.014263
10.1109/LPT.2012.2191149
10.1002/9780470823941
10.1109/ICNN.1995.488968
10.1364/OFC.2016.Th4H.5
10.1049/cp.2019.1020
10.1364/FIO.2022.JTu4B.35
10.3390/photonics9010040
10.1109/CEC.2019.8790357
10.1364/PRJ.4.000153
10.1117/1.AP.3.2.024003
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-41558-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_07c7c62b906c4530ba2f4ceabe9de431
PMC10480440
10_1038_s41598_023_41558_8
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2015/24517-8; 2015/24517-8
  funderid: http://dx.doi.org/10.13039/501100001807
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 432303/2018-9; 311035/2018-3; 305104/2021-7
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Sisfoton-MCTI Integration Laboratory
  grantid: 440220/2021-1
– fundername: Ministério da Ciência, Tecnologia, Inovações e Comunicações
  grantid: 01.19.0088.00
  funderid: http://dx.doi.org/10.13039/501100011875
– fundername: ;
  grantid: 432303/2018-9; 311035/2018-3; 305104/2021-7
– fundername: ;
  grantid: 2015/24517-8; 2015/24517-8
– fundername: ;
  grantid: 440220/2021-1
– fundername: ;
  grantid: 01.19.0088.00
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c518t-ccee7f71fc434344915b0580f70e7dad9624f0b965b382f9f9df93300cdcf6f03
IEDL.DBID M2P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001062861100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:34:15 EST 2025
Tue Nov 04 02:06:28 EST 2025
Thu Oct 02 10:22:59 EDT 2025
Tue Oct 07 09:10:38 EDT 2025
Sat Nov 29 06:05:09 EST 2025
Tue Nov 18 22:20:40 EST 2025
Fri Feb 21 02:40:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-ccee7f71fc434344915b0580f70e7dad9624f0b965b382f9f9df93300cdcf6f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2861035649?pq-origsite=%requestingapplication%
PMID 37670096
PQID 2861035649
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_07c7c62b906c4530ba2f4ceabe9de431
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10480440
proquest_miscellaneous_2861643692
proquest_journals_2861035649
crossref_citationtrail_10_1038_s41598_023_41558_8
crossref_primary_10_1038_s41598_023_41558_8
springer_journals_10_1038_s41598_023_41558_8
PublicationCentury 2000
PublicationDate 2023-09-05
PublicationDateYYYYMMDD 2023-09-05
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Krause PerinJShastriAKahnJMData center links beyond 100 Gbit/s per wavelengthOpt. Fiber Technol.20184469852018OptFT..44...69K10.1016/j.yofte.2017.12.006Special Issue on Data Center Communications
RahimATaking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologiesAdv. Photonics2021312310.1117/1.AP.3.2.024003
DouradoDMde FariasGBGounellaRHde RochaLMCarmoJChallenges in silicon photonics modulators for data center interconnect applicationsOpt. Laser Technol.20211441073761:CAS:528:DC%2BB3MXhsFylsL7O10.1016/j.optlastec.2021.107376
ChenLDongPChenY-KChirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/sIEEE Photonics Technol. Lett.2012249369382012IPTL...24..936C1:CAS:528:DC%2BC38XhtFSru7nM10.1109/LPT.2012.2191149
He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR (2015). arXiv:1502.01852.
KieningerCSilicon-organic hybrid (SOH) Mach–Zehnder modulators for 100 GBd PAM-4 signaling with sub-1 dB phase-shifter lossOpt. Express20202824693247072020OExpr..2824693K1:CAS:528:DC%2BB3cXitlSqt7rE10.1364/OE.39031532907004
VillarrubiaGDe PazJFChamosoPDe la PrietaFArtificial neural networks used in optimization problemsNeurocomputing2018272101610.1016/j.neucom.2017.04.075
Holland, J. H. Adaptation in Natural and Artificial Systems 2nd edn. (University of Michigan Press, 1975).
ShuHSignificantly high modulation efficiency of compact graphene modulator based on silicon waveguideSci. Rep.201810.1038/s41598-018-19171-x304593236244417
Kennedy, J. & Eberhart, R. Particle swarm optimization. in Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 (1995).
SiewSYReview of silicon photonics technology and platform developmentJ. Lightwave Technol.202139437443892021JLwT...39.4374S1:CAS:528:DC%2BB3MXhvFaltrjL10.1109/JLT.2021.3066203
Islam, M. R., Lu, H. H., Hossain, M. J. & Li, L. A comparison of performance of GA, PSO and differential evolution algorithms for dynamic phase reconfiguration technology of a smart grid. in 2019 IEEE Congress on Evolutionary Computation (CEC), 858–865. https://doi.org/10.1109/CEC.2019.8790357 (2019).
ZhouYModeling and optimization of a single-drive push-pull silicon Mach–Zehnder modulatorPhoton. Res.201641531611:CAS:528:DC%2BC1cXkvFKlsL0%3D10.1364/PRJ.4.000153
Jacques, M. et al. 200 Gbit/s net rate transmission over 2 km with a silicon photonic segmented MZM. in 45th European Conference on Optical Communication (ECOC 2019), 1–4, https://doi.org/10.1049/cp.2019.1020 (2019).
ZhangMWangCKharelPZhuDLončarMIntegrated lithium niobate electro-optic modulators: When performance meets scalabilityOptica202186526672021Optic...8..652Z10.1364/OPTICA.415762
XuMMichelson interferometer modulator based on hybrid silicon and lithium niobate platformAPL Photonics201941008022019APLP....4j0802X1:CAS:528:DC%2BB3cXisVSltb8%3D10.1063/1.5115136
Romero-GarcíaSHigh-speed resonantly enhanced silicon photonics modulator with a large operating temperature rangeOpt. Lett.20174281842017OptL...42...81R10.1364/OL.42.00008128059183
Spector, S. J. et al. High-speed silicon electro-optical modulator that can be operated in carrier depletion or carrier injection mode. in 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, 1–2, https://doi.org/10.1109/CLEO.2008.4550982 (2008).
CST. Cst microwave studio advanced topics. Tech. Rep., CST-Computer Simulation Technology (2002).
ZhouG-REffect of carrier lifetime on forward-biased silicon Mach–Zehnder modulatorsOpt. Express200816521852262008OExpr..16.5218Z10.1364/OE.16.00521818542624
Cisco annual internet report (2018–2023) (accessed 24 September 2021); https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: A simple way to prevent neural networks from overfittingJ. Mach. Learn. Res.2014151929195832315921318.68153
Mulcahy, J., Peters, F. H. & Dai, X. Modulators in silicon photonics—heterogeneous integration & and beyond. Photonics. https://doi.org/10.3390/photonics9010040 (2022).
DingRHigh-speed silicon modulator with slow-wave electrodes and fully independent differential driveJ. Lightwave Technol.201432224022472014JLwT...32.2240D1:CAS:528:DC%2BC2cXhtlGgsLnI10.1109/JLT.2014.2323954
Zhou, J., Wang, J. & Zhang, Q. Silicon photonics for 100 Gbaud. in Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2020).
Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. https://doi.org/10.48550/ARXIV.1502.03167 (2015).
Qing, A. Differential Evolution: Fundamentals and Applications in Electrical Engineering (Wiley-IEEE Press, 2009).
Alpaydin, E. Introduction to Machine Learning. Adaptive Computation and Machine Learning 3rd edn. (MIT Press, 2014).
Ansys. Lumerical. Tech. Rep., Lumerical Inc. (2003).
AlamMSNet 220 Gbps/λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} IM/DD transmission in O-band and C-band with silicon photonic traveling-wave MZMJ. Lightwave Technol.202139427042782021JLwT...39.4270A1:CAS:528:DC%2BB3MXhvFaltrjN10.1109/JLT.2021.3074096
de Paula, R. et al. Design of silicon Mach–Zehnder modulators employing deep neural networks. in Frontiers in Optics+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}Laser Science 2022 (FIO, LS), JTu4B.35. https://doi.org/10.1364/FIO.2022.JTu4B.35 (Optica Publishing Group, 2022).
TsallisCStarioloDAGeneralized simulated annealingPhys. A: Stat. Mech. Appl.199623339540610.1016/S0378-4371(96)00271-3
KimYHanJ-HAhnDKimSHeterogeneously-integrated optical phase shifters for next-generation modulators and switches on a silicon photonics platform: A reviewMicromachines202110.3390/mi12060625349453438708029
Srivastava, R. K., Greff, K. & Schmidhuber, J. Highway networks. https://doi.org/10.48550/ARXIV.1505.00387 (2015).
Pathel, D. Design, Analysis, and Performance of a Silicon Photonic Traveling Wave Mach–Zehnder Modulator. Ph.D. Thesis, McGill University (2015).
WitzensJHigh-speed silicon photonics modulatorsProc. IEEE2018106215821821:CAS:528:DC%2BC1MXhsFGlsbnI10.1109/JPROC.2018.2877636
PatelDDesign, analysis, and transmission system performance of a 41 GHz silicon photonic modulatorOpt. Express20152314263142872015OExpr..2314263P1:CAS:528:DC%2BC2sXks1WktLk%3D10.1364/OE.23.01426326072793
Xiao, X. et al. Substrate removed silicon Mach-Zehnder modulator for high baud rate optical intensity modulations. in Optical Fiber Communication Conference, Th4H.5. https://doi.org/10.1364/OFC.2016.Th4H.5 (Optical Society of America, 2016).
Motta, D. A. et al. Design of a 40 GHz bandwidth slow-wave silicon modulator. in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 1–5, https://doi.org/10.1109/IMOC.2017.8121107 (2017).
ChengQBahadoriMGlickMRumleySBergmanKRecent advances in optical technologies for data centers: A reviewOptica20185135413702018Optic...5.1354C1:CAS:528:DC%2BC1MXhtFSjtrrF10.1364/OPTICA.5.001354
MoshaevVLeibinYMalkaDOptimizations of Si PIN diode phase-shifter for controlling MZM quadrature bias point using SOI rib waveguide technologyOpt. Laser Technol.20211381068441:CAS:528:DC%2BB3MXhtlOnsL4%3D10.1016/j.optlastec.2020.106844
41558_CR1
41558_CR21
C Kieninger (41558_CR25) 2020; 28
41558_CR22
J Witzens (41558_CR23) 2018; 106
41558_CR41
V Moshaev (41558_CR16) 2021; 138
41558_CR20
C Tsallis (41558_CR40) 1996; 233
41558_CR29
H Shu (41558_CR26) 2018
41558_CR27
R Ding (41558_CR18) 2014; 32
41558_CR28
Y Kim (41558_CR9) 2021
A Rahim (41558_CR10) 2021; 3
G-R Zhou (41558_CR14) 2008; 16
MS Alam (41558_CR19) 2021; 39
G Villarrubia (41558_CR35) 2018; 272
41558_CR36
M Zhang (41558_CR5) 2021; 8
41558_CR15
41558_CR37
41558_CR12
41558_CR34
S Romero-García (41558_CR24) 2017; 42
41558_CR33
41558_CR30
41558_CR31
M Xu (41558_CR11) 2019; 4
D Patel (41558_CR17) 2015; 23
N Srivastava (41558_CR32) 2014; 15
41558_CR38
41558_CR39
SY Siew (41558_CR6) 2021; 39
J Krause Perin (41558_CR2) 2018; 44
Q Cheng (41558_CR3) 2018; 5
L Chen (41558_CR13) 2012; 24
41558_CR7
Y Zhou (41558_CR8) 2016; 4
DM Dourado (41558_CR4) 2021; 144
References_xml – reference: Islam, M. R., Lu, H. H., Hossain, M. J. & Li, L. A comparison of performance of GA, PSO and differential evolution algorithms for dynamic phase reconfiguration technology of a smart grid. in 2019 IEEE Congress on Evolutionary Computation (CEC), 858–865. https://doi.org/10.1109/CEC.2019.8790357 (2019).
– reference: Motta, D. A. et al. Design of a 40 GHz bandwidth slow-wave silicon modulator. in 2017 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 1–5, https://doi.org/10.1109/IMOC.2017.8121107 (2017).
– reference: Cisco annual internet report (2018–2023) (accessed 24 September 2021); https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.
– reference: ZhouG-REffect of carrier lifetime on forward-biased silicon Mach–Zehnder modulatorsOpt. Express200816521852262008OExpr..16.5218Z10.1364/OE.16.00521818542624
– reference: Ansys. Lumerical. Tech. Rep., Lumerical Inc. (2003).
– reference: Qing, A. Differential Evolution: Fundamentals and Applications in Electrical Engineering (Wiley-IEEE Press, 2009).
– reference: Mulcahy, J., Peters, F. H. & Dai, X. Modulators in silicon photonics—heterogeneous integration & and beyond. Photonics. https://doi.org/10.3390/photonics9010040 (2022).
– reference: XuMMichelson interferometer modulator based on hybrid silicon and lithium niobate platformAPL Photonics201941008022019APLP....4j0802X1:CAS:528:DC%2BB3cXisVSltb8%3D10.1063/1.5115136
– reference: SiewSYReview of silicon photonics technology and platform developmentJ. Lightwave Technol.202139437443892021JLwT...39.4374S1:CAS:528:DC%2BB3MXhvFaltrjL10.1109/JLT.2021.3066203
– reference: Alpaydin, E. Introduction to Machine Learning. Adaptive Computation and Machine Learning 3rd edn. (MIT Press, 2014).
– reference: Xiao, X. et al. Substrate removed silicon Mach-Zehnder modulator for high baud rate optical intensity modulations. in Optical Fiber Communication Conference, Th4H.5. https://doi.org/10.1364/OFC.2016.Th4H.5 (Optical Society of America, 2016).
– reference: DouradoDMde FariasGBGounellaRHde RochaLMCarmoJChallenges in silicon photonics modulators for data center interconnect applicationsOpt. Laser Technol.20211441073761:CAS:528:DC%2BB3MXhsFylsL7O10.1016/j.optlastec.2021.107376
– reference: Kennedy, J. & Eberhart, R. Particle swarm optimization. in Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 (1995).
– reference: MoshaevVLeibinYMalkaDOptimizations of Si PIN diode phase-shifter for controlling MZM quadrature bias point using SOI rib waveguide technologyOpt. Laser Technol.20211381068441:CAS:528:DC%2BB3MXhtlOnsL4%3D10.1016/j.optlastec.2020.106844
– reference: RahimATaking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologiesAdv. Photonics2021312310.1117/1.AP.3.2.024003
– reference: Holland, J. H. Adaptation in Natural and Artificial Systems 2nd edn. (University of Michigan Press, 1975).
– reference: Zhou, J., Wang, J. & Zhang, Q. Silicon photonics for 100 Gbaud. in Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2020).
– reference: Romero-GarcíaSHigh-speed resonantly enhanced silicon photonics modulator with a large operating temperature rangeOpt. Lett.20174281842017OptL...42...81R10.1364/OL.42.00008128059183
– reference: He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR (2015). arXiv:1502.01852.
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: A simple way to prevent neural networks from overfittingJ. Mach. Learn. Res.2014151929195832315921318.68153
– reference: PatelDDesign, analysis, and transmission system performance of a 41 GHz silicon photonic modulatorOpt. Express20152314263142872015OExpr..2314263P1:CAS:528:DC%2BC2sXks1WktLk%3D10.1364/OE.23.01426326072793
– reference: ShuHSignificantly high modulation efficiency of compact graphene modulator based on silicon waveguideSci. Rep.201810.1038/s41598-018-19171-x304593236244417
– reference: CST. Cst microwave studio advanced topics. Tech. Rep., CST-Computer Simulation Technology (2002).
– reference: Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. https://doi.org/10.48550/ARXIV.1502.03167 (2015).
– reference: AlamMSNet 220 Gbps/λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} IM/DD transmission in O-band and C-band with silicon photonic traveling-wave MZMJ. Lightwave Technol.202139427042782021JLwT...39.4270A1:CAS:528:DC%2BB3MXhvFaltrjN10.1109/JLT.2021.3074096
– reference: WitzensJHigh-speed silicon photonics modulatorsProc. IEEE2018106215821821:CAS:528:DC%2BC1MXhsFGlsbnI10.1109/JPROC.2018.2877636
– reference: Srivastava, R. K., Greff, K. & Schmidhuber, J. Highway networks. https://doi.org/10.48550/ARXIV.1505.00387 (2015).
– reference: KimYHanJ-HAhnDKimSHeterogeneously-integrated optical phase shifters for next-generation modulators and switches on a silicon photonics platform: A reviewMicromachines202110.3390/mi12060625349453438708029
– reference: ZhouYModeling and optimization of a single-drive push-pull silicon Mach–Zehnder modulatorPhoton. Res.201641531611:CAS:528:DC%2BC1cXkvFKlsL0%3D10.1364/PRJ.4.000153
– reference: Spector, S. J. et al. High-speed silicon electro-optical modulator that can be operated in carrier depletion or carrier injection mode. in 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, 1–2, https://doi.org/10.1109/CLEO.2008.4550982 (2008).
– reference: ChengQBahadoriMGlickMRumleySBergmanKRecent advances in optical technologies for data centers: A reviewOptica20185135413702018Optic...5.1354C1:CAS:528:DC%2BC1MXhtFSjtrrF10.1364/OPTICA.5.001354
– reference: Krause PerinJShastriAKahnJMData center links beyond 100 Gbit/s per wavelengthOpt. Fiber Technol.20184469852018OptFT..44...69K10.1016/j.yofte.2017.12.006Special Issue on Data Center Communications
– reference: de Paula, R. et al. Design of silicon Mach–Zehnder modulators employing deep neural networks. in Frontiers in Optics+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}Laser Science 2022 (FIO, LS), JTu4B.35. https://doi.org/10.1364/FIO.2022.JTu4B.35 (Optica Publishing Group, 2022).
– reference: KieningerCSilicon-organic hybrid (SOH) Mach–Zehnder modulators for 100 GBd PAM-4 signaling with sub-1 dB phase-shifter lossOpt. Express20202824693247072020OExpr..2824693K1:CAS:528:DC%2BB3cXitlSqt7rE10.1364/OE.39031532907004
– reference: Pathel, D. Design, Analysis, and Performance of a Silicon Photonic Traveling Wave Mach–Zehnder Modulator. Ph.D. Thesis, McGill University (2015).
– reference: Jacques, M. et al. 200 Gbit/s net rate transmission over 2 km with a silicon photonic segmented MZM. in 45th European Conference on Optical Communication (ECOC 2019), 1–4, https://doi.org/10.1049/cp.2019.1020 (2019).
– reference: DingRHigh-speed silicon modulator with slow-wave electrodes and fully independent differential driveJ. Lightwave Technol.201432224022472014JLwT...32.2240D1:CAS:528:DC%2BC2cXhtlGgsLnI10.1109/JLT.2014.2323954
– reference: VillarrubiaGDe PazJFChamosoPDe la PrietaFArtificial neural networks used in optimization problemsNeurocomputing2018272101610.1016/j.neucom.2017.04.075
– reference: ChenLDongPChenY-KChirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28 Gb/sIEEE Photonics Technol. Lett.2012249369382012IPTL...24..936C1:CAS:528:DC%2BC38XhtFSru7nM10.1109/LPT.2012.2191149
– reference: TsallisCStarioloDAGeneralized simulated annealingPhys. A: Stat. Mech. Appl.199623339540610.1016/S0378-4371(96)00271-3
– reference: ZhangMWangCKharelPZhuDLončarMIntegrated lithium niobate electro-optic modulators: When performance meets scalabilityOptica202186526672021Optic...8..652Z10.1364/OPTICA.415762
– volume: 8
  start-page: 652
  year: 2021
  ident: 41558_CR5
  publication-title: Optica
  doi: 10.1364/OPTICA.415762
– volume: 272
  start-page: 10
  year: 2018
  ident: 41558_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.075
– volume: 42
  start-page: 81
  year: 2017
  ident: 41558_CR24
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000081
– volume: 39
  start-page: 4374
  year: 2021
  ident: 41558_CR6
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3066203
– volume: 44
  start-page: 69
  year: 2018
  ident: 41558_CR2
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2017.12.006
– ident: 41558_CR20
  doi: 10.1364/OFC.2020.T3H.4
– volume: 4
  start-page: 100802
  year: 2019
  ident: 41558_CR11
  publication-title: APL Photonics
  doi: 10.1063/1.5115136
– volume: 144
  start-page: 107376
  year: 2021
  ident: 41558_CR4
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2021.107376
– ident: 41558_CR28
– volume: 32
  start-page: 2240
  year: 2014
  ident: 41558_CR18
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2014.2323954
– ident: 41558_CR12
– ident: 41558_CR29
  doi: 10.1109/IMOC.2017.8121107
– volume: 106
  start-page: 2158
  year: 2018
  ident: 41558_CR23
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2018.2877636
– ident: 41558_CR31
  doi: 10.1109/ICCV.2015.123
– volume: 39
  start-page: 4270
  year: 2021
  ident: 41558_CR19
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3074096
– volume: 28
  start-page: 24693
  year: 2020
  ident: 41558_CR25
  publication-title: Opt. Express
  doi: 10.1364/OE.390315
– volume: 138
  start-page: 106844
  year: 2021
  ident: 41558_CR16
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2020.106844
– ident: 41558_CR34
  doi: 10.48550/ARXIV.1505.00387
– volume: 233
  start-page: 395
  year: 1996
  ident: 41558_CR40
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/S0378-4371(96)00271-3
– year: 2021
  ident: 41558_CR9
  publication-title: Micromachines
  doi: 10.3390/mi12060625
– volume: 15
  start-page: 1929
  year: 2014
  ident: 41558_CR32
  publication-title: J. Mach. Learn. Res.
– ident: 41558_CR15
  doi: 10.1109/CLEO.2008.4550982
– ident: 41558_CR33
  doi: 10.48550/ARXIV.1502.03167
– volume: 16
  start-page: 5218
  year: 2008
  ident: 41558_CR14
  publication-title: Opt. Express
  doi: 10.1364/OE.16.005218
– volume: 5
  start-page: 1354
  year: 2018
  ident: 41558_CR3
  publication-title: Optica
  doi: 10.1364/OPTICA.5.001354
– year: 2018
  ident: 41558_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19171-x
– volume: 23
  start-page: 14263
  year: 2015
  ident: 41558_CR17
  publication-title: Opt. Express
  doi: 10.1364/OE.23.014263
– ident: 41558_CR27
– volume: 24
  start-page: 936
  year: 2012
  ident: 41558_CR13
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2012.2191149
– ident: 41558_CR36
  doi: 10.1002/9780470823941
– ident: 41558_CR39
  doi: 10.1109/ICNN.1995.488968
– ident: 41558_CR1
– ident: 41558_CR21
  doi: 10.1364/OFC.2016.Th4H.5
– ident: 41558_CR22
  doi: 10.1049/cp.2019.1020
– ident: 41558_CR30
– ident: 41558_CR37
  doi: 10.1364/FIO.2022.JTu4B.35
– ident: 41558_CR7
  doi: 10.3390/photonics9010040
– ident: 41558_CR41
  doi: 10.1109/CEC.2019.8790357
– volume: 4
  start-page: 153
  year: 2016
  ident: 41558_CR8
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.4.000153
– ident: 41558_CR38
– volume: 3
  start-page: 1
  year: 2021
  ident: 41558_CR10
  publication-title: Adv. Photonics
  doi: 10.1117/1.AP.3.2.024003
SSID ssj0000529419
Score 2.4487312
Snippet As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for...
As an essential block in optical communication systems, silicon (Si) Mach-Zehnder modulators (MZMs) are approaching the limits of possible performance for...
Abstract As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14662
SubjectTerms 639/166
639/166/987
639/624
639/624/1075/1079
639/624/1075/401
Algorithms
Communications systems
Deep learning
Design
Humanities and Social Sciences
multidisciplinary
Neural networks
Optimization
Problem solving
Science
Science (multidisciplinary)
Silicon
Simulation
Voltage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxFOkFGQkbmDV8SO2j-VRcYCKA6CqF8vxoxtpm1TJdqXe-A_8w_4SbCe7NJWAC8fEtmLPfKNxPJ5vAHgViDfKOokoNQEx7kpkopdGlhDLfXxW-cDt-ydxdCSPj9WXa6W-0p2wkR54FNw-FlbYitQKV5ZximtDArPe1F45z3IGNcFCXfuZGlm9iWKlmrJkMJX7Q_RUKZuMUJR8qERy5okyYf9sl3nzjuSNQGn2P4f3wb1p4wgPxgk_ALd8-xDcGUtJXj4CJ-_zVQzYBWjg0Cyjglv42djF1Y-fJ36RUljgWedSsa6uh-vGQOf9OZyKRpxC0zro1xMOTX8JzfK065vV4mx4DL4dfvj67iOa6iYgy0u5QjY6PhFEGWxKG2VMlbzGXOIgsBfOOFURFnCtKl5TSYIKyoV0roGts6EKmD4BO23X-qcAGpP4ChPFfSWZYbwOXJZMSFxzx6gjBSg3MtR2IhVPtS2WOge3qdSj3HWUu85y17IAr7djzkdKjb_2fptUs-2Z6LDziwgSPYFE_wskBdjbKFZPNjpoIiMoKa-YKsDLbXO0rhQyMa3vLsY-cc9WqbhSOQPEbELzlrZZZJ7uMuXrM4YL8GaDnd9f__OKd__Hip-BuyRhPYW--B7YWfUX_jm4bderZuhfZGP5BbHvGSs
  priority: 102
  providerName: Directory of Open Access Journals
Title Design of a silicon Mach–Zehnder modulator via deep learning and evolutionary algorithms
URI https://link.springer.com/article/10.1038/s41598-023-41558-8
https://www.proquest.com/docview/2861035649
https://www.proquest.com/docview/2861643692
https://pubmed.ncbi.nlm.nih.gov/PMC10480440
https://doaj.org/article/07c7c62b906c4530ba2f4ceabe9de431
Volume 13
WOSCitedRecordID wos001062861100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw1GIrSFz4niiMykjcIJrj2LF9Qgw2gUSrCAEqu0SOP9pKXVKartJu_Af-Ib8E23U7ZRK7cLGU2Eme897ze3qfALyy2EihNE-yTNqEUJ0m0knpRGGsqHHXIhjcvn9moxEfj0URDW5tDKvcnonhoNaN8jbyI8zdKzKaE_F28TPxXaO8dzW20NgDPafZpD6ka4iLnY3Fe7FIKmKuDMr4Uevklc8pw1niJSlPeEcehbL9HV3zeqTkNXdpkEKn9_8X_gfgXtQ_4bsNwTwEt0z9CNzZdKS8fAzOPoSIDthYKGE7mzs6qeFQqumfX7_PzNRnwsDzRvueX80SrmcSamMWMPaemEBZa2jWkZzl8hLK-cRBsZqet0_At9OTr-8_JrH9QqLcr1wlyslPZllqlc8-JUSktEKUI8uQYVpqkWNiUSVyWmUcW2GFtt48gpRWNrcoOwD7dVObpwBK6cse-kr5OSeS0MpSnhLGUUU1yTTug3SLhFLF2uS-Rca8DD7yjJcbxJUOcWVAXMn74PXumcWmMseNq489bncrfVXtcKNZTsrIpCViiqkcVwLlitAMVRJbooysjNDGaVp9cLjFbRlZvS2vENsHL3fTjkm950XWprnYrHGqXy7cTnmHojoAdWfq2TSU-0592j8hqA_ebInv6uv_3vGzm4F9Du5izwbeN0YPwf5qeWFegNtqvZq1ywHYY2MWRj4AveOTUfFlEMwVg8BhfmRu7BWfhsWPv-i4LYM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKAcGGNyJQwEiwgqiOYyf2AiGgVK06HXVRUNVN6vgxM9I0GSbTQbPjH_gPPoovwTePqaYS3XXBMonjxPG59zq-j4PQa0etktqIMI6VCxk3Uai8lQ41pZpbfyzrDbdvvbTfF0dH8mAN_e5yYSCsstOJtaI2pYY98k0qfBcxT5j8MPkeAmsUeFc7Co0GFnt28cP_slXvd7f8_L6hdPvL4eedsGUVCDWPxCzU3iykLo2chqRKxmTEc8IFcSmxqVFGJpQ5ksuE57GgTjppHPz1E220SxyJfb_X0HUGlcUgVJAeLPd0wGvGItnm5pBYbFbePkIOG41DsNwiFCv2r6YJWFnbXozMvOCera3e9t3_7XvdQ3fa9TX-2AjEfbRmiwfoZsO4uXiIjrfqiBVcOqxwNRp7OSjwvtLDPz9_HdshZPrg09IAp1k5xfORwsbaCW65NQZYFQbbeSuuarrAajzwo54NT6tH6OuVDOwxWi_Kwj5BWCko6whMAIlgivHccRGxVJCcGxYbGqCom_RMt7XXgQJknNUxALHIGqBkHihZDZRMBOjt8p5JU3nk0tafAEvLllA1vD5RTgdZq4QykupUJzSXJNGMxyRX1DFtVW6lsX4lGaCNDktZq8qq7BxIAXq1vOyVEHiWVGHLs6aNX9om0o9UrCB45YVWrxSjYV3OPIKyBl6cAvSuA_v50_894qeXv-xLdGvncL-X9Xb7e8_QbQoiCH5AvoHWZ9Mz-xzd0PPZqJq-qGUYo5OrFoK_zT6D5A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9MwHLdGB2gX3ojCACPBCaI6jp3YB4SAUlFtq3oANHbxHD_aSl3SNV1Rb3wHvg0fh0-CnUenTmK3HTgmcR5Ofv9H_H_8AHhpsZFcaRZEkbQBoToMpLPSgcJYUeO2ebng9m0_GQzY4SEfboHfTS2MT6tsdGKpqHWu_Bp5BzN3iYjGhHdsnRYx7PbezU4DzyDlI60NnUYFkT2z-uF-34q3_a771q8w7n368vFzUDMMBIqGbBEoZyISm4RW-QJLQnhIU0QZsgkyiZaax5hYlPKYphHDlluurV8BQEorG1sUueteA9vOJSe4BbaH_YPh9_UKj4-hkZDXlTooYp3CWUtf0YajwNtxFrANa1iSBmx4uhfzNC8Ea0sb2Lv9P7-9O-BW7XnD95Wo3AVbJrsHblRcnKv74Khb5rLA3EIJi8nUSUgGD6Qa__n568iMfQ0QPMm1ZzvL53A5kVAbM4M168YIykxDs6wFWc5XUE5HbtaL8UnxAHy9kok9BK0sz8wjAKX0DR89R0DMiCQ0tZSFJGEopZpEGrdB2ABAqLoruycHmYoyOyBiogKNcKARJWgEa4PX63NmVU-SS0d_8Lhaj_T9xMsd-XwkavUkUKISFeOUo1gRGqFUYkuUkanh2jgfsw12G1yJWskV4hxUbfBifdipJx9zkpnJz6oxzumNuZsp20DzxgNtHskm47LReegbHhCC2uBNA_zzu_97xo8vf9jn4KbDvtjvD_aegB3spdEHCOkuaC3mZ-YpuK6Wi0kxf1YLNATHVy0FfwHc2I4t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+a+silicon+Mach%E2%80%93Zehnder+modulator+via+deep+learning+and+evolutionary+algorithms&rft.jtitle=Scientific+reports&rft.au=Aparecido+de+Paula%2C+Romulo&rft.au=Aldaya%2C+Ivan&rft.au=Sutili%2C+Tiago&rft.au=Figueiredo%2C+Rafael+C.&rft.date=2023-09-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-41558-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_41558_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon