Design of a silicon Mach–Zehnder modulator via deep learning and evolutionary algorithms

As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 13; číslo 1; s. 14662 - 12
Hlavní autoři: Aparecido de Paula, Romulo, Aldaya, Ivan, Sutili, Tiago, Figueiredo, Rafael C., Pita, Julian L., Bustamante, Yesica R. R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 05.09.2023
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a 40 GHz bandwidth and a driving voltage of 6.25 V , or, alternatively, 47.5 GHz with a driving voltage of 8 V . Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-41558-8