Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension
Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammali...
Saved in:
| Published in: | Circulation (New York, N.Y.) Vol. 129; no. 8; p. 864 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
25.02.2014
|
| Subjects: | |
| ISSN: | 1524-4539, 1524-4539 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown.
Immunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA- and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle-specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats.
These data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions. |
|---|---|
| AbstractList | Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown.BACKGROUNDEnhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown.Immunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA- and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle-specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats.METHODS AND RESULTSImmunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA- and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle-specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats.These data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions.CONCLUSIONSThese data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions. Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key pathophysiological components of pulmonary vascular remodeling in idiopathic pulmonary arterial hypertension (PAH). The role of the distinct mammalian target of rapamycin (mTOR) complexes mTORC1 (mTOR-Raptor) and mTORC2 (mTOR-Rictor) in PAVSMC proliferation and survival in PAH and their therapeutic relevance are unknown. Immunohistochemical and immunoblot analyses revealed that mTORC1 and mTORC2 pathways are markedly upregulated in small remodeled pulmonary arteries and isolated distal PAVSMCs from subjects with idiopathic PAH that have increased ATP levels, proliferation, and survival that depend on glycolytic metabolism. Small interfering RNA- and pharmacology-based analysis showed that although both mTORC1 and mTORC2 contribute to proliferation, only mTORC2 is required for ATP generation and survival of idiopathic PAH PAVSMCs. mTORC2 downregulated the energy sensor AMP-activated protein kinase, which led to activation of mTORC1-S6 and increased proliferation, as well as a deficiency of the proapoptotic protein Bim and idiopathic PAH PAVSMC survival. NADPH oxidase 4 (Nox4) protein levels were increased in idiopathic PAH PAVSMCs, which was necessary for mTORC2 activation, proliferation, and survival. Nox4 levels and mTORC2 signaling were significantly upregulated in small pulmonary arteries from hypoxia-exposed rats at days 2 to 28 of hypoxia. Treatment with the mTOR kinase inhibitor PP242 at days 15 to 28 suppressed mTORC2 but not Nox4, induced smooth muscle-specific apoptosis in small pulmonary arteries, and reversed hypoxia-induced pulmonary vascular remodeling in rats. These data provide a novel mechanistic link of Nox4-dependent activation of mTORC2 via the energy sensor AMP-activated protein kinase to increased proliferation and survival of PAVSMCs in PAH, which suggests a new potential pathway for therapeutic interventions. |
| Author | Ihida-Stansbury, Kaori Ziai, Houman Goncharova, Elena A Kawut, Steven M Goncharov, Dmitry A Kudryashova, Tatiana V DeLisser, Horace Krymskaya, Vera P Tuder, Rubin M |
| Author_xml | – sequence: 1 givenname: Dmitry A surname: Goncharov fullname: Goncharov, Dmitry A organization: Pulmonary, Allergy & Critical Care Division (D.A.G., T.V.K., H.Z., H.D., V.P.K., S.M.K., E.A.G.), Department of Pathology and Laboratory Medicine (K.I.-S.), Pulmonary Vascular Disease Program (K.I.-S., H.D., V.P.K., S.M.K., E.A.G.), Center for Clinical Epidemiology and Biostatistics (S.M.K.), and Abramson Cancer Center (V.P.K.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO (R.M.T.); and Division of Pulmonary, Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA (D.A.G., T.V.K.). Dr Goncharova's current affiliation is the Division of Pulmonary, Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA – sequence: 2 givenname: Tatiana V surname: Kudryashova fullname: Kudryashova, Tatiana V – sequence: 3 givenname: Houman surname: Ziai fullname: Ziai, Houman – sequence: 4 givenname: Kaori surname: Ihida-Stansbury fullname: Ihida-Stansbury, Kaori – sequence: 5 givenname: Horace surname: DeLisser fullname: DeLisser, Horace – sequence: 6 givenname: Vera P surname: Krymskaya fullname: Krymskaya, Vera P – sequence: 7 givenname: Rubin M surname: Tuder fullname: Tuder, Rubin M – sequence: 8 givenname: Steven M surname: Kawut fullname: Kawut, Steven M – sequence: 9 givenname: Elena A surname: Goncharova fullname: Goncharova, Elena A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24270265$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdUNtqGzEUFMWlufUXivrmgu1IWmm9ejRLGxvcGILzbLTas7GCLltp18Tf1J-MQlMofTrDMGfOnLlCEx88IPSVkgWlJb2tNw_143a13-zuV-tV5ooFIVxU9AO6pILxOReFnPyDL9BVSs-EkLJYik_ognG2JKwUl-j3T-WcskZ5PKj4BAMOHY6qV-6sjcc6uN7CC2Z46va7h5p9y1SIrfFqgIT70brgVTxjFQfII7kQhiN2Y9IWsAZrsYNBNcGa5Ga4jxl0ENVggp9h5VucxngyJ2Vxvvafncns8dxDxj7lhRv0sVM2wef3eY0ef3zf1-v5dne3qVfbuRa0ovMuV9HIRlYdkUKLJdWENsBYoUtJuqbStOWtEKVsNDDSaqi4oi0soak63knJrtH0j2-O-2uENBycSW-_KA9hTAcqCCsKITnP0i_v0rFx0B76aFzOf_hbMHsFpeeGQg |
| CitedBy_id | crossref_primary_10_1093_rheumatology_key017 crossref_primary_10_1002_ppul_23777 crossref_primary_10_1371_journal_pone_0221728 crossref_primary_10_3390_ijms22116164 crossref_primary_10_3390_cells10061473 crossref_primary_10_3389_fmed_2022_894584 crossref_primary_10_1038_s41598_023_33779_8 crossref_primary_10_1161_ATVBAHA_119_312537 crossref_primary_10_1186_s12931_024_02957_1 crossref_primary_10_1089_ars_2015_6562 crossref_primary_10_1089_ars_2018_7673 crossref_primary_10_1086_683810 crossref_primary_10_4049_jimmunol_1601692 crossref_primary_10_1165_rcmb_2018_0329TR crossref_primary_10_3390_antiox6030054 crossref_primary_10_4137_BMI_S29514 crossref_primary_10_1155_2021_9981589 crossref_primary_10_1007_s00210_017_1359_2 crossref_primary_10_1152_ajplung_00393_2018 crossref_primary_10_1038_s41467_018_06376_x crossref_primary_10_1002_jcp_24670 crossref_primary_10_1038_s41419_022_05091_2 crossref_primary_10_1161_CIRCRESAHA_121_319100 crossref_primary_10_1038_s41598_020_67217_w crossref_primary_10_1164_rccm_201812_2290OC crossref_primary_10_1016_j_vph_2015_05_008 crossref_primary_10_1111_bph_15016 crossref_primary_10_1074_jbc_M115_672170 crossref_primary_10_1111_bph_14968 crossref_primary_10_1186_s13578_022_00762_1 crossref_primary_10_1096_fj_201500042 crossref_primary_10_1161_JAHA_122_027894 crossref_primary_10_3892_mmr_2015_4528 crossref_primary_10_4103_CJP_CJP_27_19 crossref_primary_10_3390_ijms25105403 crossref_primary_10_1093_cvr_cvaa050 crossref_primary_10_1177_1535370215584889 crossref_primary_10_1089_vim_2013_0130 crossref_primary_10_1016_j_tips_2025_05_004 crossref_primary_10_1089_ars_2018_7699 crossref_primary_10_1111_bph_15442 crossref_primary_10_1016_j_biopha_2018_07_017 crossref_primary_10_1146_annurev_med_041717_085955 crossref_primary_10_1177_17534666241271990 crossref_primary_10_1080_10641963_2019_1583247 crossref_primary_10_1161_CIRCULATIONAHA_121_053889 crossref_primary_10_1164_rccm_201504_0829UP crossref_primary_10_1016_j_ejphar_2015_09_031 crossref_primary_10_1113_JP272032 crossref_primary_10_1371_journal_pone_0114492 crossref_primary_10_1371_journal_pone_0153780 crossref_primary_10_1161_CIRCULATIONAHA_118_035427 crossref_primary_10_1371_journal_pone_0195780 crossref_primary_10_3390_ijms22136943 crossref_primary_10_1016_j_lfs_2020_118009 crossref_primary_10_1186_s12890_017_0477_4 crossref_primary_10_1164_rccm_201606_1226PP crossref_primary_10_3390_molecules25204768 crossref_primary_10_3390_antiox8030056 crossref_primary_10_1111_bph_14866 crossref_primary_10_1016_j_jbc_2024_107952 crossref_primary_10_1016_j_hlc_2016_03_009 crossref_primary_10_1016_j_cellsig_2017_10_019 crossref_primary_10_3389_fimmu_2018_00215 crossref_primary_10_1161_CIRCRESAHA_119_315398 crossref_primary_10_1007_s11684_018_0634_z crossref_primary_10_1016_j_bcp_2023_115892 crossref_primary_10_3389_fcell_2023_1268646 crossref_primary_10_1097_FJC_0000000000001208 crossref_primary_10_1371_journal_pone_0123662 crossref_primary_10_1177_1074248419829172 crossref_primary_10_3390_ijms19102957 crossref_primary_10_1165_rcmb_2017_0245ED crossref_primary_10_3390_ph15070900 crossref_primary_10_1016_j_pharmthera_2016_05_005 crossref_primary_10_3389_fphys_2022_847172 crossref_primary_10_1161_HYPERTENSIONAHA_120_15058 crossref_primary_10_3390_ijms23116205 crossref_primary_10_1007_s12265_024_10581_z crossref_primary_10_4199_C00158ED1V01Y201710ISP078 crossref_primary_10_3390_ijms22042144 crossref_primary_10_1016_j_freeradbiomed_2019_09_029 crossref_primary_10_3390_pharmaceutics16111375 crossref_primary_10_1164_rccm_201604_0882PP crossref_primary_10_1016_j_athoracsur_2014_12_061 crossref_primary_10_1152_ajplung_00238_2014 crossref_primary_10_3390_ijms252312858 crossref_primary_10_1177_2045893217701438 crossref_primary_10_1177_2045894019840646 crossref_primary_10_3390_ijms21103518 crossref_primary_10_1073_pnas_2010206118 crossref_primary_10_1164_rccm_201911_2137OC crossref_primary_10_3390_cells14110839 crossref_primary_10_1002_j_2040_4603_2016_tb00688_x crossref_primary_10_1186_s12964_023_01346_3 crossref_primary_10_3892_ijmm_2024_5439 crossref_primary_10_1165_rcmb_2015_0339OC crossref_primary_10_1164_rccm_202001_0087ED crossref_primary_10_1097_FJC_0000000000001187 crossref_primary_10_1016_j_biomaterials_2015_07_015 crossref_primary_10_3389_fped_2022_872313 crossref_primary_10_1038_s41419_020_03167_5 crossref_primary_10_1016_j_cbi_2019_108749 crossref_primary_10_1038_s41467_022_32568_7 crossref_primary_10_1371_journal_pone_0130806 crossref_primary_10_1111_1440_1681_13696 crossref_primary_10_1177_2045894019898593 crossref_primary_10_3390_antiox8050135 crossref_primary_10_1164_rccm_201510_2003OC crossref_primary_10_1172_JCI172116 crossref_primary_10_1016_j_mito_2024_101928 crossref_primary_10_1177_2045894019889775 crossref_primary_10_1038_s41392_025_02287_8 crossref_primary_10_1165_rcmb_2016_0364OC crossref_primary_10_1371_journal_pone_0106155 crossref_primary_10_1002_jcp_28531 crossref_primary_10_1016_j_molmet_2016_06_007 crossref_primary_10_1186_s12929_015_0125_3 crossref_primary_10_3390_ijms20143575 crossref_primary_10_1007_s10495_018_1477_4 crossref_primary_10_1016_j_freeradbiomed_2018_03_006 crossref_primary_10_1016_j_cytogfr_2024_12_005 crossref_primary_10_1161_CIRCULATIONAHA_121_057001 crossref_primary_10_1016_j_ejphar_2016_09_003 crossref_primary_10_3389_fcell_2020_00034 crossref_primary_10_3390_cells14080618 crossref_primary_10_1161_CIRCULATIONAHA_124_068624 crossref_primary_10_1164_rccm_202108_1863OC crossref_primary_10_1042_BCJ20160002 crossref_primary_10_3109_01902148_2014_913092 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1161/CIRCULATIONAHA.113.004581 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1524-4539 |
| ExternalDocumentID | 24270265 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: 1R01HL114085 – fundername: NHLBI NIH HHS grantid: R01HL113178 – fundername: NHLBI NIH HHS grantid: K24 HL103844 – fundername: NHLBI NIH HHS grantid: R01 HL114085 – fundername: NHLBI NIH HHS grantid: R01 HL113178 – fundername: NCATS NIH HHS grantid: UL1 TR000005 – fundername: NCATS NIH HHS grantid: UL1-TR-000005 – fundername: NHLBI NIH HHS grantid: R01 HL110551 |
| GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AARTV AASOK AAUEB AAWTL AAXQO ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABXVJ ABZAD ACCJW ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACOAL ACRKK ACWDW ACWRI ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEETU AENEX AFCHL AFDTB AFEXH AFNMH AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW ALKUP ALMA_UNASSIGNED_HOLDINGS AMJPA AMNEI ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CGR CS3 CUY CVF DIK DIWNM DU5 DUNZO E3Z EBS ECM EIF EJD EX3 F2K F2L F2M F2N F5P FCALG GX1 H0~ H13 HZ~ IKREB IKYAY IN~ JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A NPM N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RLZ S4R S4S T8P TEORI TR2 UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ZZMQN ~H1 7X8 ADKSD |
| ID | FETCH-LOGICAL-c5181-f045b9b98f095c571c01be223c690fb8c1d4d5569bce20dce84a1de7eb8f4f992 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 171 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000331776900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-4539 |
| IngestDate | Mon Sep 08 14:05:42 EDT 2025 Mon Jul 21 06:04:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | remodeling signal transduction muscle, smooth, vascular AMP-activated protein kinase mTORC2 energy metabolism idiopathic pulmonary arterial hypertension |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5181-f045b9b98f095c571c01be223c690fb8c1d4d5569bce20dce84a1de7eb8f4f992 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.113.004581 |
| PMID | 24270265 |
| PQID | 1502335944 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1502335944 pubmed_primary_24270265 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-February-25 |
| PublicationDateYYYYMMDD | 2014-02-25 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-February-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Circulation (New York, N.Y.) |
| PublicationTitleAlternate | Circulation |
| PublicationYear | 2014 |
| References | 16027121 - J Biol Chem. 2005 Sep 16;280(37):32081-9 17526595 - Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L548-54 11728818 - Free Radic Biol Med. 2001 Dec 1;31(11):1456-64 11179130 - Am J Respir Crit Care Med. 2001 Feb;163(2):498-502 23668615 - Am J Respir Cell Mol Biol. 2013 Oct;49(4):609-18 20022946 - J Biol Chem. 2010 Mar 12;285(11):7866-79 21804606 - Oncogene. 2012 Mar 15;31(11):1419-30 22521878 - Cell Metab. 2012 May 2;15(5):725-38 14523135 - N Engl J Med. 2003 Oct 2;349(14):1307-9 20702857 - Sci Transl Med. 2010 Aug 11;2(44):44ra58 20711221 - Acta Pharmacol Sin. 2010 Sep;31(9):1075-84 20110409 - Am J Pathol. 2010 Mar;176(3):1130-8 20622120 - Am J Physiol Lung Cell Mol Physiol. 2010 Oct;299(4):L559-66 23470622 - Am J Respir Cell Mol Biol. 2013 May;48(5):568-77 16248975 - J Biochem Mol Biol. 2002 Jan 31;35(1):106-15 19555855 - J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S20-31 22904198 - Am J Respir Cell Mol Biol. 2012 Nov;47(5):718-26 22077069 - Am J Respir Crit Care Med. 2012 Feb 1;185(3):260-6 20515660 - Biochem Biophys Res Commun. 2010 Jul 2;397(3):486-92 17675370 - Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L933-40 22005303 - J Clin Invest. 2011 Nov;121(11):4548-66 19584280 - Cancer Res. 2009 Aug 1;69(15):6232-40 12065324 - Circ Res. 2002 Jun 14;90(11):1205-13 18981303 - Circulation. 2008 Nov 18;118(21):2156-65 20031680 - Circ Cardiovasc Interv. 2008 Dec;1(3):209-16 11691993 - Science. 2001 Nov 2;294(5544):1102-5 21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35 17597835 - PPAR Res. 2007;2007:29632 18945681 - J Biol Chem. 2008 Dec 12;283(50):34495-9 19036873 - Am J Physiol Lung Cell Mol Physiol. 2009 Mar;296(3):L489-99 17585072 - Circ Res. 2007 Aug 3;101(3):258-67 18382765 - J Clin Invest. 2008 May;118(5):1846-57 21482669 - Mol Cell Biol. 2011 Jun;31(12):2484-98 10615061 - Am J Respir Cell Mol Biol. 2000 Jan;22(1):15-25 12890675 - J Biol Chem. 2003 Oct 10;278(41):39422-7 21368105 - FASEB J. 2011 Jun;25(6):1922-33 19209957 - PLoS Biol. 2009 Feb 10;7(2):e38 15866171 - Mol Cell. 2005 Apr 29;18(3):283-93 20072130 - Nat Med. 2010 Feb;16(2):205-13 18083891 - Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H570-8 19150980 - J Biol Chem. 2009 Mar 20;284(12):8023-32 17319968 - Respir Res. 2007;8:15 19218192 - Am J Respir Crit Care Med. 2009 May 1;179(9):835-42 21331075 - Leukemia. 2011 May;25(5):781-91 20351066 - J Cell Biol. 2010 Apr 5;189(1):83-94 18775299 - Cell. 2008 Sep 5;134(5):703-7 17110594 - Circ Res. 2007 Jan 5;100(1):79-87 23355268 - FASEB J. 2013 May;27(5):1796-807 23476056 - Circ Res. 2013 Apr 12;112(8):1135-49 19331546 - Antioxid Redox Signal. 2009 Oct;11(10):2505-16 |
| References_xml | – reference: 23476056 - Circ Res. 2013 Apr 12;112(8):1135-49 – reference: 19209957 - PLoS Biol. 2009 Feb 10;7(2):e38 – reference: 18945681 - J Biol Chem. 2008 Dec 12;283(50):34495-9 – reference: 20622120 - Am J Physiol Lung Cell Mol Physiol. 2010 Oct;299(4):L559-66 – reference: 20110409 - Am J Pathol. 2010 Mar;176(3):1130-8 – reference: 19036873 - Am J Physiol Lung Cell Mol Physiol. 2009 Mar;296(3):L489-99 – reference: 17319968 - Respir Res. 2007;8:15 – reference: 11179130 - Am J Respir Crit Care Med. 2001 Feb;163(2):498-502 – reference: 20702857 - Sci Transl Med. 2010 Aug 11;2(44):44ra58 – reference: 23668615 - Am J Respir Cell Mol Biol. 2013 Oct;49(4):609-18 – reference: 23470622 - Am J Respir Cell Mol Biol. 2013 May;48(5):568-77 – reference: 17675370 - Am J Physiol Lung Cell Mol Physiol. 2007 Oct;293(4):L933-40 – reference: 19555855 - J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S20-31 – reference: 21482669 - Mol Cell Biol. 2011 Jun;31(12):2484-98 – reference: 17597835 - PPAR Res. 2007;2007:29632 – reference: 17526595 - Am J Physiol Lung Cell Mol Physiol. 2007 Sep;293(3):L548-54 – reference: 16248975 - J Biochem Mol Biol. 2002 Jan 31;35(1):106-15 – reference: 20022946 - J Biol Chem. 2010 Mar 12;285(11):7866-79 – reference: 22005303 - J Clin Invest. 2011 Nov;121(11):4548-66 – reference: 18775299 - Cell. 2008 Sep 5;134(5):703-7 – reference: 14523135 - N Engl J Med. 2003 Oct 2;349(14):1307-9 – reference: 11728818 - Free Radic Biol Med. 2001 Dec 1;31(11):1456-64 – reference: 22521878 - Cell Metab. 2012 May 2;15(5):725-38 – reference: 20351066 - J Cell Biol. 2010 Apr 5;189(1):83-94 – reference: 12890675 - J Biol Chem. 2003 Oct 10;278(41):39422-7 – reference: 20711221 - Acta Pharmacol Sin. 2010 Sep;31(9):1075-84 – reference: 18083891 - Am J Physiol Heart Circ Physiol. 2008 Feb;294(2):H570-8 – reference: 19331546 - Antioxid Redox Signal. 2009 Oct;11(10):2505-16 – reference: 10615061 - Am J Respir Cell Mol Biol. 2000 Jan;22(1):15-25 – reference: 22904198 - Am J Respir Cell Mol Biol. 2012 Nov;47(5):718-26 – reference: 18382765 - J Clin Invest. 2008 May;118(5):1846-57 – reference: 21331075 - Leukemia. 2011 May;25(5):781-91 – reference: 19150980 - J Biol Chem. 2009 Mar 20;284(12):8023-32 – reference: 12065324 - Circ Res. 2002 Jun 14;90(11):1205-13 – reference: 22077069 - Am J Respir Crit Care Med. 2012 Feb 1;185(3):260-6 – reference: 16027121 - J Biol Chem. 2005 Sep 16;280(37):32081-9 – reference: 21157483 - Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35 – reference: 21368105 - FASEB J. 2011 Jun;25(6):1922-33 – reference: 17585072 - Circ Res. 2007 Aug 3;101(3):258-67 – reference: 20031680 - Circ Cardiovasc Interv. 2008 Dec;1(3):209-16 – reference: 21804606 - Oncogene. 2012 Mar 15;31(11):1419-30 – reference: 20515660 - Biochem Biophys Res Commun. 2010 Jul 2;397(3):486-92 – reference: 23355268 - FASEB J. 2013 May;27(5):1796-807 – reference: 18981303 - Circulation. 2008 Nov 18;118(21):2156-65 – reference: 15866171 - Mol Cell. 2005 Apr 29;18(3):283-93 – reference: 17110594 - Circ Res. 2007 Jan 5;100(1):79-87 – reference: 19584280 - Cancer Res. 2009 Aug 1;69(15):6232-40 – reference: 11691993 - Science. 2001 Nov 2;294(5544):1102-5 – reference: 20072130 - Nat Med. 2010 Feb;16(2):205-13 – reference: 19218192 - Am J Respir Crit Care Med. 2009 May 1;179(9):835-42 |
| SSID | ssj0006375 |
| Score | 2.5279973 |
| Snippet | Enhanced proliferation, resistance to apoptosis, and metabolic shift to glycolysis of pulmonary arterial vascular smooth muscle cells (PAVSMCs) are key... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 864 |
| SubjectTerms | Animals Carrier Proteins - metabolism Cell Proliferation Cell Survival - physiology Cells, Cultured Energy Metabolism - physiology Familial Primary Pulmonary Hypertension Female Glycolysis - physiology Humans Hypertension, Pulmonary - metabolism Hypertension, Pulmonary - pathology Hypoxia - metabolism Hypoxia - pathology Male Mechanistic Target of Rapamycin Complex 2 Multiprotein Complexes - metabolism Muscle, Smooth, Vascular - cytology Muscle, Smooth, Vascular - metabolism Pulmonary Artery - cytology Pulmonary Artery - metabolism Rapamycin-Insensitive Companion of mTOR Protein Rats Rats, Sprague-Dawley Signal Transduction - physiology TOR Serine-Threonine Kinases - metabolism |
| Title | Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24270265 https://www.proquest.com/docview/1502335944 |
| Volume | 129 |
| WOSCitedRecordID | wos000331776900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFB5sLeJLa7UX2ypHKKUFp-Yyk2SeyrIoFtxVRGHflrnSBSdZN27p_qb-yZ6ZRIRCoeBLHkKSmWS-OfOdMyfnI-Qj2jvn0DRSy1VCWZY6KpLC0kJb6YywMtMsik2U43E1mYiLPuDW9mmV9zYxGmrT6BAjP0LikuU5F4x9m9_SoBoVdld7CY0nZD1HKhNQXU4eqoUXeSy0i0sUo4znYoMcRCNRpEfD75fD67Ou4OzpICibfA3spkr_zTTjinPy4rF93SLPe64Jgw4cL8marbfJzqBGP9uv4BPE7M8YVt8mG6N-k32H_B5J72P4A7o8cWgcBKF0v8ILICah21-QwWd_dX45zL7gKXRhZ3WgrTBf3mDzcrGCmC26gtY3iAbwyxY7AWGjALy9Q-zdzFp_CPMgG-RsB8RDkLWBdon2C2cAYGt_PQ5nC_xA13kRE--b-hW5Pjm-Gp7SXtOBao5kgjr8yEooUTnkdpqXqU5SZZGjaHTTnap0apjhvBBK2ywx2lZMpsaWVlWOOSGy1-Rp3dT2LQGXJk66UBG-YkwJxBoTppIKGZ-xyOt2ycH96ExxzoT3k7Vtlu30YXx2yZtuiKfzrrjHFClLiX4pf_cfd78nm8ifWPzDnX8g6w4tht0jz_TPu1m72I9gxOP4YvQHCrXtGA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mammalian+target+of+rapamycin+complex+2+%28mTORC2%29+coordinates+pulmonary+artery+smooth+muscle+cell+metabolism%2C+proliferation%2C+and+survival+in+pulmonary+arterial+hypertension&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Goncharov%2C+Dmitry+A&rft.au=Kudryashova%2C+Tatiana+V&rft.au=Ziai%2C+Houman&rft.au=Ihida-Stansbury%2C+Kaori&rft.date=2014-02-25&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=129&rft.issue=8&rft.spage=864&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.113.004581&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4539&client=summon |