Ruddlesden–Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1–4) for optoelectronic applications
Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers e...
Gespeichert in:
| Veröffentlicht in: | Scientific reports Jg. 12; H. 1; S. 2176 - 13 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
09.02.2022
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)
2
(MA)
n−1
Pb
n
I
3n+1
; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI
6
octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)
2
(MA)
n−1
Pb
n
I
3n+1
RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm
2
for n = 1 to 70 nA/cm
2
for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm
2
). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)
2
MA
3
Pb
4
I
13
the photodetector showed maximum photocurrent density of ~ 508 nA/cm
2
at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc. |
|---|---|
| AbstractList | Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n−1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n−1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc. Abstract Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n−1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n−1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc. Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n−1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n−1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc. Ruddlesden-Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n-1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1-4. The demonstrated RP perovskite of type for n = 1-4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n-1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.Ruddlesden-Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n-1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1-4. The demonstrated RP perovskite of type for n = 1-4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n-1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc. Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH) 2 (MA) n−1 Pb n I 3n+1 ; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI 6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH) 2 (MA) n−1 Pb n I 3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm 2 for n = 1 to 70 nA/cm 2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm 2 ). Furthermore, for lowest bandgap RP perovskite n = 4, (CH) 2 MA 3 Pb 4 I 13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm 2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc. |
| ArticleNumber | 2176 |
| Author | Ahmad, Shahab Dixit, Ambesh Islam, S. S. Prakash, Chandra Rahil, Mohammad Ansari, Rashid Malik |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Rahil fullname: Rahil, Mohammad organization: Advanced Energy Materials Group, Department of Physics, Indian Institute of Technology Jodhpur, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University) – sequence: 2 givenname: Rashid Malik surname: Ansari fullname: Ansari, Rashid Malik organization: Advanced Energy Materials Group, Department of Physics, Indian Institute of Technology Jodhpur – sequence: 3 givenname: Chandra surname: Prakash fullname: Prakash, Chandra organization: Department of Physics, Indian Institute of Technology Jodhpur – sequence: 4 givenname: S. S. surname: Islam fullname: Islam, S. S. organization: Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University) – sequence: 5 givenname: Ambesh surname: Dixit fullname: Dixit, Ambesh organization: Department of Physics, Indian Institute of Technology Jodhpur – sequence: 6 givenname: Shahab orcidid: 0000-0002-7846-4804 surname: Ahmad fullname: Ahmad, Shahab email: shahab@iitj.ac.in organization: Advanced Energy Materials Group, Department of Physics, Indian Institute of Technology Jodhpur |
| BookMark | eNp9ks9u1DAQxiNUREvpC3CKxGUrFLDHduwcQELhz65UQYXgbDnOZMmStVM7W6kXxBGu8IZ9EtzdCmgPtWTNyP6-34zseZjtOe8wyx5T8owSpp5HTkWlCgJQkJISVah72QEQLgpgAHv_5fvZUYwrkpaAitPqQbbPBOUEBDnIvn3ctO2AsUV3-f33qR9HDDm8zlPw5_FrP2HMfZdPFyPms7qcVzXM-fs5O4ZZPWdXibv88YueNm7B3FOazxLm54u0acLx47zzIffj5HFAOwXvepubcRx6a6beu_gou9-ZIeLRdTzMPr9986meFycf3i3qVyeFFVROheXKEGyIaKSiFqSEplWsZdxWnaraVgIx2HbccLBCGCaY7CQrsZJNo0pk7DBb7LitNys9hn5twoX2ptfbAx-W2oSptwNqZJUVmCqCEFxZMJJJzrgoZUdpJ2hivdyxxk2zxtaim4IZbkBv3rj-i176c60UKCVkAsyuAcGfbTBOet1Hi8NgHPpN1FCC5IpRVSXpk1vSld8El55qqyKUCw5JBTuVDT7GgN3fZijRV9Oid9Oi07To7bRolUzqlsn20_ZXUtP9cLeV7awx1XFLDP-6usP1B5K81V0 |
| CitedBy_id | crossref_primary_10_1016_j_nxener_2025_100239 crossref_primary_10_3390_inorganics13070240 crossref_primary_10_1186_s40580_024_00473_y crossref_primary_10_3390_nano15161267 crossref_primary_10_3390_mi14091706 crossref_primary_10_1016_j_matlet_2025_138965 crossref_primary_10_1002_adsu_202300043 crossref_primary_10_1002_anie_202418708 crossref_primary_10_1002_adfm_202417167 crossref_primary_10_1002_cnma_202300625 crossref_primary_10_1039_D3NR04861F crossref_primary_10_1063_5_0139686 crossref_primary_10_1016_j_optlastec_2024_110889 crossref_primary_10_1002_adma_202309154 crossref_primary_10_1038_s41598_023_48753_7 crossref_primary_10_1002_smll_202401350 crossref_primary_10_3390_app14146096 crossref_primary_10_1002_admi_202202170 crossref_primary_10_1002_ange_202208264 crossref_primary_10_1016_j_ijhydene_2024_09_049 crossref_primary_10_1016_j_sna_2024_115076 crossref_primary_10_1016_j_inoche_2025_114932 crossref_primary_10_1039_D4NR05516K crossref_primary_10_1007_s40820_023_01110_9 crossref_primary_10_1039_D4QM00780H crossref_primary_10_1021_jacs_5c02818 crossref_primary_10_1002_solr_202400201 crossref_primary_10_1002_adfm_202422267 crossref_primary_10_1002_pssr_202300221 crossref_primary_10_1039_D5RA03422A crossref_primary_10_1016_j_cej_2024_151459 crossref_primary_10_1016_j_infrared_2024_105306 crossref_primary_10_1002_adom_202501008 crossref_primary_10_1002_adom_202300957 crossref_primary_10_1002_ange_202418708 crossref_primary_10_1002_adma_202413839 crossref_primary_10_1038_s41586_024_08073_w crossref_primary_10_1002_adom_202300776 crossref_primary_10_1039_D5TC00346F crossref_primary_10_1002_anie_202208264 crossref_primary_10_1021_acs_jpcc_5c01707 crossref_primary_10_1016_j_flatc_2023_100586 crossref_primary_10_1016_j_physb_2025_417828 crossref_primary_10_1016_j_colsurfa_2024_135728 |
| Cites_doi | 10.1021/jacs.5b11740 10.1039/C7EE01145H 10.1038/nnano.2016.110 10.1002/anie.201406466 10.1021/acsenergylett.8b01504 10.1021/jacs.8b04604 10.1021/acs.chemmater.6b00847 10.1103/PhysRevB.45.6961 10.1021/acs.nanolett.8b00990 10.1021/acsnano.8b01999 10.1021/acsami.5b02159 10.1021/acsenergylett.9b02366 10.1021/ja809598r 10.1246/bcsj.59.563 10.1039/D1MA00020A 10.1039/C8CP01573B 10.1021/jacs.5b03796 10.1021/jz5005285 10.1021/acsnano.7b03984 10.1021/acs.chemmater.8b02999 10.1021/acs.jpclett.0c00594 10.1246/bcsj.79.1607 10.1021/jacs.7b09096 10.1021/acsenergylett.7b01245 10.1021/acs.accounts.7b00433 10.1021/acs.nanolett.6b03114 10.1002/aenm.201900185 10.1146/annurev-matsci-070317-124406 10.1002/aenm.201700162 10.1021/jacs.8b10851 10.1021/acsami.8b03517 10.1021/jacs.7b11157 10.1021/acsami.9b04963 10.1021/cm9505097 10.1039/C8EE02542H 10.1021/jp503337a 10.1021/acsaelm.9b00466 10.1021/acsami.5b07026 10.1021/acsami.6b09489 10.1038/nnano.2014.149 10.1021/acs.nanolett.5b02369 10.1039/C8TC06129G 10.1038/s41557-020-0488-2 10.1364/OME.4.000101 10.1021/acs.jpcc.8b00480 10.1107/S0108768107031758 10.1021/acs.nanolett.7b05153 10.1038/s41928-018-0101-5 10.1021/acs.jpclett.8b01309 10.1021/acsami.0c05539 10.1038/s41566-018-0283-4 10.1021/jz500279b 10.1063/1.4851715 10.1073/pnas.1811006115 10.1126/science.1243982 10.1126/science.1243167 10.1038/s41699-021-00214-3 10.1063/5.0025729 10.1002/advs.201900941 10.1038/natrevmats.2017.42 10.1002/pssr.202070015 10.1021/acsaelm.0c00554 10.1038/s41467-017-02294-6 10.1063/1.5133653 10.1107/S0108270106013953 10.1038/s41467-019-08768-z 10.1126/science.aac7660 10.1016/j.flatc.2019.100116 10.1021/ic011190x 10.1126/science.aaa0472 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-022-06108-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Proquest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_e39c5ec4825548c2a737434567f11f51 PMC8828857 10_1038_s41598_022_06108_8 |
| GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: ECR/2018/002056; ECR/2018/002056; ECR/2018/002056 funderid: http://dx.doi.org/10.13039/501100001843 – fundername: Department of Science and Technology, Government of India grantid: DST/TMD/MES/2K18/124G; DST/TMD/MES/2K18/124G; DST/TMD/MES/2K18/124G – fundername: ; grantid: ECR/2018/002056; ECR/2018/002056; ECR/2018/002056 – fundername: ; grantid: DST/TMD/MES/2K18/124G; DST/TMD/MES/2K18/124G; DST/TMD/MES/2K18/124G |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c517t-c48a0eb05b781c2772bd83d34c9f89dd720aedf4a42c55a3537f736e97bb86e33 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757457000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:27:06 EDT 2025 Tue Nov 04 01:59:55 EST 2025 Thu Sep 04 15:17:47 EDT 2025 Tue Oct 07 07:36:35 EDT 2025 Tue Nov 18 21:30:30 EST 2025 Sat Nov 29 02:51:25 EST 2025 Fri Feb 21 02:40:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-c48a0eb05b781c2772bd83d34c9f89dd720aedf4a42c55a3537f736e97bb86e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7846-4804 |
| OpenAccessLink | https://doaj.org/article/e39c5ec4825548c2a737434567f11f51 |
| PMID | 35140250 |
| PQID | 2627014542 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e39c5ec4825548c2a737434567f11f51 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8828857 proquest_miscellaneous_2627483189 proquest_journals_2627014542 crossref_primary_10_1038_s41598_022_06108_8 crossref_citationtrail_10_1038_s41598_022_06108_8 springer_journals_10_1038_s41598_022_06108_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-09 |
| PublicationDateYYYYMMDD | 2022-02-09 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Venkatesan, Labram, Chabinyc (CR71) 2018; 3 Vashishtha, Ng, Shivarudraiah, Halpert (CR39) 2019; 31 Raghavan (CR59) 2018; 18 Smith, Crace, Jaffe, Karunadasa (CR66) 2018; 48 CR34 Kumawat (CR67) 2015; 7 Mathieson (CR14) 2021; 2 Zhou (CR60) 2018; 140 Kuai (CR44) 2020; 5 Milot (CR47) 2016; 16 CR70 Hong, Ishihara, Nurmikko (CR20) 1992; 45 Yuan (CR36) 2016; 11 Zhang (CR64) 2019; 7 Feng (CR73) 2018; 1 CR4 Yang (CR38) 2018; 9 De Wolf (CR2) 2014; 5 CR6 Deschler (CR11) 2014; 5 Nagane (CR15) 2018; 122 Zhao (CR37) 2018; 12 CR7 Smith, Hoke, Solis-Ibarra, McGehee, Karunadasa (CR30) 2014; 53 Ghosh, Neukirch, Tretiak (CR48) 2020; 11 Lai (CR69) 2018; 140 CR46 Cao, Stoumpos, Farha, Hupp, Kanatzidis (CR31) 2015; 137 Quarti, Marchal, Beljonne (CR43) 2018; 9 Passarelli (CR19) 2020; 12 Dolzhenko, Inabe, Maruyama (CR49) 1986; 59 Gan (CR68) 2019; 9 Wang, Wu, Yang, Jiang, Priya (CR61) 2018; 12 Liu (CR32) 2019; 5 Abdi-Jalebi (CR16) 2018; 3 Ahmad (CR10) 2015; 7 Ahmad (CR13) 2019; 11 CR18 Quan (CR35) 2016; 138 Ahmad, George, Beesley, Baumberg, De Volder (CR12) 2018; 18 Tan (CR8) 2014; 9 CR57 CR56 Niu (CR33) 2018; 11 CR53 CR51 Zhou, Chu, Huang (CR40) 2016; 8 Zhang (CR45) 2018; 8 Chen (CR74) 2017; 7 Lei, Zhao, Tang, Lin, Cai (CR29) 2018; 20 Chen, Shi (CR72) 2017; 29 Ahmad, Prakash (CR27) 2014; 4 Liu (CR42) 2019; 1 Smith, Karunadasa (CR65) 2018; 51 Kojima, Teshima, Shirai, Miyasaka (CR1) 2009; 131 Chen (CR17) 2018; 30 Ni (CR5) 2017; 11 Zhou (CR21) 2020; 12 Mao, Stoumpos, Kanatzidis (CR58) 2019; 141 CR28 Billing, Lemmerer (CR55) 2007; 63 Zhang (CR26) 2017; 10 CR25 Soe (CR52) 2017; 139 CR24 CR22 Mitzi (CR54) 1996; 8 CR63 CR62 Dong (CR41) 2018; 10 Takeoka, Asai, Rikukawa, Sanui (CR50) 2006; 79 Even (CR3) 2014; 118 Sadhanala (CR9) 2015; 15 Stoumpos (CR23) 2016; 28 X Yang (6108_CR38) 2018; 9 Y Liu (6108_CR32) 2019; 5 Z Gan (6108_CR68) 2019; 9 DH Cao (6108_CR31) 2015; 137 S Ahmad (6108_CR13) 2019; 11 S Chen (6108_CR72) 2017; 29 6108_CR18 6108_CR57 6108_CR56 CC Stoumpos (6108_CR23) 2016; 28 6108_CR53 MD Smith (6108_CR66) 2018; 48 M Abdi-Jalebi (6108_CR16) 2018; 3 X Hong (6108_CR20) 1992; 45 Y Zhang (6108_CR64) 2019; 7 C Quarti (6108_CR43) 2018; 9 M Yuan (6108_CR36) 2016; 11 6108_CR51 C Zhou (6108_CR21) 2020; 12 S Ahmad (6108_CR27) 2014; 4 DG Billing (6108_CR55) 2007; 63 DB Mitzi (6108_CR54) 1996; 8 6108_CR28 6108_CR24 YI Dolzhenko (6108_CR49) 1986; 59 6108_CR25 RL Milot (6108_CR47) 2016; 16 Y Takeoka (6108_CR50) 2006; 79 6108_CR63 6108_CR22 A Mathieson (6108_CR14) 2021; 2 6108_CR62 Y Chen (6108_CR74) 2017; 7 J Even (6108_CR3) 2014; 118 CM Raghavan (6108_CR59) 2018; 18 JH Lei (6108_CR29) 2018; 20 J Zhou (6108_CR40) 2016; 8 D Ghosh (6108_CR48) 2020; 11 ZK Tan (6108_CR8) 2014; 9 T Niu (6108_CR33) 2018; 11 NK Kumawat (6108_CR67) 2015; 7 MD Smith (6108_CR65) 2018; 51 6108_CR6 6108_CR34 6108_CR4 X Zhang (6108_CR26) 2017; 10 6108_CR7 NR Venkatesan (6108_CR71) 2018; 3 R Dong (6108_CR41) 2018; 10 L Mao (6108_CR58) 2019; 141 6108_CR70 S Ahmad (6108_CR12) 2018; 18 S Ahmad (6108_CR10) 2015; 7 L Kuai (6108_CR44) 2020; 5 CMM Soe (6108_CR52) 2017; 139 A Kojima (6108_CR1) 2009; 131 N Zhou (6108_CR60) 2018; 140 JV Passarelli (6108_CR19) 2020; 12 P Vashishtha (6108_CR39) 2019; 31 X Zhang (6108_CR45) 2018; 8 LN Quan (6108_CR35) 2016; 138 K Wang (6108_CR61) 2018; 12 G Liu (6108_CR42) 2019; 1 6108_CR46 L Ni (6108_CR5) 2017; 11 A Sadhanala (6108_CR9) 2015; 15 Y Chen (6108_CR17) 2018; 30 B Zhao (6108_CR37) 2018; 12 F Deschler (6108_CR11) 2014; 5 S Nagane (6108_CR15) 2018; 122 H Lai (6108_CR69) 2018; 140 S De Wolf (6108_CR2) 2014; 5 J Feng (6108_CR73) 2018; 1 IC Smith (6108_CR30) 2014; 53 |
| References_xml | – ident: CR70 – ident: CR22 – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: CR45 article-title: Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11% publication-title: Adv. Energy Mater. – ident: CR4 – volume: 138 start-page: 2649 year: 2016 end-page: 2655 ident: CR35 article-title: Ligand-stabilized reduced-dimensionality perovskites publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11740 – ident: CR51 – volume: 10 start-page: 2095 year: 2017 end-page: 2102 ident: CR26 article-title: Stable high efficiency two-dimensional perovskite solar cells via cesium doping publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01145H – volume: 11 start-page: 872 year: 2016 end-page: 877 ident: CR36 article-title: Perovskite energy funnels for efficient light-emitting diodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.110 – volume: 53 start-page: 11232 year: 2014 end-page: 11235 ident: CR30 article-title: A Layered hybrid perovskite solar-cell absorber with enhanced moisture stability publication-title: Angew. Chemie - Int. Ed. doi: 10.1002/anie.201406466 – volume: 3 start-page: 2671 year: 2018 end-page: 2678 ident: CR16 article-title: Potassium-and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01504 – volume: 140 start-page: 11639 year: 2018 end-page: 11646 ident: CR69 article-title: Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15% publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04604 – ident: CR25 – volume: 28 start-page: 2852 year: 2016 end-page: 2867 ident: CR23 article-title: Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00847 – volume: 45 start-page: 6961 year: 1992 end-page: 6964 ident: CR20 article-title: Dielectric confinement effect on excitons in PbI4-based layered semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.6961 – volume: 18 start-page: 3221 year: 2018 end-page: 3228 ident: CR59 article-title: Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden–Popper perovskite single crystals publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00990 – volume: 12 start-page: 4919 year: 2018 end-page: 4929 ident: CR61 article-title: Quasi-two-dimensional halide perovskite single crystal photodetector publication-title: ACS Nano doi: 10.1021/acsnano.8b01999 – volume: 7 start-page: 13119 year: 2015 end-page: 13124 ident: CR67 article-title: Band gap tuning of CH NH Pb(Br C ) hybrid perovskite for blue electroluminescence publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02159 – volume: 5 start-page: 8 year: 2020 end-page: 16 ident: CR44 article-title: Revealing crystallization dynamics and the compositional control mechanism of 2D perovskite film growth by in situ synchrotron-based GIXRD publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02366 – ident: CR46 – volume: 9 start-page: 2 year: 2018 end-page: 9 ident: CR38 article-title: Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation publication-title: Nat. Commun. – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: CR1 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 59 start-page: 563 year: 1986 end-page: 567 ident: CR49 article-title: In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C H NH ) PbI and (C H NH ) CdCl publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.59.563 – volume: 2 start-page: 3370 year: 2021 end-page: 3377 ident: CR14 article-title: Ruddlesden–Popper 2D perovskites as Li-ion battery electrodes publication-title: Mater. Adv. doi: 10.1039/D1MA00020A – volume: 20 start-page: 13241 year: 2018 end-page: 13248 ident: CR29 article-title: High transport and excellent optical property of a two-dimensional single-layered hybrid perovskite (C H NH ) PbBr : a theoretical study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01573B – ident: CR57 – volume: 137 start-page: 7843 year: 2015 end-page: 7850 ident: CR31 article-title: 2D Homologous perovskites as light-absorbing materials for solar cell applications publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03796 – volume: 5 start-page: 1421 year: 2014 end-page: 1426 ident: CR11 article-title: High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5005285 – volume: 5 start-page: 1 year: 2019 end-page: 9 ident: CR32 article-title: Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% publication-title: Sci. Adv. – volume: 11 start-page: 10834 year: 2017 end-page: 10843 ident: CR5 article-title: Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells publication-title: ACS Nano doi: 10.1021/acsnano.7b03984 – volume: 29 start-page: 1 year: 2017 end-page: 31 ident: CR72 article-title: Two-dimensional materials for halide perovskite-based optoelectronic devices publication-title: Adv. Mater. – volume: 31 start-page: 83 year: 2019 end-page: 89 ident: CR39 article-title: High efficiency blue and green light-emitting diodes using Ruddlesden–Popper inorganic mixed halide perovskites with butylammonium interlayers publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02999 – volume: 11 start-page: 2955 year: 2020 end-page: 2964 ident: CR48 article-title: Optoelectronic properties of two-dimensional bromide perovskites: influences of spacer cations publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00594 – volume: 79 start-page: 1607 year: 2006 end-page: 1613 ident: CR50 article-title: Systematic studies on chain lengths, halide species, and well thicknesses for lead halide layered perovskite thin films publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.79.1607 – volume: 139 start-page: 16297 year: 2017 end-page: 16309 ident: CR52 article-title: New type of 2D perovskites with alternating cations in the interlayer space, (C(NH ) )(CH NH ) Pb I : structure, properties, and photovoltaic performance publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09096 – volume: 3 start-page: 380 year: 2018 end-page: 386 ident: CR71 article-title: Charge-carrier dynamics and crystalline texture of layered Ruddlesden–Popper hybrid lead iodide perovskite thin films publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01245 – volume: 51 start-page: 619 year: 2018 end-page: 627 ident: CR65 article-title: White-light emission from layered halide perovskites publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00433 – ident: CR18 – volume: 16 start-page: 7001 year: 2016 end-page: 7007 ident: CR47 article-title: Charge-carrier dynamics in 2D hybrid metal-halide perovskites publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03114 – volume: 9 start-page: 1 year: 2019 end-page: 11 ident: CR68 article-title: The dominant energy transport pathway in halide perovskites: photon recycling or carrier diffusion? publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900185 – volume: 48 start-page: 111 year: 2018 end-page: 136 ident: CR66 article-title: The diversity of layered halide perovskites publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070317-124406 – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: CR74 article-title: Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700162 – ident: CR53 – volume: 141 start-page: 1171 year: 2019 end-page: 1190 ident: CR58 article-title: Two-dimensional hybrid halide perovskites: principles and promises publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10851 – volume: 10 start-page: 19019 year: 2018 end-page: 19026 ident: CR41 article-title: Novel series of quasi-2D Ruddlesden–Popper perovskites based on short-chained spacer cation for enhanced photodetection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03517 – volume: 140 start-page: 459 year: 2018 end-page: 465 ident: CR60 article-title: Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11157 – ident: CR6 – ident: CR56 – ident: CR63 – volume: 11 start-page: 23198 year: 2019 end-page: 23206 ident: CR13 article-title: Triple-cation-based perovskite photocathodes with AZO protective layer for hydrogen production applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04963 – volume: 8 start-page: 791 year: 1996 end-page: 800 ident: CR54 article-title: Synthesis, crystal structure, and optical and thermal properties of (C H NH ) MI (M = Ge, Sn, Pb) publication-title: Chem. Mater. doi: 10.1021/cm9505097 – volume: 11 start-page: 3358 year: 2018 end-page: 3366 ident: CR33 article-title: High performance ambient-air-stable FAPbI 3 perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02542H – volume: 118 start-page: 11566 year: 2014 end-page: 11572 ident: CR3 article-title: Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites publication-title: J. Phys. Chem. C doi: 10.1021/jp503337a – volume: 1 start-page: 2253 year: 2019 end-page: 2259 ident: CR42 article-title: Influence of the organic chain on the optical properties of two-dimensional organic-inorganic hybrid lead iodide perovskites publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.9b00466 – volume: 7 start-page: 25227 year: 2015 end-page: 25236 ident: CR10 article-title: Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07026 – volume: 8 start-page: 25660 year: 2016 end-page: 25666 ident: CR40 article-title: Photodetectors based on two-dimensional layer-structured hybrid lead iodide Perovskite semiconductors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09489 – volume: 9 start-page: 687 year: 2014 end-page: 692 ident: CR8 article-title: Bright light-emitting diodes based on organometal halide perovskite publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.149 – volume: 15 start-page: 6095 year: 2015 end-page: 6101 ident: CR9 article-title: Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02369 – volume: 7 start-page: 1584 year: 2019 end-page: 1591 ident: CR64 article-title: Two-dimensional (PEA) PbBr perovskite single crystals for a high performance UV-detector publication-title: J. Mater. Chem. C doi: 10.1039/C8TC06129G – volume: 12 start-page: 672 year: 2020 end-page: 682 ident: CR19 article-title: Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer publication-title: Nat. Chem. doi: 10.1038/s41557-020-0488-2 – volume: 4 start-page: 101 year: 2014 ident: CR27 article-title: Two-step fabrication of R-PbI Br y type light emitting inorganic-organic hybrid photonic structures publication-title: Opt. Mater. Express doi: 10.1364/OME.4.000101 – ident: CR34 – volume: 122 start-page: 5940 year: 2018 end-page: 5947 ident: CR15 article-title: Lead-free perovskite semiconductors based on germanium-tin solid solutions: structural and optoelectronic properties publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b00480 – volume: 63 start-page: 735 year: 2007 end-page: 747 ident: CR55 article-title: Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(C H NH ) PbI ], n = 4, 5 and 6 publication-title: Acta Crystallogr. Sect. B Struct. Sci. doi: 10.1107/S0108768107031758 – ident: CR7 – volume: 30 start-page: 1 year: 2018 end-page: 15 ident: CR17 article-title: 2D Ruddlesden–Popper perovskites for optoelectronics publication-title: Adv. Mater. – ident: CR28 – ident: CR62 – volume: 18 start-page: 1856 year: 2018 end-page: 1862 ident: CR12 article-title: Photo-Rechargeable Organo-Halide Perovskite Batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05153 – ident: CR24 – volume: 1 start-page: 404 year: 2018 end-page: 410 ident: CR73 article-title: Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors publication-title: Nat. Electron. doi: 10.1038/s41928-018-0101-5 – volume: 9 start-page: 3416 year: 2018 end-page: 3424 ident: CR43 article-title: Tuning the optoelectronic properties of two-dimensional hybrid perovskite semiconductors with alkyl chain spacers publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01309 – volume: 12 start-page: 26384 year: 2020 end-page: 26390 ident: CR21 article-title: Determining in-plane carrier diffusion in two-dimensional perovskite using local time-resolved photoluminescence publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05539 – volume: 12 start-page: 783 year: 2018 end-page: 789 ident: CR37 article-title: High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes publication-title: Nat. Photonics doi: 10.1038/s41566-018-0283-4 – volume: 5 start-page: 1035 year: 2014 end-page: 1039 ident: CR2 article-title: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500279b – ident: 6108_CR28 doi: 10.1063/1.4851715 – volume: 53 start-page: 11232 year: 2014 ident: 6108_CR30 publication-title: Angew. Chemie - Int. Ed. doi: 10.1002/anie.201406466 – ident: 6108_CR57 doi: 10.1073/pnas.1811006115 – ident: 6108_CR6 doi: 10.1126/science.1243982 – volume: 11 start-page: 23198 year: 2019 ident: 6108_CR13 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04963 – volume: 10 start-page: 19019 year: 2018 ident: 6108_CR41 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03517 – volume: 2 start-page: 3370 year: 2021 ident: 6108_CR14 publication-title: Mater. Adv. doi: 10.1039/D1MA00020A – volume: 122 start-page: 5940 year: 2018 ident: 6108_CR15 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b00480 – volume: 1 start-page: 404 year: 2018 ident: 6108_CR73 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0101-5 – volume: 139 start-page: 16297 year: 2017 ident: 6108_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09096 – volume: 140 start-page: 11639 year: 2018 ident: 6108_CR69 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04604 – volume: 9 start-page: 687 year: 2014 ident: 6108_CR8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.149 – volume: 7 start-page: 25227 year: 2015 ident: 6108_CR10 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07026 – volume: 16 start-page: 7001 year: 2016 ident: 6108_CR47 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03114 – volume: 8 start-page: 1 year: 2018 ident: 6108_CR45 publication-title: Adv. Energy Mater. – volume: 15 start-page: 6095 year: 2015 ident: 6108_CR9 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02369 – volume: 9 start-page: 1 year: 2019 ident: 6108_CR68 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900185 – volume: 5 start-page: 1035 year: 2014 ident: 6108_CR2 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500279b – volume: 1 start-page: 2253 year: 2019 ident: 6108_CR42 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.9b00466 – ident: 6108_CR7 doi: 10.1126/science.1243167 – volume: 31 start-page: 83 year: 2019 ident: 6108_CR39 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b02999 – volume: 12 start-page: 26384 year: 2020 ident: 6108_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05539 – volume: 5 start-page: 1 year: 2019 ident: 6108_CR32 publication-title: Sci. Adv. – volume: 12 start-page: 783 year: 2018 ident: 6108_CR37 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0283-4 – ident: 6108_CR70 doi: 10.1038/s41699-021-00214-3 – volume: 3 start-page: 2671 year: 2018 ident: 6108_CR16 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01504 – ident: 6108_CR56 doi: 10.1063/5.0025729 – volume: 45 start-page: 6961 year: 1992 ident: 6108_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.6961 – volume: 10 start-page: 2095 year: 2017 ident: 6108_CR26 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01145H – volume: 8 start-page: 25660 year: 2016 ident: 6108_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09489 – ident: 6108_CR22 doi: 10.1002/advs.201900941 – volume: 18 start-page: 3221 year: 2018 ident: 6108_CR59 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00990 – volume: 11 start-page: 10834 year: 2017 ident: 6108_CR5 publication-title: ACS Nano doi: 10.1021/acsnano.7b03984 – volume: 11 start-page: 872 year: 2016 ident: 6108_CR36 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.110 – volume: 79 start-page: 1607 year: 2006 ident: 6108_CR50 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.79.1607 – ident: 6108_CR4 doi: 10.1038/natrevmats.2017.42 – volume: 11 start-page: 3358 year: 2018 ident: 6108_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02542H – volume: 28 start-page: 2852 year: 2016 ident: 6108_CR23 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00847 – ident: 6108_CR24 doi: 10.1002/pssr.202070015 – volume: 29 start-page: 1 year: 2017 ident: 6108_CR72 publication-title: Adv. Mater. – volume: 7 start-page: 1584 year: 2019 ident: 6108_CR64 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC06129G – volume: 30 start-page: 1 year: 2018 ident: 6108_CR17 publication-title: Adv. Mater. – volume: 5 start-page: 1421 year: 2014 ident: 6108_CR11 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5005285 – volume: 5 start-page: 8 year: 2020 ident: 6108_CR44 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02366 – ident: 6108_CR18 doi: 10.1021/acsaelm.0c00554 – volume: 9 start-page: 2 year: 2018 ident: 6108_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02294-6 – volume: 9 start-page: 3416 year: 2018 ident: 6108_CR43 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01309 – volume: 3 start-page: 380 year: 2018 ident: 6108_CR71 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01245 – volume: 63 start-page: 735 year: 2007 ident: 6108_CR55 publication-title: Acta Crystallogr. Sect. B Struct. Sci. doi: 10.1107/S0108768107031758 – ident: 6108_CR46 doi: 10.1063/1.5133653 – volume: 59 start-page: 563 year: 1986 ident: 6108_CR49 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.59.563 – volume: 118 start-page: 11566 year: 2014 ident: 6108_CR3 publication-title: J. Phys. Chem. C doi: 10.1021/jp503337a – ident: 6108_CR63 doi: 10.1107/S0108270106013953 – volume: 4 start-page: 101 year: 2014 ident: 6108_CR27 publication-title: Opt. Mater. Express doi: 10.1364/OME.4.000101 – ident: 6108_CR53 doi: 10.1038/s41467-019-08768-z – volume: 8 start-page: 791 year: 1996 ident: 6108_CR54 publication-title: Chem. Mater. doi: 10.1021/cm9505097 – volume: 137 start-page: 7843 year: 2015 ident: 6108_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03796 – volume: 141 start-page: 1171 year: 2019 ident: 6108_CR58 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10851 – volume: 140 start-page: 459 year: 2018 ident: 6108_CR60 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11157 – volume: 51 start-page: 619 year: 2018 ident: 6108_CR65 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00433 – ident: 6108_CR51 doi: 10.1126/science.aac7660 – volume: 138 start-page: 2649 year: 2016 ident: 6108_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11740 – volume: 48 start-page: 111 year: 2018 ident: 6108_CR66 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070317-124406 – volume: 7 start-page: 1 year: 2017 ident: 6108_CR74 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700162 – volume: 18 start-page: 1856 year: 2018 ident: 6108_CR12 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05153 – ident: 6108_CR25 doi: 10.1016/j.flatc.2019.100116 – volume: 12 start-page: 4919 year: 2018 ident: 6108_CR61 publication-title: ACS Nano doi: 10.1021/acsnano.8b01999 – volume: 11 start-page: 2955 year: 2020 ident: 6108_CR48 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00594 – volume: 7 start-page: 13119 year: 2015 ident: 6108_CR67 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02159 – volume: 12 start-page: 672 year: 2020 ident: 6108_CR19 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0488-2 – volume: 131 start-page: 6050 year: 2009 ident: 6108_CR1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – ident: 6108_CR34 doi: 10.1021/ic011190x – ident: 6108_CR62 doi: 10.1126/science.aaa0472 – volume: 20 start-page: 13241 year: 2018 ident: 6108_CR29 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP01573B |
| SSID | ssj0000529419 |
| Score | 2.5803561 |
| Snippet | Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an... Ruddlesden-Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an... Abstract Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2176 |
| SubjectTerms | 639/301/1005 639/301/1019/1020 639/301/357/1018 Carbon cycle Crystal structure Humanities and Social Sciences Illumination Lasers Methylamine multidisciplinary Phase transitions Scanning electron microscopy Science Science (multidisciplinary) Solar cells Thin films Transition temperatures |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Ni9QwNOiq4GX9XOy6SgQPs6xlm482yUFER5cRdBhEYW8lSRNdkLZOZxa8iEe96j_cX-JL25mxC-5FaKE06WvC-8x7yXsIPU6cY1p6Fmdeq5hb42LlHY-lNcYaUpDUtXlm34jpVB4fq1nvcGv6bZUrmdgK6qKywUd-SDMqQgiM02f1lzhUjQrR1b6ExmV0BSwbErZ0vaWztY8lRLE4Uf1ZmYTJwwb0VThTBiswUGSJjOVAH7Vp-we25vmdkufCpa0WOrrxv-O_ibZ7-xM_7wjmFrrkytvoWleR8usd9O3dMjgsGpBGZ99_z6q6dnNMX-KQTvy0CZ7eBlceB8ctHo2ziRrTCZ9O2D4djScsPJRnP36RmSlfs_KA4BGA-fkUbgLg-D4GExlX9aLaVN_Bf4fQ76IPR6_ejydxX6IhtikRi9hyqRNnktQISSwFU90UkhWMW-WlKgpBE-0KzzWnNk01S5nwgmVOCWNk5hjbQVtlVbp7CGtSCO2tyXwhORCQSlUmtATYXhvOfYTIClG57fOXhzIan_M2js5k3iE3B-TmLXJzGaGD9Td1l73jwt4vAv7XPUPm7fZFNf-Y94ycO6Zs6mDesBbj0lItGBhhYIYKT4hPSYT2VvjPe3HQ5BvkR-jRuhkYOURndOmqZdeHSxCxKkJiQHWDAQ1bypNPbUpwWCdJmYoIPVnR5-bn_57w7sVjvY-u05ZT4FJ7aGsxX7oH6Ko9XZw084ctq_0BqF8zwQ priority: 102 providerName: ProQuest |
| Title | Ruddlesden–Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1–4) for optoelectronic applications |
| URI | https://link.springer.com/article/10.1038/s41598-022-06108-8 https://www.proquest.com/docview/2627014542 https://www.proquest.com/docview/2627483189 https://pubmed.ncbi.nlm.nih.gov/PMC8828857 https://doaj.org/article/e39c5ec4825548c2a737434567f11f51 |
| Volume | 12 |
| WOSCitedRecordID | wos000757457000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6q-BF_MTqOlTwMMtatvlokxw8uOMus-AOZVFYTyVJE1yQdpjOLHgRj3rV_3D_El_SzuzMgnoR2lCaNE3yXvJe8pLfQ-hlai1VwtEkd0omzGibSGdZIozWRuMKZzbgzL7jk4k4O5PFmqsvvyesgwfuGm7fUmkyaxjMZEC5NkRxCkIPxD53GLtweJqkXK5NpjpUbyIZlv0pmZSK_RYklT9NBnMvEGGpSMSGJAqA_Rta5vU9ktcMpUH-HN1Dd3vFMX7TFfg-umHrB-h250ryy0P09XThVxpaGEYuv_0qmunUzmLyNvY44BetX6Jt48bFfsU1Ho7ysRyRMZuM6S4ZjsbUP9SX33_iQtfHtN7D8RCy-fEabgzZsd0YdNu4mc6bK7c58brt-xH6cHT4fjROet8KickwnyfQoCq1Os00F9gQ0LF1JWhFmZFOyKriJFW2ckwxYrJM0Yxyx2luJdda5JbSx2irbmr7BMUKV1w5o3NXCQaUl5nMuRKQt1OaMRchvGzn0vTA497_xecyGMCpKDvalECbMtCmFBHaW30z7WA3_pr6wJNvldJDZocXwEhlz0jlvxgpQjtL4pd9P25LkhPuDa-MROjFKhp6oDerqNo2iy4NEzA2ygjxDabZKNBmTH3-KWB5wwRHiIxH6NWSva5-_ucKP_0fFX6G7pDQHeCSO2hrPlvY5-iWuZift7MBusnPeAjFAG0fHE6K00HoYxCekMKHHMLt4vik-Pgb4fErfw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAYIX7ojAACOBtGlEiy-J7YcJQceUaqWq0JD2ltmODZNQUpp2aC-IR3iF_8GP2i_BzqWlk9jbHpBSKWocN26-cz8-B4BnkTFEckvCxEoRUq1MKKyhIddKaYVyFJu6zuyADYf84ECMVsDvbi-MT6vseGLNqPNSex_5Fk4w8yEwil-OP4e-a5SPrnYtNBpY7JmTL85kq7b7O-79Psd4981-Lw3brgKhjhGbhppyGRkVxYpxpLHTLlXOSU6oFpaLPGc4kia3VFKs41iSmDDLSGIEU4onxjtAHcu_RH1lMZ8qiEdzn46PmlEk2r05EeFblZOPfg-bs_ic4Ix4yJfkX90mYEm3PZuZeSY8W0u93Rv_2_91E1xv9Wv4qiGIW2DFFLfBlabj5skd8PXdzDtkKsdtT7_9GpXjsZlAvAN9ufTjynuyK1ha6B3TcL2XpKKHUzpMyQZe76XEnxSn33-ikSr6pNhEcN1N82PbfZCbjm5AZwLAcjwtF92F4N8pAnfB-wtZ_D2wWpSFuQ-gRDmTVqvE5pw6AhGxSJjkbm4rFaU2AKgDRqbb-uy-TcinrM4TIDxrwJQ5MGU1mDIegM35PeOmOsm5o197vM1H-sri9Rfl5EPWMqrMEKFj49btbE3KNZaMOCXTqdnMImRjFIC1Dm9Zy-6qbAG2ADydX3aMykefZGHKWTOGcidCRADYEsqXHmj5SnH0sS557uxAzmMWgBcdPSx-_N8LfnD-sz4BV9P9t4Ns0B_uPQTXcE2l7hBrYHU6mZlH4LI-nh5Vk8c1mUNweNF08gdLgpEY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9NAFB6Wroov3sXoqhEUuqyhmUsyMw-LaGtp2bUEUVifYjKZ0QVJatOu7Iv4qK_6b_w5-0s8k0trF9y3fRBSCM1kmmm-cz9zDkKPfa1pIgz1QpNIj6lUe9Jo5gmVpirFGQ50VWd2n08m4uBARhvod7sXxqZVtjyxYtRZoayPvEdCwm0IjJGeadIiosHw2fSzZztI2Uhr206jhsiePv4C5lu5Ox7Au35CyPDlm_7IazoMeCrAfO4pJhJfp36QcoEVAU0zzQTNKFPSCJllnPiJzgxLGFFBkNCAcsNpqCVPUxFq6wwF9r8JKjkjHbQZjV9F75YeHhtDY1g2O3V8KnolSEu7ow3sPxCjvvDEmjSsmgasabqn8zRPBWsrGTi8-j__e9fQlUbzdp_XpHIdbej8BrpY9-I8vom-vl5YV00JfPjk26-omE71zCUD1xZSPyqtj7t0C-Nal7Xb7Ycj2ScjNhnRbdLtj6g9yU--_8RRmo9pvoPdLkzzYxc-GKZj2y4YB24xnRervkPu38kDt9Dbc1n8bdTJi1zfQW6CM54YlYYmEwxIRwYy5ImAuU2SMmYchFuQxKqp3G4biHyKqwwCKuIaWDEAK66AFQsH7SzvmdZ1S84c_cJibznS1hyvvihmH-KGhcWaShVoWDdYoUwoknAK6ico4NxgbALsoK0We3HDCMt4BTwHPVpeBhZm41JJrotFPYYJEC7SQXwN8WsPtH4lP_xYFUMHC1GIgDvoaUsbqx__94Lvnv2sD9ElII94fzzZu4cuk4pg4ZBbqDOfLfR9dEEdzQ_L2YOG5l30_rwJ5Q_ZK5th |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ruddlesden%E2%80%93Popper+2D+perovskites+of+type+%28C6H9C2H4NH3%292%28CH3NH3%29n%E2%88%921PbnI3n%2B1+%28n+%3D+1%E2%80%934%29+for+optoelectronic+applications&rft.jtitle=Scientific+reports&rft.au=Rahil%2C+Mohammad&rft.au=Ansari%2C+Rashid+Malik&rft.au=Prakash%2C+Chandra&rft.au=Islam%2C+S.+S.&rft.date=2022-02-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-06108-8&rft_id=info%3Apmid%2F35140250&rft.externalDocID=PMC8828857 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |