Ruddlesden–Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1–4) for optoelectronic applications

Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 12; H. 1; S. 2176 - 13
Hauptverfasser: Rahil, Mohammad, Ansari, Rashid Malik, Prakash, Chandra, Islam, S. S., Dixit, Ambesh, Ahmad, Shahab
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 09.02.2022
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH) 2 (MA) n−1 Pb n I 3n+1 ; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI 6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH) 2 (MA) n−1 Pb n I 3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm 2 for n = 1 to 70 nA/cm 2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm 2 ). Furthermore, for lowest bandgap RP perovskite n = 4, (CH) 2 MA 3 Pb 4 I 13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm 2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.
AbstractList Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n−1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n−1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.
Abstract Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n−1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n−1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.
Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n−1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n−1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.
Ruddlesden-Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n-1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1-4. The demonstrated RP perovskite of type for n = 1-4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n-1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.Ruddlesden-Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH)2(MA)n-1PbnI3n+1; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1-4. The demonstrated RP perovskite of type for n = 1-4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH)2(MA)n-1PbnI3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm2 for n = 1 to 70 nA/cm2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm2). Furthermore, for lowest bandgap RP perovskite n = 4, (CH)2MA3Pb4I13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.
Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH) 2 (MA) n−1 Pb n I 3n+1 ; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI 6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH) 2 (MA) n−1 Pb n I 3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm 2 for n = 1 to 70 nA/cm 2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm 2 ). Furthermore, for lowest bandgap RP perovskite n = 4, (CH) 2 MA 3 Pb 4 I 13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm 2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.
ArticleNumber 2176
Author Ahmad, Shahab
Dixit, Ambesh
Islam, S. S.
Prakash, Chandra
Rahil, Mohammad
Ansari, Rashid Malik
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Rahil
  fullname: Rahil, Mohammad
  organization: Advanced Energy Materials Group, Department of Physics, Indian Institute of Technology Jodhpur, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University)
– sequence: 2
  givenname: Rashid Malik
  surname: Ansari
  fullname: Ansari, Rashid Malik
  organization: Advanced Energy Materials Group, Department of Physics, Indian Institute of Technology Jodhpur
– sequence: 3
  givenname: Chandra
  surname: Prakash
  fullname: Prakash, Chandra
  organization: Department of Physics, Indian Institute of Technology Jodhpur
– sequence: 4
  givenname: S. S.
  surname: Islam
  fullname: Islam, S. S.
  organization: Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University)
– sequence: 5
  givenname: Ambesh
  surname: Dixit
  fullname: Dixit, Ambesh
  organization: Department of Physics, Indian Institute of Technology Jodhpur
– sequence: 6
  givenname: Shahab
  orcidid: 0000-0002-7846-4804
  surname: Ahmad
  fullname: Ahmad, Shahab
  email: shahab@iitj.ac.in
  organization: Advanced Energy Materials Group, Department of Physics, Indian Institute of Technology Jodhpur
BookMark eNp9ks9u1DAQxiNUREvpC3CKxGUrFLDHduwcQELhz65UQYXgbDnOZMmStVM7W6kXxBGu8IZ9EtzdCmgPtWTNyP6-34zseZjtOe8wyx5T8owSpp5HTkWlCgJQkJISVah72QEQLgpgAHv_5fvZUYwrkpaAitPqQbbPBOUEBDnIvn3ctO2AsUV3-f33qR9HDDm8zlPw5_FrP2HMfZdPFyPms7qcVzXM-fs5O4ZZPWdXibv88YueNm7B3FOazxLm54u0acLx47zzIffj5HFAOwXvepubcRx6a6beu_gou9-ZIeLRdTzMPr9986meFycf3i3qVyeFFVROheXKEGyIaKSiFqSEplWsZdxWnaraVgIx2HbccLBCGCaY7CQrsZJNo0pk7DBb7LitNys9hn5twoX2ptfbAx-W2oSptwNqZJUVmCqCEFxZMJJJzrgoZUdpJ2hivdyxxk2zxtaim4IZbkBv3rj-i176c60UKCVkAsyuAcGfbTBOet1Hi8NgHPpN1FCC5IpRVSXpk1vSld8El55qqyKUCw5JBTuVDT7GgN3fZijRV9Oid9Oi07To7bRolUzqlsn20_ZXUtP9cLeV7awx1XFLDP-6usP1B5K81V0
CitedBy_id crossref_primary_10_1016_j_nxener_2025_100239
crossref_primary_10_3390_inorganics13070240
crossref_primary_10_1186_s40580_024_00473_y
crossref_primary_10_3390_nano15161267
crossref_primary_10_3390_mi14091706
crossref_primary_10_1016_j_matlet_2025_138965
crossref_primary_10_1002_adsu_202300043
crossref_primary_10_1002_anie_202418708
crossref_primary_10_1002_adfm_202417167
crossref_primary_10_1002_cnma_202300625
crossref_primary_10_1039_D3NR04861F
crossref_primary_10_1063_5_0139686
crossref_primary_10_1016_j_optlastec_2024_110889
crossref_primary_10_1002_adma_202309154
crossref_primary_10_1038_s41598_023_48753_7
crossref_primary_10_1002_smll_202401350
crossref_primary_10_3390_app14146096
crossref_primary_10_1002_admi_202202170
crossref_primary_10_1002_ange_202208264
crossref_primary_10_1016_j_ijhydene_2024_09_049
crossref_primary_10_1016_j_sna_2024_115076
crossref_primary_10_1016_j_inoche_2025_114932
crossref_primary_10_1039_D4NR05516K
crossref_primary_10_1007_s40820_023_01110_9
crossref_primary_10_1039_D4QM00780H
crossref_primary_10_1021_jacs_5c02818
crossref_primary_10_1002_solr_202400201
crossref_primary_10_1002_adfm_202422267
crossref_primary_10_1002_pssr_202300221
crossref_primary_10_1039_D5RA03422A
crossref_primary_10_1016_j_cej_2024_151459
crossref_primary_10_1016_j_infrared_2024_105306
crossref_primary_10_1002_adom_202501008
crossref_primary_10_1002_adom_202300957
crossref_primary_10_1002_ange_202418708
crossref_primary_10_1002_adma_202413839
crossref_primary_10_1038_s41586_024_08073_w
crossref_primary_10_1002_adom_202300776
crossref_primary_10_1039_D5TC00346F
crossref_primary_10_1002_anie_202208264
crossref_primary_10_1021_acs_jpcc_5c01707
crossref_primary_10_1016_j_flatc_2023_100586
crossref_primary_10_1016_j_physb_2025_417828
crossref_primary_10_1016_j_colsurfa_2024_135728
Cites_doi 10.1021/jacs.5b11740
10.1039/C7EE01145H
10.1038/nnano.2016.110
10.1002/anie.201406466
10.1021/acsenergylett.8b01504
10.1021/jacs.8b04604
10.1021/acs.chemmater.6b00847
10.1103/PhysRevB.45.6961
10.1021/acs.nanolett.8b00990
10.1021/acsnano.8b01999
10.1021/acsami.5b02159
10.1021/acsenergylett.9b02366
10.1021/ja809598r
10.1246/bcsj.59.563
10.1039/D1MA00020A
10.1039/C8CP01573B
10.1021/jacs.5b03796
10.1021/jz5005285
10.1021/acsnano.7b03984
10.1021/acs.chemmater.8b02999
10.1021/acs.jpclett.0c00594
10.1246/bcsj.79.1607
10.1021/jacs.7b09096
10.1021/acsenergylett.7b01245
10.1021/acs.accounts.7b00433
10.1021/acs.nanolett.6b03114
10.1002/aenm.201900185
10.1146/annurev-matsci-070317-124406
10.1002/aenm.201700162
10.1021/jacs.8b10851
10.1021/acsami.8b03517
10.1021/jacs.7b11157
10.1021/acsami.9b04963
10.1021/cm9505097
10.1039/C8EE02542H
10.1021/jp503337a
10.1021/acsaelm.9b00466
10.1021/acsami.5b07026
10.1021/acsami.6b09489
10.1038/nnano.2014.149
10.1021/acs.nanolett.5b02369
10.1039/C8TC06129G
10.1038/s41557-020-0488-2
10.1364/OME.4.000101
10.1021/acs.jpcc.8b00480
10.1107/S0108768107031758
10.1021/acs.nanolett.7b05153
10.1038/s41928-018-0101-5
10.1021/acs.jpclett.8b01309
10.1021/acsami.0c05539
10.1038/s41566-018-0283-4
10.1021/jz500279b
10.1063/1.4851715
10.1073/pnas.1811006115
10.1126/science.1243982
10.1126/science.1243167
10.1038/s41699-021-00214-3
10.1063/5.0025729
10.1002/advs.201900941
10.1038/natrevmats.2017.42
10.1002/pssr.202070015
10.1021/acsaelm.0c00554
10.1038/s41467-017-02294-6
10.1063/1.5133653
10.1107/S0108270106013953
10.1038/s41467-019-08768-z
10.1126/science.aac7660
10.1016/j.flatc.2019.100116
10.1021/ic011190x
10.1126/science.aaa0472
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-06108-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Proquest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_e39c5ec4825548c2a737434567f11f51
PMC8828857
10_1038_s41598_022_06108_8
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: ECR/2018/002056; ECR/2018/002056; ECR/2018/002056
  funderid: http://dx.doi.org/10.13039/501100001843
– fundername: Department of Science and Technology, Government of India
  grantid: DST/TMD/MES/2K18/124G; DST/TMD/MES/2K18/124G; DST/TMD/MES/2K18/124G
– fundername: ;
  grantid: ECR/2018/002056; ECR/2018/002056; ECR/2018/002056
– fundername: ;
  grantid: DST/TMD/MES/2K18/124G; DST/TMD/MES/2K18/124G; DST/TMD/MES/2K18/124G
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-c48a0eb05b781c2772bd83d34c9f89dd720aedf4a42c55a3537f736e97bb86e33
IEDL.DBID DOA
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757457000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:27:06 EDT 2025
Tue Nov 04 01:59:55 EST 2025
Thu Sep 04 15:17:47 EDT 2025
Tue Oct 07 07:36:35 EDT 2025
Tue Nov 18 21:30:30 EST 2025
Sat Nov 29 02:51:25 EST 2025
Fri Feb 21 02:40:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-c48a0eb05b781c2772bd83d34c9f89dd720aedf4a42c55a3537f736e97bb86e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7846-4804
OpenAccessLink https://doaj.org/article/e39c5ec4825548c2a737434567f11f51
PMID 35140250
PQID 2627014542
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e39c5ec4825548c2a737434567f11f51
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8828857
proquest_miscellaneous_2627483189
proquest_journals_2627014542
crossref_primary_10_1038_s41598_022_06108_8
crossref_citationtrail_10_1038_s41598_022_06108_8
springer_journals_10_1038_s41598_022_06108_8
PublicationCentury 2000
PublicationDate 2022-02-09
PublicationDateYYYYMMDD 2022-02-09
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Venkatesan, Labram, Chabinyc (CR71) 2018; 3
Vashishtha, Ng, Shivarudraiah, Halpert (CR39) 2019; 31
Raghavan (CR59) 2018; 18
Smith, Crace, Jaffe, Karunadasa (CR66) 2018; 48
CR34
Kumawat (CR67) 2015; 7
Mathieson (CR14) 2021; 2
Zhou (CR60) 2018; 140
Kuai (CR44) 2020; 5
Milot (CR47) 2016; 16
CR70
Hong, Ishihara, Nurmikko (CR20) 1992; 45
Yuan (CR36) 2016; 11
Zhang (CR64) 2019; 7
Feng (CR73) 2018; 1
CR4
Yang (CR38) 2018; 9
De Wolf (CR2) 2014; 5
CR6
Deschler (CR11) 2014; 5
Nagane (CR15) 2018; 122
Zhao (CR37) 2018; 12
CR7
Smith, Hoke, Solis-Ibarra, McGehee, Karunadasa (CR30) 2014; 53
Ghosh, Neukirch, Tretiak (CR48) 2020; 11
Lai (CR69) 2018; 140
CR46
Cao, Stoumpos, Farha, Hupp, Kanatzidis (CR31) 2015; 137
Quarti, Marchal, Beljonne (CR43) 2018; 9
Passarelli (CR19) 2020; 12
Dolzhenko, Inabe, Maruyama (CR49) 1986; 59
Gan (CR68) 2019; 9
Wang, Wu, Yang, Jiang, Priya (CR61) 2018; 12
Liu (CR32) 2019; 5
Abdi-Jalebi (CR16) 2018; 3
Ahmad (CR10) 2015; 7
Ahmad (CR13) 2019; 11
CR18
Quan (CR35) 2016; 138
Ahmad, George, Beesley, Baumberg, De Volder (CR12) 2018; 18
Tan (CR8) 2014; 9
CR57
CR56
Niu (CR33) 2018; 11
CR53
CR51
Zhou, Chu, Huang (CR40) 2016; 8
Zhang (CR45) 2018; 8
Chen (CR74) 2017; 7
Lei, Zhao, Tang, Lin, Cai (CR29) 2018; 20
Chen, Shi (CR72) 2017; 29
Ahmad, Prakash (CR27) 2014; 4
Liu (CR42) 2019; 1
Smith, Karunadasa (CR65) 2018; 51
Kojima, Teshima, Shirai, Miyasaka (CR1) 2009; 131
Chen (CR17) 2018; 30
Ni (CR5) 2017; 11
Zhou (CR21) 2020; 12
Mao, Stoumpos, Kanatzidis (CR58) 2019; 141
CR28
Billing, Lemmerer (CR55) 2007; 63
Zhang (CR26) 2017; 10
CR25
Soe (CR52) 2017; 139
CR24
CR22
Mitzi (CR54) 1996; 8
CR63
CR62
Dong (CR41) 2018; 10
Takeoka, Asai, Rikukawa, Sanui (CR50) 2006; 79
Even (CR3) 2014; 118
Sadhanala (CR9) 2015; 15
Stoumpos (CR23) 2016; 28
X Yang (6108_CR38) 2018; 9
Y Liu (6108_CR32) 2019; 5
Z Gan (6108_CR68) 2019; 9
DH Cao (6108_CR31) 2015; 137
S Ahmad (6108_CR13) 2019; 11
S Chen (6108_CR72) 2017; 29
6108_CR18
6108_CR57
6108_CR56
CC Stoumpos (6108_CR23) 2016; 28
6108_CR53
MD Smith (6108_CR66) 2018; 48
M Abdi-Jalebi (6108_CR16) 2018; 3
X Hong (6108_CR20) 1992; 45
Y Zhang (6108_CR64) 2019; 7
C Quarti (6108_CR43) 2018; 9
M Yuan (6108_CR36) 2016; 11
6108_CR51
C Zhou (6108_CR21) 2020; 12
S Ahmad (6108_CR27) 2014; 4
DG Billing (6108_CR55) 2007; 63
DB Mitzi (6108_CR54) 1996; 8
6108_CR28
6108_CR24
YI Dolzhenko (6108_CR49) 1986; 59
6108_CR25
RL Milot (6108_CR47) 2016; 16
Y Takeoka (6108_CR50) 2006; 79
6108_CR63
6108_CR22
A Mathieson (6108_CR14) 2021; 2
6108_CR62
Y Chen (6108_CR74) 2017; 7
J Even (6108_CR3) 2014; 118
CM Raghavan (6108_CR59) 2018; 18
JH Lei (6108_CR29) 2018; 20
J Zhou (6108_CR40) 2016; 8
D Ghosh (6108_CR48) 2020; 11
ZK Tan (6108_CR8) 2014; 9
T Niu (6108_CR33) 2018; 11
NK Kumawat (6108_CR67) 2015; 7
MD Smith (6108_CR65) 2018; 51
6108_CR6
6108_CR34
6108_CR4
X Zhang (6108_CR26) 2017; 10
6108_CR7
NR Venkatesan (6108_CR71) 2018; 3
R Dong (6108_CR41) 2018; 10
L Mao (6108_CR58) 2019; 141
6108_CR70
S Ahmad (6108_CR12) 2018; 18
S Ahmad (6108_CR10) 2015; 7
L Kuai (6108_CR44) 2020; 5
CMM Soe (6108_CR52) 2017; 139
A Kojima (6108_CR1) 2009; 131
N Zhou (6108_CR60) 2018; 140
JV Passarelli (6108_CR19) 2020; 12
P Vashishtha (6108_CR39) 2019; 31
X Zhang (6108_CR45) 2018; 8
LN Quan (6108_CR35) 2016; 138
K Wang (6108_CR61) 2018; 12
G Liu (6108_CR42) 2019; 1
6108_CR46
L Ni (6108_CR5) 2017; 11
A Sadhanala (6108_CR9) 2015; 15
Y Chen (6108_CR17) 2018; 30
B Zhao (6108_CR37) 2018; 12
F Deschler (6108_CR11) 2014; 5
S Nagane (6108_CR15) 2018; 122
H Lai (6108_CR69) 2018; 140
S De Wolf (6108_CR2) 2014; 5
J Feng (6108_CR73) 2018; 1
IC Smith (6108_CR30) 2014; 53
References_xml – ident: CR70
– ident: CR22
– volume: 8
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR45
  article-title: Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%
  publication-title: Adv. Energy Mater.
– ident: CR4
– volume: 138
  start-page: 2649
  year: 2016
  end-page: 2655
  ident: CR35
  article-title: Ligand-stabilized reduced-dimensionality perovskites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11740
– ident: CR51
– volume: 10
  start-page: 2095
  year: 2017
  end-page: 2102
  ident: CR26
  article-title: Stable high efficiency two-dimensional perovskite solar cells via cesium doping
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01145H
– volume: 11
  start-page: 872
  year: 2016
  end-page: 877
  ident: CR36
  article-title: Perovskite energy funnels for efficient light-emitting diodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.110
– volume: 53
  start-page: 11232
  year: 2014
  end-page: 11235
  ident: CR30
  article-title: A Layered hybrid perovskite solar-cell absorber with enhanced moisture stability
  publication-title: Angew. Chemie - Int. Ed.
  doi: 10.1002/anie.201406466
– volume: 3
  start-page: 2671
  year: 2018
  end-page: 2678
  ident: CR16
  article-title: Potassium-and rubidium-passivated alloyed perovskite films: optoelectronic properties and moisture stability
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01504
– volume: 140
  start-page: 11639
  year: 2018
  end-page: 11646
  ident: CR69
  article-title: Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04604
– ident: CR25
– volume: 28
  start-page: 2852
  year: 2016
  end-page: 2867
  ident: CR23
  article-title: Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00847
– volume: 45
  start-page: 6961
  year: 1992
  end-page: 6964
  ident: CR20
  article-title: Dielectric confinement effect on excitons in PbI4-based layered semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.6961
– volume: 18
  start-page: 3221
  year: 2018
  end-page: 3228
  ident: CR59
  article-title: Low-threshold lasing from 2D homologous organic-inorganic hybrid Ruddlesden–Popper perovskite single crystals
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00990
– volume: 12
  start-page: 4919
  year: 2018
  end-page: 4929
  ident: CR61
  article-title: Quasi-two-dimensional halide perovskite single crystal photodetector
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01999
– volume: 7
  start-page: 13119
  year: 2015
  end-page: 13124
  ident: CR67
  article-title: Band gap tuning of CH NH Pb(Br C ) hybrid perovskite for blue electroluminescence
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02159
– volume: 5
  start-page: 8
  year: 2020
  end-page: 16
  ident: CR44
  article-title: Revealing crystallization dynamics and the compositional control mechanism of 2D perovskite film growth by in situ synchrotron-based GIXRD
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02366
– ident: CR46
– volume: 9
  start-page: 2
  year: 2018
  end-page: 9
  ident: CR38
  article-title: Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation
  publication-title: Nat. Commun.
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: CR1
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 59
  start-page: 563
  year: 1986
  end-page: 567
  ident: CR49
  article-title: In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C H NH ) PbI and (C H NH ) CdCl
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.59.563
– volume: 2
  start-page: 3370
  year: 2021
  end-page: 3377
  ident: CR14
  article-title: Ruddlesden–Popper 2D perovskites as Li-ion battery electrodes
  publication-title: Mater. Adv.
  doi: 10.1039/D1MA00020A
– volume: 20
  start-page: 13241
  year: 2018
  end-page: 13248
  ident: CR29
  article-title: High transport and excellent optical property of a two-dimensional single-layered hybrid perovskite (C H NH ) PbBr : a theoretical study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01573B
– ident: CR57
– volume: 137
  start-page: 7843
  year: 2015
  end-page: 7850
  ident: CR31
  article-title: 2D Homologous perovskites as light-absorbing materials for solar cell applications
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03796
– volume: 5
  start-page: 1421
  year: 2014
  end-page: 1426
  ident: CR11
  article-title: High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5005285
– volume: 5
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR32
  article-title: Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%
  publication-title: Sci. Adv.
– volume: 11
  start-page: 10834
  year: 2017
  end-page: 10843
  ident: CR5
  article-title: Real-time observation of exciton-phonon coupling dynamics in self-assembled hybrid perovskite quantum wells
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03984
– volume: 29
  start-page: 1
  year: 2017
  end-page: 31
  ident: CR72
  article-title: Two-dimensional materials for halide perovskite-based optoelectronic devices
  publication-title: Adv. Mater.
– volume: 31
  start-page: 83
  year: 2019
  end-page: 89
  ident: CR39
  article-title: High efficiency blue and green light-emitting diodes using Ruddlesden–Popper inorganic mixed halide perovskites with butylammonium interlayers
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02999
– volume: 11
  start-page: 2955
  year: 2020
  end-page: 2964
  ident: CR48
  article-title: Optoelectronic properties of two-dimensional bromide perovskites: influences of spacer cations
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00594
– volume: 79
  start-page: 1607
  year: 2006
  end-page: 1613
  ident: CR50
  article-title: Systematic studies on chain lengths, halide species, and well thicknesses for lead halide layered perovskite thin films
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.79.1607
– volume: 139
  start-page: 16297
  year: 2017
  end-page: 16309
  ident: CR52
  article-title: New type of 2D perovskites with alternating cations in the interlayer space, (C(NH ) )(CH NH ) Pb I : structure, properties, and photovoltaic performance
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09096
– volume: 3
  start-page: 380
  year: 2018
  end-page: 386
  ident: CR71
  article-title: Charge-carrier dynamics and crystalline texture of layered Ruddlesden–Popper hybrid lead iodide perovskite thin films
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01245
– volume: 51
  start-page: 619
  year: 2018
  end-page: 627
  ident: CR65
  article-title: White-light emission from layered halide perovskites
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00433
– ident: CR18
– volume: 16
  start-page: 7001
  year: 2016
  end-page: 7007
  ident: CR47
  article-title: Charge-carrier dynamics in 2D hybrid metal-halide perovskites
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03114
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR68
  article-title: The dominant energy transport pathway in halide perovskites: photon recycling or carrier diffusion?
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900185
– volume: 48
  start-page: 111
  year: 2018
  end-page: 136
  ident: CR66
  article-title: The diversity of layered halide perovskites
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070317-124406
– volume: 7
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR74
  article-title: Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700162
– ident: CR53
– volume: 141
  start-page: 1171
  year: 2019
  end-page: 1190
  ident: CR58
  article-title: Two-dimensional hybrid halide perovskites: principles and promises
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10851
– volume: 10
  start-page: 19019
  year: 2018
  end-page: 19026
  ident: CR41
  article-title: Novel series of quasi-2D Ruddlesden–Popper perovskites based on short-chained spacer cation for enhanced photodetection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03517
– volume: 140
  start-page: 459
  year: 2018
  end-page: 465
  ident: CR60
  article-title: Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11157
– ident: CR6
– ident: CR56
– ident: CR63
– volume: 11
  start-page: 23198
  year: 2019
  end-page: 23206
  ident: CR13
  article-title: Triple-cation-based perovskite photocathodes with AZO protective layer for hydrogen production applications
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04963
– volume: 8
  start-page: 791
  year: 1996
  end-page: 800
  ident: CR54
  article-title: Synthesis, crystal structure, and optical and thermal properties of (C H NH ) MI (M = Ge, Sn, Pb)
  publication-title: Chem. Mater.
  doi: 10.1021/cm9505097
– volume: 11
  start-page: 3358
  year: 2018
  end-page: 3366
  ident: CR33
  article-title: High performance ambient-air-stable FAPbI 3 perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02542H
– volume: 118
  start-page: 11566
  year: 2014
  end-page: 11572
  ident: CR3
  article-title: Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503337a
– volume: 1
  start-page: 2253
  year: 2019
  end-page: 2259
  ident: CR42
  article-title: Influence of the organic chain on the optical properties of two-dimensional organic-inorganic hybrid lead iodide perovskites
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.9b00466
– volume: 7
  start-page: 25227
  year: 2015
  end-page: 25236
  ident: CR10
  article-title: Strong photocurrent from two-dimensional excitons in solution-processed stacked perovskite semiconductor sheets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07026
– volume: 8
  start-page: 25660
  year: 2016
  end-page: 25666
  ident: CR40
  article-title: Photodetectors based on two-dimensional layer-structured hybrid lead iodide Perovskite semiconductors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09489
– volume: 9
  start-page: 687
  year: 2014
  end-page: 692
  ident: CR8
  article-title: Bright light-emitting diodes based on organometal halide perovskite
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.149
– volume: 15
  start-page: 6095
  year: 2015
  end-page: 6101
  ident: CR9
  article-title: Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02369
– volume: 7
  start-page: 1584
  year: 2019
  end-page: 1591
  ident: CR64
  article-title: Two-dimensional (PEA) PbBr perovskite single crystals for a high performance UV-detector
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC06129G
– volume: 12
  start-page: 672
  year: 2020
  end-page: 682
  ident: CR19
  article-title: Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0488-2
– volume: 4
  start-page: 101
  year: 2014
  ident: CR27
  article-title: Two-step fabrication of R-PbI Br y type light emitting inorganic-organic hybrid photonic structures
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.4.000101
– ident: CR34
– volume: 122
  start-page: 5940
  year: 2018
  end-page: 5947
  ident: CR15
  article-title: Lead-free perovskite semiconductors based on germanium-tin solid solutions: structural and optoelectronic properties
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b00480
– volume: 63
  start-page: 735
  year: 2007
  end-page: 747
  ident: CR55
  article-title: Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(C H NH ) PbI ], n = 4, 5 and 6
  publication-title: Acta Crystallogr. Sect. B Struct. Sci.
  doi: 10.1107/S0108768107031758
– ident: CR7
– volume: 30
  start-page: 1
  year: 2018
  end-page: 15
  ident: CR17
  article-title: 2D Ruddlesden–Popper perovskites for optoelectronics
  publication-title: Adv. Mater.
– ident: CR28
– ident: CR62
– volume: 18
  start-page: 1856
  year: 2018
  end-page: 1862
  ident: CR12
  article-title: Photo-Rechargeable Organo-Halide Perovskite Batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05153
– ident: CR24
– volume: 1
  start-page: 404
  year: 2018
  end-page: 410
  ident: CR73
  article-title: Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0101-5
– volume: 9
  start-page: 3416
  year: 2018
  end-page: 3424
  ident: CR43
  article-title: Tuning the optoelectronic properties of two-dimensional hybrid perovskite semiconductors with alkyl chain spacers
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01309
– volume: 12
  start-page: 26384
  year: 2020
  end-page: 26390
  ident: CR21
  article-title: Determining in-plane carrier diffusion in two-dimensional perovskite using local time-resolved photoluminescence
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05539
– volume: 12
  start-page: 783
  year: 2018
  end-page: 789
  ident: CR37
  article-title: High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0283-4
– volume: 5
  start-page: 1035
  year: 2014
  end-page: 1039
  ident: CR2
  article-title: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500279b
– ident: 6108_CR28
  doi: 10.1063/1.4851715
– volume: 53
  start-page: 11232
  year: 2014
  ident: 6108_CR30
  publication-title: Angew. Chemie - Int. Ed.
  doi: 10.1002/anie.201406466
– ident: 6108_CR57
  doi: 10.1073/pnas.1811006115
– ident: 6108_CR6
  doi: 10.1126/science.1243982
– volume: 11
  start-page: 23198
  year: 2019
  ident: 6108_CR13
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04963
– volume: 10
  start-page: 19019
  year: 2018
  ident: 6108_CR41
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03517
– volume: 2
  start-page: 3370
  year: 2021
  ident: 6108_CR14
  publication-title: Mater. Adv.
  doi: 10.1039/D1MA00020A
– volume: 122
  start-page: 5940
  year: 2018
  ident: 6108_CR15
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b00480
– volume: 1
  start-page: 404
  year: 2018
  ident: 6108_CR73
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0101-5
– volume: 139
  start-page: 16297
  year: 2017
  ident: 6108_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09096
– volume: 140
  start-page: 11639
  year: 2018
  ident: 6108_CR69
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04604
– volume: 9
  start-page: 687
  year: 2014
  ident: 6108_CR8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.149
– volume: 7
  start-page: 25227
  year: 2015
  ident: 6108_CR10
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07026
– volume: 16
  start-page: 7001
  year: 2016
  ident: 6108_CR47
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03114
– volume: 8
  start-page: 1
  year: 2018
  ident: 6108_CR45
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 6095
  year: 2015
  ident: 6108_CR9
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02369
– volume: 9
  start-page: 1
  year: 2019
  ident: 6108_CR68
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900185
– volume: 5
  start-page: 1035
  year: 2014
  ident: 6108_CR2
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500279b
– volume: 1
  start-page: 2253
  year: 2019
  ident: 6108_CR42
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.9b00466
– ident: 6108_CR7
  doi: 10.1126/science.1243167
– volume: 31
  start-page: 83
  year: 2019
  ident: 6108_CR39
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02999
– volume: 12
  start-page: 26384
  year: 2020
  ident: 6108_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05539
– volume: 5
  start-page: 1
  year: 2019
  ident: 6108_CR32
  publication-title: Sci. Adv.
– volume: 12
  start-page: 783
  year: 2018
  ident: 6108_CR37
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0283-4
– ident: 6108_CR70
  doi: 10.1038/s41699-021-00214-3
– volume: 3
  start-page: 2671
  year: 2018
  ident: 6108_CR16
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01504
– ident: 6108_CR56
  doi: 10.1063/5.0025729
– volume: 45
  start-page: 6961
  year: 1992
  ident: 6108_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.6961
– volume: 10
  start-page: 2095
  year: 2017
  ident: 6108_CR26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01145H
– volume: 8
  start-page: 25660
  year: 2016
  ident: 6108_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09489
– ident: 6108_CR22
  doi: 10.1002/advs.201900941
– volume: 18
  start-page: 3221
  year: 2018
  ident: 6108_CR59
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00990
– volume: 11
  start-page: 10834
  year: 2017
  ident: 6108_CR5
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03984
– volume: 11
  start-page: 872
  year: 2016
  ident: 6108_CR36
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.110
– volume: 79
  start-page: 1607
  year: 2006
  ident: 6108_CR50
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.79.1607
– ident: 6108_CR4
  doi: 10.1038/natrevmats.2017.42
– volume: 11
  start-page: 3358
  year: 2018
  ident: 6108_CR33
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02542H
– volume: 28
  start-page: 2852
  year: 2016
  ident: 6108_CR23
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00847
– ident: 6108_CR24
  doi: 10.1002/pssr.202070015
– volume: 29
  start-page: 1
  year: 2017
  ident: 6108_CR72
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1584
  year: 2019
  ident: 6108_CR64
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC06129G
– volume: 30
  start-page: 1
  year: 2018
  ident: 6108_CR17
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1421
  year: 2014
  ident: 6108_CR11
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5005285
– volume: 5
  start-page: 8
  year: 2020
  ident: 6108_CR44
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02366
– ident: 6108_CR18
  doi: 10.1021/acsaelm.0c00554
– volume: 9
  start-page: 2
  year: 2018
  ident: 6108_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02294-6
– volume: 9
  start-page: 3416
  year: 2018
  ident: 6108_CR43
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01309
– volume: 3
  start-page: 380
  year: 2018
  ident: 6108_CR71
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01245
– volume: 63
  start-page: 735
  year: 2007
  ident: 6108_CR55
  publication-title: Acta Crystallogr. Sect. B Struct. Sci.
  doi: 10.1107/S0108768107031758
– ident: 6108_CR46
  doi: 10.1063/1.5133653
– volume: 59
  start-page: 563
  year: 1986
  ident: 6108_CR49
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.59.563
– volume: 118
  start-page: 11566
  year: 2014
  ident: 6108_CR3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503337a
– ident: 6108_CR63
  doi: 10.1107/S0108270106013953
– volume: 4
  start-page: 101
  year: 2014
  ident: 6108_CR27
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.4.000101
– ident: 6108_CR53
  doi: 10.1038/s41467-019-08768-z
– volume: 8
  start-page: 791
  year: 1996
  ident: 6108_CR54
  publication-title: Chem. Mater.
  doi: 10.1021/cm9505097
– volume: 137
  start-page: 7843
  year: 2015
  ident: 6108_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03796
– volume: 141
  start-page: 1171
  year: 2019
  ident: 6108_CR58
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10851
– volume: 140
  start-page: 459
  year: 2018
  ident: 6108_CR60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11157
– volume: 51
  start-page: 619
  year: 2018
  ident: 6108_CR65
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00433
– ident: 6108_CR51
  doi: 10.1126/science.aac7660
– volume: 138
  start-page: 2649
  year: 2016
  ident: 6108_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11740
– volume: 48
  start-page: 111
  year: 2018
  ident: 6108_CR66
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070317-124406
– volume: 7
  start-page: 1
  year: 2017
  ident: 6108_CR74
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700162
– volume: 18
  start-page: 1856
  year: 2018
  ident: 6108_CR12
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05153
– ident: 6108_CR25
  doi: 10.1016/j.flatc.2019.100116
– volume: 12
  start-page: 4919
  year: 2018
  ident: 6108_CR61
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01999
– volume: 11
  start-page: 2955
  year: 2020
  ident: 6108_CR48
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00594
– volume: 7
  start-page: 13119
  year: 2015
  ident: 6108_CR67
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02159
– volume: 12
  start-page: 672
  year: 2020
  ident: 6108_CR19
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0488-2
– volume: 131
  start-page: 6050
  year: 2009
  ident: 6108_CR1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– ident: 6108_CR34
  doi: 10.1021/ic011190x
– ident: 6108_CR62
  doi: 10.1126/science.aaa0472
– volume: 20
  start-page: 13241
  year: 2018
  ident: 6108_CR29
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP01573B
SSID ssj0000529419
Score 2.5803561
Snippet Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an...
Ruddlesden-Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an...
Abstract Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2176
SubjectTerms 639/301/1005
639/301/1019/1020
639/301/357/1018
Carbon cycle
Crystal structure
Humanities and Social Sciences
Illumination
Lasers
Methylamine
multidisciplinary
Phase transitions
Scanning electron microscopy
Science
Science (multidisciplinary)
Solar cells
Thin films
Transition temperatures
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Ni9QwNOiq4GX9XOy6SgQPs6xlm482yUFER5cRdBhEYW8lSRNdkLZOZxa8iEe96j_cX-JL25mxC-5FaKE06WvC-8x7yXsIPU6cY1p6Fmdeq5hb42LlHY-lNcYaUpDUtXlm34jpVB4fq1nvcGv6bZUrmdgK6qKywUd-SDMqQgiM02f1lzhUjQrR1b6ExmV0BSwbErZ0vaWztY8lRLE4Uf1ZmYTJwwb0VThTBiswUGSJjOVAH7Vp-we25vmdkufCpa0WOrrxv-O_ibZ7-xM_7wjmFrrkytvoWleR8usd9O3dMjgsGpBGZ99_z6q6dnNMX-KQTvy0CZ7eBlceB8ctHo2ziRrTCZ9O2D4djScsPJRnP36RmSlfs_KA4BGA-fkUbgLg-D4GExlX9aLaVN_Bf4fQ76IPR6_ejydxX6IhtikRi9hyqRNnktQISSwFU90UkhWMW-WlKgpBE-0KzzWnNk01S5nwgmVOCWNk5hjbQVtlVbp7CGtSCO2tyXwhORCQSlUmtATYXhvOfYTIClG57fOXhzIan_M2js5k3iE3B-TmLXJzGaGD9Td1l73jwt4vAv7XPUPm7fZFNf-Y94ycO6Zs6mDesBbj0lItGBhhYIYKT4hPSYT2VvjPe3HQ5BvkR-jRuhkYOURndOmqZdeHSxCxKkJiQHWDAQ1bypNPbUpwWCdJmYoIPVnR5-bn_57w7sVjvY-u05ZT4FJ7aGsxX7oH6Ko9XZw084ctq_0BqF8zwQ
  priority: 102
  providerName: ProQuest
Title Ruddlesden–Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1–4) for optoelectronic applications
URI https://link.springer.com/article/10.1038/s41598-022-06108-8
https://www.proquest.com/docview/2627014542
https://www.proquest.com/docview/2627483189
https://pubmed.ncbi.nlm.nih.gov/PMC8828857
https://doaj.org/article/e39c5ec4825548c2a737434567f11f51
Volume 12
WOSCitedRecordID wos000757457000085&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Biological Science
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6q-BF_MTqOlTwMMtatvlokxw8uOMus-AOZVFYTyVJE1yQdpjOLHgRj3rV_3D_El_SzuzMgnoR2lCaNE3yXvJe8pLfQ-hlai1VwtEkd0omzGibSGdZIozWRuMKZzbgzL7jk4k4O5PFmqsvvyesgwfuGm7fUmkyaxjMZEC5NkRxCkIPxD53GLtweJqkXK5NpjpUbyIZlv0pmZSK_RYklT9NBnMvEGGpSMSGJAqA_Rta5vU9ktcMpUH-HN1Dd3vFMX7TFfg-umHrB-h250ryy0P09XThVxpaGEYuv_0qmunUzmLyNvY44BetX6Jt48bFfsU1Ho7ysRyRMZuM6S4ZjsbUP9SX33_iQtfHtN7D8RCy-fEabgzZsd0YdNu4mc6bK7c58brt-xH6cHT4fjROet8KickwnyfQoCq1Os00F9gQ0LF1JWhFmZFOyKriJFW2ckwxYrJM0Yxyx2luJdda5JbSx2irbmr7BMUKV1w5o3NXCQaUl5nMuRKQt1OaMRchvGzn0vTA497_xecyGMCpKDvalECbMtCmFBHaW30z7WA3_pr6wJNvldJDZocXwEhlz0jlvxgpQjtL4pd9P25LkhPuDa-MROjFKhp6oDerqNo2iy4NEzA2ygjxDabZKNBmTH3-KWB5wwRHiIxH6NWSva5-_ucKP_0fFX6G7pDQHeCSO2hrPlvY5-iWuZift7MBusnPeAjFAG0fHE6K00HoYxCekMKHHMLt4vik-Pgb4fErfw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamAYIX7ojAACOBtGlEiy-J7YcJQceUaqWq0JD2ltmODZNQUpp2aC-IR3iF_8GP2i_BzqWlk9jbHpBSKWocN26-cz8-B4BnkTFEckvCxEoRUq1MKKyhIddKaYVyFJu6zuyADYf84ECMVsDvbi-MT6vseGLNqPNSex_5Fk4w8yEwil-OP4e-a5SPrnYtNBpY7JmTL85kq7b7O-79Psd4981-Lw3brgKhjhGbhppyGRkVxYpxpLHTLlXOSU6oFpaLPGc4kia3VFKs41iSmDDLSGIEU4onxjtAHcu_RH1lMZ8qiEdzn46PmlEk2r05EeFblZOPfg-bs_ic4Ix4yJfkX90mYEm3PZuZeSY8W0u93Rv_2_91E1xv9Wv4qiGIW2DFFLfBlabj5skd8PXdzDtkKsdtT7_9GpXjsZlAvAN9ufTjynuyK1ha6B3TcL2XpKKHUzpMyQZe76XEnxSn33-ikSr6pNhEcN1N82PbfZCbjm5AZwLAcjwtF92F4N8pAnfB-wtZ_D2wWpSFuQ-gRDmTVqvE5pw6AhGxSJjkbm4rFaU2AKgDRqbb-uy-TcinrM4TIDxrwJQ5MGU1mDIegM35PeOmOsm5o197vM1H-sri9Rfl5EPWMqrMEKFj49btbE3KNZaMOCXTqdnMImRjFIC1Dm9Zy-6qbAG2ADydX3aMykefZGHKWTOGcidCRADYEsqXHmj5SnH0sS557uxAzmMWgBcdPSx-_N8LfnD-sz4BV9P9t4Ns0B_uPQTXcE2l7hBrYHU6mZlH4LI-nh5Vk8c1mUNweNF08gdLgpEY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9NAFB6Wroov3sXoqhEUuqyhmUsyMw-LaGtp2bUEUVifYjKZ0QVJatOu7Iv4qK_6b_w5-0s8k0trF9y3fRBSCM1kmmm-cz9zDkKPfa1pIgz1QpNIj6lUe9Jo5gmVpirFGQ50VWd2n08m4uBARhvod7sXxqZVtjyxYtRZoayPvEdCwm0IjJGeadIiosHw2fSzZztI2Uhr206jhsiePv4C5lu5Ox7Au35CyPDlm_7IazoMeCrAfO4pJhJfp36QcoEVAU0zzQTNKFPSCJllnPiJzgxLGFFBkNCAcsNpqCVPUxFq6wwF9r8JKjkjHbQZjV9F75YeHhtDY1g2O3V8KnolSEu7ow3sPxCjvvDEmjSsmgasabqn8zRPBWsrGTi8-j__e9fQlUbzdp_XpHIdbej8BrpY9-I8vom-vl5YV00JfPjk26-omE71zCUD1xZSPyqtj7t0C-Nal7Xb7Ycj2ScjNhnRbdLtj6g9yU--_8RRmo9pvoPdLkzzYxc-GKZj2y4YB24xnRervkPu38kDt9Dbc1n8bdTJi1zfQW6CM54YlYYmEwxIRwYy5ImAuU2SMmYchFuQxKqp3G4biHyKqwwCKuIaWDEAK66AFQsH7SzvmdZ1S84c_cJibznS1hyvvihmH-KGhcWaShVoWDdYoUwoknAK6ico4NxgbALsoK0We3HDCMt4BTwHPVpeBhZm41JJrotFPYYJEC7SQXwN8WsPtH4lP_xYFUMHC1GIgDvoaUsbqx__94Lvnv2sD9ElII94fzzZu4cuk4pg4ZBbqDOfLfR9dEEdzQ_L2YOG5l30_rwJ5Q_ZK5th
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ruddlesden%E2%80%93Popper+2D+perovskites+of+type+%28C6H9C2H4NH3%292%28CH3NH3%29n%E2%88%921PbnI3n%2B1+%28n+%3D+1%E2%80%934%29+for+optoelectronic+applications&rft.jtitle=Scientific+reports&rft.au=Rahil%2C+Mohammad&rft.au=Ansari%2C+Rashid+Malik&rft.au=Prakash%2C+Chandra&rft.au=Islam%2C+S.+S.&rft.date=2022-02-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-06108-8&rft_id=info%3Apmid%2F35140250&rft.externalDocID=PMC8828857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon