Ruddlesden–Popper 2D perovskites of type (C6H9C2H4NH3)2(CH3NH3)n−1PbnI3n+1 (n = 1–4) for optoelectronic applications

Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 12; číslo 1; s. 2176 - 13
Hlavní autoři: Rahil, Mohammad, Ansari, Rashid Malik, Prakash, Chandra, Islam, S. S., Dixit, Ambesh, Ahmad, Shahab
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 09.02.2022
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Ruddlesden–Popper (RP) phase metal halide organo perovskites are being extensively studied due to their quasi-two dimensional (2D) nature which makes them an excellent material for several optoelectronic device applications such as solar cells, photo-detectors, light emitting diodes (LEDs), lasers etc. While most of reports show use of linear carbon chain based organic moiety, such as n-Butylamine, as organic spacer in RP perovskite crystal structure, here we report a new series of quasi 2D perovskites with a ring type cyclic carbon group as organic spacer forming RP perovskite of type (CH) 2 (MA) n−1 Pb n I 3n+1 ; CH = 2-(1-Cyclohexenyl)ethylamine; MA = Methylamine). This work highlights the synthesis, structural, thermal, optical and optoelectronic characterizations for the new RP perovskite series n = 1–4. The demonstrated RP perovskite of type for n = 1–4 have shown formation of highly crystalline thin films with alternate stacking of organic and inorganic layers, where the order of PbI 6 octahedron layering are controlled by n-value, and shown uniform direct bandgap tunable from 2.51 eV (n = 1) to 1.92 eV (n = 4). The PL lifetime measurements supported the fact that lifetime of charge carriers increase with n-value of RP perovskites [154 ps (n = 1) to 336 ps (n = 4)]. Thermogravimetric analysis (TGA) showed highly stable nature of reported RP perovskites with linear increase in phase transition temperatures from 257 °C (n = 1) to 270 °C (n = 4). Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) are used to investigate the surface morphology and elemental compositions of thin films. In addition, the photodetectors fabricated for the series using (CH) 2 (MA) n−1 Pb n I 3n+1 RP perovskite as active absorbing layer and without any charge transport layers, shown sharp photocurrent response from 17 nA/cm 2 for n = 1 to 70 nA/cm 2 for n = 4, under zero bias and low power illumination conditions (470 nm LED, 1.5 mW/cm 2 ). Furthermore, for lowest bandgap RP perovskite n = 4, (CH) 2 MA 3 Pb 4 I 13 the photodetector showed maximum photocurrent density of ~ 508 nA/cm 2 at 3 V under similar illumination condition, thus giving fairly large responsivity (46.65 mA/W). Our investigations show that 2-(1-Cyclohexenyl)ethylamine based RP perovskites can be potential solution processed semiconducting materials for optoelectronic applications such as photo-detectors, solar cells, LEDs, photobatteries etc.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-06108-8