Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature

CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailore...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 12; no. 1; pp. 6022 - 9
Main Authors: Yang, Tang, Mao, Xinnan, Zhang, Ying, Wu, Xiaoping, Wang, Lu, Chu, Mingyu, Pao, Chih-Wen, Yang, Shize, Xu, Yong, Huang, Xiaoqing
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 15.10.2021
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CO 2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C 3 N 4 -supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N 4 and Cu–N 3 , can serve as highly selective and active catalysts for CO 2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N 4 favors CO 2 hydrogenation to form CH 3 OH via the formate pathway, while Cu–N 3 tends to catalyze CO 2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH 3 OH productivity and selectivity reach 4.2 mmol g –1 h –1 and 95.5%, respectively, for Cu–N 4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. CO 2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C 3 N 4 serve as highly selective catalysts for CO 2 hydrogenation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-26316-6