Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions

As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+ -induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 13; H. 1; S. 5365 - 11
Hauptverfasser: Dong, Haijiao, Du, Wei, Dong, Jian, Che, Renchao, Kong, Fei, Cheng, Wenlong, Ma, Ming, Gu, Ning, Zhang, Yu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 12.09.2022
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+ -induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe 2+ within Fe 3 O 4 can transfer electrons to the surface via the Fe 2+ -O-Fe 3+ chain, regenerating the surface Fe 2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe 3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe 3 O 4 nanozymes suffer the phase transformation to γ-Fe 2 O 3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes. The mechanism of peroxidase-like Fe 3 O 4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity.
AbstractList As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe2+-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe2+ within Fe3O4 can transfer electrons to the surface via the Fe2+-O-Fe3+ chain, regenerating the surface Fe2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe3O4 nanozymes suffer the phase transformation to γ-Fe2O3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes.As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe2+-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe2+ within Fe3O4 can transfer electrons to the surface via the Fe2+-O-Fe3+ chain, regenerating the surface Fe2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe3O4 nanozymes suffer the phase transformation to γ-Fe2O3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes.
As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+ -induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe 2+ within Fe 3 O 4 can transfer electrons to the surface via the Fe 2+ -O-Fe 3+ chain, regenerating the surface Fe 2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe 3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe 3 O 4 nanozymes suffer the phase transformation to γ-Fe 2 O 3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes.
As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe2+-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe2+ within Fe3O4 can transfer electrons to the surface via the Fe2+-O-Fe3+ chain, regenerating the surface Fe2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe3O4 nanozymes suffer the phase transformation to γ-Fe2O3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes. The mechanism of peroxidase-like Fe3O4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity.
The mechanism of peroxidase-like Fe3O4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity.
As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+ -induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe 2+ within Fe 3 O 4 can transfer electrons to the surface via the Fe 2+ -O-Fe 3+ chain, regenerating the surface Fe 2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe 3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe 3 O 4 nanozymes suffer the phase transformation to γ-Fe 2 O 3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes. The mechanism of peroxidase-like Fe 3 O 4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity.
ArticleNumber 5365
Author Cheng, Wenlong
Kong, Fei
Che, Renchao
Zhang, Yu
Dong, Jian
Dong, Haijiao
Du, Wei
Ma, Ming
Gu, Ning
Author_xml – sequence: 1
  givenname: Haijiao
  orcidid: 0000-0001-8568-2757
  surname: Dong
  fullname: Dong, Haijiao
  organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-9962-6630
  surname: Du
  fullname: Du, Wei
  organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University
– sequence: 3
  givenname: Jian
  surname: Dong
  fullname: Dong, Jian
  organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University
– sequence: 4
  givenname: Renchao
  orcidid: 0000-0002-6583-7114
  surname: Che
  fullname: Che, Renchao
  organization: Laboratory of Advanced Materials, Fudan University, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Department of Materials Science, Fudan University
– sequence: 5
  givenname: Fei
  surname: Kong
  fullname: Kong, Fei
  organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University
– sequence: 6
  givenname: Wenlong
  orcidid: 0000-0002-2346-4970
  surname: Cheng
  fullname: Cheng, Wenlong
  organization: Department of Chemical Engineering, Faculty of Engineering, Monash University, The Melbourne Centre for Nanofabrication
– sequence: 7
  givenname: Ming
  orcidid: 0000-0001-5324-4082
  surname: Ma
  fullname: Ma, Ming
  email: maming@seu.edu.cn
  organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University
– sequence: 8
  givenname: Ning
  orcidid: 0000-0003-0047-337X
  surname: Gu
  fullname: Gu, Ning
  email: guning@seu.edu.cn
  organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University
– sequence: 9
  givenname: Yu
  orcidid: 0000-0002-0228-7979
  surname: Zhang
  fullname: Zhang, Yu
  email: zhangyu@seu.edu.cn
  organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University
BookMark eNp9Uktv1DAQjlARLaV_gFMkLlwCfiW2L0ioUKhUqRc4W44z3npJ7GA7Lcuvx7upgPZQX2bk7-GR53tZHfngoapeY_QOIyreJ4ZZxxtESEMpkqLZPatOCGK4wZzQo__64-ospS0qh0osGHtRHdMOSV6wk2r5BPMIWfcj1DPE8MsNOkEzuh9Qa5Pdrcu7Otj6Aug1q7324fduglQwE6ZZewdDfefyTZ1g1lFnqCe3KdUFv5fBCCbH4IvAD7UrXV2Q9Kp6bvWY4Oy-nlbfLz5_O__aXF1_uTz_eNWYFvPcEKqx5QOS0FLSd7glFjrdgu37jksydJzyVjI2CA6cWUoQQR1mVljAtpUDPa0uV98h6K2ao5t03KmgnTpchLhROmZnRlBIkI6B4EQiy6TppUWIU4KtLE4tN8Xrw-o1L_0EgwGfox4fmD5EvLtRm3CrZNmTFLwYvL03iOHnAimrySUD46g9hCUpwjFDreSoLdQ3j6jbsERfvmrPopgISWVhkZVlYkgpgv07DEZqHxK1hkSVkKhDSNSuiMQjkXH5sK8ytBufltJVmso7fgPx31RPqP4Apo7Szg
CitedBy_id crossref_primary_10_1039_D4AN01242A
crossref_primary_10_1038_s41467_024_50123_4
crossref_primary_10_3390_catal13010178
crossref_primary_10_3390_molecules29010130
crossref_primary_10_1007_s00216_024_05679_x
crossref_primary_10_1016_j_diamond_2023_109914
crossref_primary_10_1016_j_cej_2024_157897
crossref_primary_10_1134_S1070428024603716
crossref_primary_10_1016_j_cej_2024_153298
crossref_primary_10_1016_j_seppur_2024_131314
crossref_primary_10_1002_adma_202210848
crossref_primary_10_1016_j_cej_2025_161757
crossref_primary_10_1007_s11426_022_1544_x
crossref_primary_10_1016_j_jhazmat_2024_136722
crossref_primary_10_1016_j_ccr_2024_215937
crossref_primary_10_1016_j_inoche_2025_114237
crossref_primary_10_1016_j_microc_2024_112320
crossref_primary_10_1007_s11426_022_1529_y
crossref_primary_10_1007_s00216_023_04720_9
crossref_primary_10_1002_anie_202301232
crossref_primary_10_1016_j_apsusc_2023_157879
crossref_primary_10_1016_j_jconrel_2025_113755
crossref_primary_10_1186_s12974_025_03456_w
crossref_primary_10_1002_smll_202309664
crossref_primary_10_1039_D5MH01108F
crossref_primary_10_1016_j_apsusc_2024_159655
crossref_primary_10_1016_j_cej_2025_161080
crossref_primary_10_1016_j_jece_2024_113097
crossref_primary_10_1186_s40779_025_00611_5
crossref_primary_10_1016_j_foodchem_2023_136059
crossref_primary_10_1039_D3NR00048F
crossref_primary_10_1002_smll_202411116
crossref_primary_10_1002_smll_202300736
crossref_primary_10_1016_j_cej_2024_152510
crossref_primary_10_1039_D3QM01202F
crossref_primary_10_1002_adfm_202311398
crossref_primary_10_1016_j_cej_2024_153606
crossref_primary_10_3389_fbioe_2025_1548025
crossref_primary_10_1016_j_cej_2024_149233
crossref_primary_10_1016_j_ab_2023_115224
crossref_primary_10_1016_j_surfin_2025_106455
crossref_primary_10_1039_D5CC00180C
crossref_primary_10_1039_D4NR04219K
crossref_primary_10_1002_anie_202319108
crossref_primary_10_1016_j_microc_2024_112347
crossref_primary_10_1021_acsami_5c10567
crossref_primary_10_1007_s12598_025_03349_0
crossref_primary_10_1002_anie_202424070
crossref_primary_10_1016_j_ccr_2023_215519
crossref_primary_10_1021_jacs_4c15819
crossref_primary_10_1002_smll_202305974
crossref_primary_10_1039_D5CC03464G
crossref_primary_10_1007_s12274_023_6283_9
crossref_primary_10_1016_j_bios_2024_116259
crossref_primary_10_1016_j_jcis_2023_11_067
crossref_primary_10_1186_s12951_024_02907_5
crossref_primary_10_1016_j_jece_2025_116323
crossref_primary_10_1016_j_bios_2023_115785
crossref_primary_10_1002_ange_202418925
crossref_primary_10_1016_j_nantod_2024_102236
crossref_primary_10_1038_s44222_024_00205_1
crossref_primary_10_1002_smll_202302331
crossref_primary_10_1016_j_foodres_2024_115596
crossref_primary_10_59761_RCR5088
crossref_primary_10_1038_s41467_023_43678_1
crossref_primary_10_1002_slct_202403034
crossref_primary_10_1007_s00216_024_05280_2
crossref_primary_10_1016_j_microc_2025_115111
crossref_primary_10_1016_j_bej_2023_109165
crossref_primary_10_1016_j_jcis_2025_138272
crossref_primary_10_1186_s40580_023_00390_6
crossref_primary_10_1016_j_microc_2024_111428
crossref_primary_10_1016_j_seppur_2025_133546
crossref_primary_10_1002_advs_202411939
crossref_primary_10_1002_adfm_202516559
crossref_primary_10_1039_D5NA00387C
crossref_primary_10_1016_j_trac_2024_117734
crossref_primary_10_3390_nano15100765
crossref_primary_10_1007_s12274_024_6552_2
crossref_primary_10_1007_s12274_024_6685_3
crossref_primary_10_1007_s11756_025_01868_w
crossref_primary_10_1016_j_snb_2025_137785
crossref_primary_10_1016_j_surfin_2025_107484
crossref_primary_10_1016_j_jcis_2025_138721
crossref_primary_10_1002_adhm_202401836
crossref_primary_10_1002_adma_202211041
crossref_primary_10_1016_j_cej_2024_151515
crossref_primary_10_1039_D5NR00880H
crossref_primary_10_3390_catal15060549
crossref_primary_10_1016_j_cej_2025_160629
crossref_primary_10_1021_acsami_5c13728
crossref_primary_10_3390_biomimetics8020177
crossref_primary_10_3390_magnetochemistry9040110
crossref_primary_10_1016_j_microc_2025_114810
crossref_primary_10_1002_ange_202424070
crossref_primary_10_1002_cphc_202401144
crossref_primary_10_1016_j_microc_2024_111680
crossref_primary_10_1186_s12951_025_03558_w
crossref_primary_10_1016_j_jphotochem_2024_115895
crossref_primary_10_3390_bios15070435
crossref_primary_10_1016_j_colsurfa_2023_131309
crossref_primary_10_1063_5_0200505
crossref_primary_10_1016_j_mtcomm_2025_111847
crossref_primary_10_1007_s12668_025_02008_z
crossref_primary_10_1016_j_actbio_2024_03_011
crossref_primary_10_1002_adma_202211151
crossref_primary_10_1016_j_nantod_2024_102386
crossref_primary_10_1016_j_watres_2025_123653
crossref_primary_10_1016_j_ccr_2025_216850
crossref_primary_10_1016_j_jcis_2023_06_188
crossref_primary_10_3762_bjnano_15_125
crossref_primary_10_1002_anie_202504426
crossref_primary_10_1016_j_envres_2025_122714
crossref_primary_10_1186_s12645_024_00293_z
crossref_primary_10_1002_smll_202405851
crossref_primary_10_1016_j_matdes_2025_113890
crossref_primary_10_3389_fchem_2022_1093073
crossref_primary_10_1002_advs_202413105
crossref_primary_10_1002_aoc_7698
crossref_primary_10_1016_j_jmmm_2025_172770
crossref_primary_10_1039_D3NR05427F
crossref_primary_10_1016_j_revmat_2025_100088
crossref_primary_10_1016_j_carbon_2024_119474
crossref_primary_10_1002_cctc_202300544
crossref_primary_10_1016_j_matlet_2024_136480
crossref_primary_10_1002_wnan_1890
crossref_primary_10_1016_j_cej_2025_162590
crossref_primary_10_1002_ange_202504426
crossref_primary_10_1002_advs_202300601
crossref_primary_10_1016_j_procbio_2023_06_014
crossref_primary_10_1039_D4NR04527K
crossref_primary_10_1002_advs_202504601
crossref_primary_10_1016_j_ccr_2025_217033
crossref_primary_10_1016_j_microc_2025_115329
crossref_primary_10_1007_s12613_024_3026_1
crossref_primary_10_1016_j_talanta_2025_127629
crossref_primary_10_1016_j_talanta_2024_127450
crossref_primary_10_1002_smll_202505278
crossref_primary_10_1039_D5MH01000D
crossref_primary_10_1002_adhm_202500189
crossref_primary_10_1016_j_apcatb_2025_125761
crossref_primary_10_26599_NR_2025_94907239
crossref_primary_10_1021_acsanm_5c02305
crossref_primary_10_1016_j_microc_2025_113093
crossref_primary_10_1002_anie_202418925
crossref_primary_10_1016_j_cej_2024_150612
crossref_primary_10_1016_j_colsurfb_2025_115032
crossref_primary_10_1002_chem_202300454
crossref_primary_10_1039_D3NR02496B
crossref_primary_10_1016_j_jece_2024_112727
crossref_primary_10_1016_j_colsurfb_2025_114739
crossref_primary_10_1016_j_cej_2023_146190
crossref_primary_10_1016_j_seppur_2023_125312
crossref_primary_10_1002_smll_202302640
crossref_primary_10_1016_j_cej_2024_148775
crossref_primary_10_1038_s41467_025_62063_8
crossref_primary_10_1016_j_apcatb_2025_125256
crossref_primary_10_1016_j_jcis_2024_07_172
crossref_primary_10_1016_j_bios_2024_116999
crossref_primary_10_1002_advs_202206244
crossref_primary_10_1016_j_ijbiomac_2023_125722
crossref_primary_10_3390_molecules29081848
crossref_primary_10_1021_acsabm_5c00495
crossref_primary_10_1021_acsanm_5c02319
crossref_primary_10_1016_j_apsusc_2024_161597
crossref_primary_10_1016_j_ceramint_2024_12_147
crossref_primary_10_1002_smll_202503879
crossref_primary_10_1002_ange_202319108
crossref_primary_10_1016_j_jhazmat_2024_135228
crossref_primary_10_1016_j_seppur_2024_127688
crossref_primary_10_1039_D3RA03246A
crossref_primary_10_1016_j_jhazmat_2025_138361
crossref_primary_10_1002_bmm2_70013
crossref_primary_10_1016_j_jece_2025_117126
crossref_primary_10_6023_A24100321
crossref_primary_10_1016_j_trac_2022_116858
crossref_primary_10_1007_s00253_025_13589_w
crossref_primary_10_1016_j_surfin_2024_105604
crossref_primary_10_1186_s12645_024_00295_x
crossref_primary_10_1002_smll_202403354
crossref_primary_10_1002_adhm_202402066
crossref_primary_10_3390_nano15141090
crossref_primary_10_1002_anie_202512409
crossref_primary_10_1002_smll_202207142
crossref_primary_10_1002_adfm_202315587
crossref_primary_10_1002_ange_202302255
crossref_primary_10_1007_s11144_025_02856_6
crossref_primary_10_1016_j_ccr_2024_215797
crossref_primary_10_1002_smtd_202400610
crossref_primary_10_1002_smll_202204782
crossref_primary_10_1016_j_apsb_2023_12_017
crossref_primary_10_1038_s41467_024_50344_7
crossref_primary_10_1002_advs_202407148
crossref_primary_10_1002_adma_202502407
crossref_primary_10_1016_j_cej_2025_159940
crossref_primary_10_1016_j_cej_2025_166916
crossref_primary_10_1038_s41467_025_56179_0
crossref_primary_10_1002_adma_202401619
crossref_primary_10_1016_j_seppur_2024_126576
crossref_primary_10_1016_j_xcrp_2024_102074
crossref_primary_10_1021_acsapm_5c00977
crossref_primary_10_1016_j_jcis_2024_05_091
crossref_primary_10_1016_j_cclet_2025_111018
crossref_primary_10_1002_ange_202512409
crossref_primary_10_1002_anie_202302255
crossref_primary_10_3390_chemosensors11040233
crossref_primary_10_1016_j_biortech_2024_131533
crossref_primary_10_1016_j_plaphy_2025_109777
crossref_primary_10_1002_adfm_202401576
crossref_primary_10_1021_acsmeasuresciau_5c00014
crossref_primary_10_1007_s40820_023_01224_0
crossref_primary_10_1007_s10853_023_08389_4
crossref_primary_10_1002_ange_202403771
crossref_primary_10_1016_j_nxmate_2024_100209
crossref_primary_10_1021_acsami_5c07229
crossref_primary_10_1016_j_jpowsour_2024_235785
crossref_primary_10_1016_j_foodchem_2025_144387
crossref_primary_10_1038_s41467_024_50687_1
crossref_primary_10_1002_adma_202211210
crossref_primary_10_1016_j_microc_2024_111392
crossref_primary_10_1016_j_actbio_2025_03_003
crossref_primary_10_1002_advs_202402039
crossref_primary_10_1002_agt2_70150
crossref_primary_10_1007_s00216_024_05416_4
crossref_primary_10_1016_j_cej_2024_155020
crossref_primary_10_1016_j_colsurfb_2025_114548
crossref_primary_10_1016_j_nantod_2023_101755
crossref_primary_10_1063_5_0237766
crossref_primary_10_1016_j_cis_2024_103304
crossref_primary_10_1016_j_foodchem_2025_143189
crossref_primary_10_1002_ange_202301232
crossref_primary_10_1016_j_mtbio_2025_102135
crossref_primary_10_1016_j_apsusc_2023_158633
crossref_primary_10_1016_j_chemosphere_2025_144159
crossref_primary_10_1002_ange_202505907
crossref_primary_10_1016_j_ccr_2025_216575
crossref_primary_10_3389_fchem_2024_1349020
crossref_primary_10_1016_j_ccr_2025_216578
crossref_primary_10_1002_anie_202403771
crossref_primary_10_1002_adhm_202403868
crossref_primary_10_1002_cctc_202400356
crossref_primary_10_1016_j_actbio_2025_07_025
crossref_primary_10_1016_j_carbpol_2025_123918
crossref_primary_10_1016_j_actbio_2024_11_003
crossref_primary_10_1016_j_seppur_2024_127878
crossref_primary_10_1016_j_bios_2024_116594
crossref_primary_10_1016_j_magmed_2025_100002
crossref_primary_10_1016_j_fochx_2024_102051
crossref_primary_10_1002_anie_202505907
crossref_primary_10_1016_j_talanta_2023_124833
crossref_primary_10_1016_j_foodchem_2023_136957
crossref_primary_10_1002_adma_202411618
crossref_primary_10_1002_adma_202408560
crossref_primary_10_1039_D5SC04247J
crossref_primary_10_1016_j_jtice_2023_105171
crossref_primary_10_1016_j_nantod_2023_102142
crossref_primary_10_1002_adfm_202422270
crossref_primary_10_1002_advs_202403935
Cites_doi 10.1016/j.colsurfa.2004.05.009
10.1039/C9NR05799D
10.1039/C0EE00029A
10.1021/acs.accounts.9b00140
10.1016/j.nantod.2021.101269
10.1007/s12274-021-3560-3
10.1002/anie.201807676
10.1002/adma.201905994
10.1039/C6CC08542C
10.1002/cjoc.202000383
10.1038/s41596-018-0001-1
10.1039/c3nr00931a
10.1039/C1EE01263K
10.1021/nl202764f
10.1016/j.ultsonch.2009.11.001
10.1016/0022-1902(77)80523-X
10.1021/ja0380852
10.1039/c3nr03669c
10.1021/nl3027839
10.1103/PhysRevB.44.11402
10.1021/accountsmr.1c00074
10.1016/j.electacta.2011.02.119
10.1021/acsnano.1c07520
10.1039/C9TB00989B
10.1021/acscatal.0c03426
10.1021/acs.jpcc.6b07264
10.1016/j.snb.2019.127511
10.1021/acsnano.9b06134
10.1021/acs.bioconjchem.9b00171
10.1038/srep09298
10.1002/smll.202104083
10.1016/j.atmosenv.2020.117988
10.1016/j.nantod.2021.101106
10.1038/202175a0
10.1021/nn300291r
10.1021/ac702203f
10.1039/C2NR32758A
10.1016/j.mattod.2020.08.020
10.1021/ja104683w
10.1002/EXP.20210005
10.1038/s41467-021-23737-1
10.1021/jacs.7b00601
10.1021/acs.jpcc.9b05371
10.1038/228548a0
10.1038/nnano.2007.260
10.1021/ja046808r
10.1002/ange.200461665
10.1016/j.ccr.2019.213092
10.1016/0039-6028(95)00347-9
10.1002/adma.202107088
10.1126/science.147.3661.1033.a
10.1021/acs.jpcc.9b07802
10.1021/jp027048e
10.1038/nmat1251
10.1016/j.nantod.2021.101317
10.1002/ange.202112453
10.1051/jphyscol:1971190
10.1016/j.mattod.2021.10.032
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-33098-y
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_08264e87290f49cb9f007321f9f5957c
PMC9467987
10_1038_s41467_022_33098_y
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61821002; 82072067
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 61821002; 82072067
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c517t-23a1f7d09e532b6152fe6a5efbb6792d67375944d87e74f32020614f8fe1f59d3
IEDL.DBID M7P
ISICitedReferencesCount 258
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853182100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:42:20 EDT 2025
Tue Nov 04 02:02:30 EST 2025
Thu Sep 04 19:59:48 EDT 2025
Tue Oct 07 07:15:36 EDT 2025
Sat Nov 29 02:11:19 EST 2025
Tue Nov 18 21:45:42 EST 2025
Fri Feb 21 02:38:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c517t-23a1f7d09e532b6152fe6a5efbb6792d67375944d87e74f32020614f8fe1f59d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9962-6630
0000-0001-8568-2757
0000-0002-6583-7114
0000-0002-2346-4970
0000-0002-0228-7979
0000-0003-0047-337X
0000-0001-5324-4082
OpenAccessLink https://www.proquest.com/docview/2713128939?pq-origsite=%requestingapplication%
PMID 36097172
PQID 2713128939
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_08264e87290f49cb9f007321f9f5957c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9467987
proquest_miscellaneous_2714059705
proquest_journals_2713128939
crossref_primary_10_1038_s41467_022_33098_y
crossref_citationtrail_10_1038_s41467_022_33098_y
springer_journals_10_1038_s41467_022_33098_y
PublicationCentury 2000
PublicationDate 2022-09-12
PublicationDateYYYYMMDD 2022-09-12
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kang, Kim, Kim, Hyeon (CR6) 2020; 403
Wang, Sun (CR56) 2012; 5
Wei (CR1) 2021; 40
Tang, He, Liu, Yan, Fan (CR4) 2021; 1
Song, Zink (CR38) 2016; 120
Zhu, Xu, Liu, Luo, Wang (CR61) 2013; 5
Sun (CR41) 2004; 126
Jiang, Liang (CR17) 2021; 39
CR35
Sidhu, Gilkes, Posner (CR47) 1977; 39
Guo, Guo (CR15) 2019; 123
Wei, Wang (CR27) 2008; 80
Kong (CR50) 2021; 37
Wang, Sun (CR57) 2015; 8
Wang (CR59) 2012; 12
Tang, Yu, Sun, Li, Huang (CR60) 2011; 56
Gumpelmayer (CR28) 2018; 57
Masud (CR37) 2019; 7
Chen (CR18) 2020; 305
Fan (CR31) 2017; 53
CR5
Feitknecht, Gallagher (CR49) 1970; 228
Zandieh, Liu (CR33) 2021; 15
Zhang (CR44) 2015; 5
Mehrmohammadi (CR63) 2013; 5
Colombo, Gazzarrini, Lanzavecchia, Sironi (CR34) 1965; 147
Zhang (CR13) 2021; 41
Xiang, Feng, Chen (CR19) 2020; 32
Colombo, Fagherazzi, Gazzarrini, Lanzavecchia, Sironi (CR48) 1964; 202
Pattammattel (CR39) 2021; 245
Bai, Cogswell, Bazant (CR58) 2011; 11
Zhang, Yan, Fan (CR3) 2021; 2
Wang (CR25) 2010; 17
Zhang, Zhang, Liu, Liu (CR21) 2017; 139
Dong, Fan, Zhang, Gu, Zhang (CR29) 2019; 30
Wang, Zhang, Yan, Fan (CR7) 2020; 41
Jiang (CR36) 2018; 13
Colliex, Manoubi, Ortiz (CR40) 1991; 44
Xu (CR16) 2022; 34
Liu, Zhang, Wang, Zhang, Cui (CR2) 2021; 13
Wang (CR62) 2021; 14
CR54
Redl (CR52) 2004; 126
Gao (CR10) 2007; 2
Zhou (CR20) 2022; 134
Voogt, Hibma, Zhang, Hoefman, Niesen (CR53) 1995; 331–333
Wu (CR30) 2019; 13
Cheng (CR11) 2021; 17
Park (CR43) 2004; 3
Liang, Yan (CR9) 2019; 52
Raineri (CR22) 2019; 11
Chen (CR12) 2021; 12
Gao (CR45) 2013; 5
CR26
Park (CR42) 2005; 117
Yuan (CR55) 2011; 4
Sun, Ma, Zhang, Gu (CR46) 2004; 245
Shen, Wang, Gao, Zhao (CR14) 2020; 10
Voinov, Pagán, Morrison, Smirnova, Smirnov (CR32) 2011; 133
Tang, Myers, Bosnick, Brus (CR51) 2003; 107
Chen (CR24) 2012; 6
Xiang, Feng, Chen (CR8) 2020; 32
Moreno Maldonado (CR23) 2019; 123
Z Zhang (33098_CR21) 2017; 139
MA Voinov (33098_CR32) 2011; 133
J Wang (33098_CR57) 2015; 8
S Sun (33098_CR41) 2004; 126
J Wang (33098_CR56) 2012; 5
Q Liu (33098_CR2) 2021; 13
M Zandieh (33098_CR33) 2021; 15
J Tang (33098_CR51) 2003; 107
J Gao (33098_CR45) 2013; 5
N Wang (33098_CR25) 2010; 17
AC Moreno Maldonado (33098_CR23) 2019; 123
R Zhang (33098_CR13) 2021; 41
L Zhang (33098_CR44) 2015; 5
H Wu (33098_CR30) 2019; 13
L Yuan (33098_CR55) 2011; 4
T Kang (33098_CR6) 2020; 403
M Raineri (33098_CR22) 2019; 11
Y Zhu (33098_CR61) 2013; 5
M Liang (33098_CR9) 2019; 52
A Pattammattel (33098_CR39) 2021; 245
H Xiang (33098_CR8) 2020; 32
H Song (33098_CR38) 2016; 120
Q Zhou (33098_CR20) 2022; 134
B Jiang (33098_CR17) 2021; 39
U Colombo (33098_CR34) 1965; 147
Z Chen (33098_CR24) 2012; 6
F Kong (33098_CR50) 2021; 37
C Wang (33098_CR62) 2021; 14
33098_CR54
H Xiang (33098_CR19) 2020; 32
PS Sidhu (33098_CR47) 1977; 39
P Bai (33098_CR58) 2011; 11
K Tang (33098_CR60) 2011; 56
G Tang (33098_CR4) 2021; 1
FC Voogt (33098_CR53) 1995; 331–333
S Guo (33098_CR15) 2019; 123
H Wei (33098_CR27) 2008; 80
X Shen (33098_CR14) 2020; 10
33098_CR35
M Gumpelmayer (33098_CR28) 2018; 57
L Gao (33098_CR10) 2007; 2
Q Chen (33098_CR18) 2020; 305
L Wang (33098_CR59) 2012; 12
H Dong (33098_CR29) 2019; 30
MK Masud (33098_CR37) 2019; 7
Y Sun (33098_CR46) 2004; 245
K Fan (33098_CR31) 2017; 53
B Xu (33098_CR16) 2022; 34
U Colombo (33098_CR48) 1964; 202
M Mehrmohammadi (33098_CR63) 2013; 5
FX Redl (33098_CR52) 2004; 126
J Park (33098_CR43) 2004; 3
H Wei (33098_CR1) 2021; 40
33098_CR26
Z Wang (33098_CR7) 2020; 41
R Zhang (33098_CR3) 2021; 2
L Cheng (33098_CR11) 2021; 17
J Chen (33098_CR12) 2021; 12
C Colliex (33098_CR40) 1991; 44
33098_CR5
B Jiang (33098_CR36) 2018; 13
W Feitknecht (33098_CR49) 1970; 228
J Park (33098_CR42) 2005; 117
References_xml – volume: 245
  start-page: 15
  year: 2004
  end-page: 19
  ident: CR46
  article-title: Synthesis of nanometer-size maghemite particles from magnetite
  publication-title: Colloids Surf., A.
  doi: 10.1016/j.colsurfa.2004.05.009
– volume: 11
  start-page: 18393
  year: 2019
  end-page: 18406
  ident: CR22
  article-title: Effects of biological buffer solutions on the peroxidase-like catalytic activity of Fe O nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/C9NR05799D
– volume: 4
  start-page: 269
  year: 2011
  end-page: 284
  ident: CR55
  article-title: Development and challenges of LiFePO cathode material for lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00029A
– volume: 52
  start-page: 2190
  year: 2019
  end-page: 2200
  ident: CR9
  article-title: Nanozymes: from new concepts, mechanisms, and standards to applications
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00140
– volume: 40
  start-page: 101269
  year: 2021
  ident: CR1
  article-title: Nanozymes: a clear definition with fuzzy edges
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101269
– volume: 14
  start-page: 3545
  year: 2021
  end-page: 3551
  ident: CR62
  article-title: Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3560-3
– volume: 57
  start-page: 14758
  year: 2018
  end-page: 14763
  ident: CR28
  article-title: Magnetite Fe O has no intrinsic peroxidase activity, and is probably not involved in alzheimer’s oxidative stress
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807676
– volume: 32
  start-page: 1905994
  year: 2020
  ident: CR19
  article-title: Single-atom catalysts in catalytic biomedicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905994
– volume: 53
  start-page: 424
  year: 2017
  end-page: 427
  ident: CR31
  article-title: Optimization of Fe O nanozyme activity via single amino acid modification mimicking an enzyme active site
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08542C
– volume: 39
  start-page: 174
  year: 2021
  end-page: 180
  ident: CR17
  article-title: Advances in single-atom nanozymes research
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202000383
– ident: CR35
– volume: 13
  start-page: 1
  year: 2021
  end-page: 53
  ident: CR2
  article-title: A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications
  publication-title: Nanomicro Lett.
– ident: CR54
– volume: 13
  start-page: 1506
  year: 2018
  end-page: 1520
  ident: CR36
  article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0001-1
– volume: 5
  start-page: 7026
  year: 2013
  ident: CR45
  article-title: One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe O colloidal nanocrystal clusters
  publication-title: Nanoscale
  doi: 10.1039/c3nr00931a
– volume: 5
  start-page: 5163
  year: 2012
  end-page: 5185
  ident: CR56
  article-title: Understanding and recent development of carbon coating on LiFePO cathode materials for lithium-ion batteries
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C1EE01263K
– volume: 11
  start-page: 4890
  year: 2011
  end-page: 4896
  ident: CR58
  article-title: Suppression of phase separation in LiFePO nanoparticles during battery discharge
  publication-title: Nano Lett.
  doi: 10.1021/nl202764f
– volume: 17
  start-page: 526
  year: 2010
  end-page: 533
  ident: CR25
  article-title: Sono-assisted preparation of highly-efficient peroxidase-like Fe O magnetic nanoparticles for catalytic removal of organic pollutants with H O
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2009.11.001
– volume: 39
  start-page: 1953
  year: 1977
  end-page: 1958
  ident: CR47
  article-title: Mechanism of the low temperature oxidation of synthetic magnetites
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(77)80523-X
– volume: 126
  start-page: 273
  year: 2004
  end-page: 279
  ident: CR41
  article-title: Monodisperse MFe O (M = Fe, Co, Mn) nanoparticles
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0380852
– volume: 5
  start-page: 11179
  year: 2013
  ident: CR63
  article-title: In vivo pulsed magneto-motive ultrasound imaging using high-performance magnetoactive contrast nanoagents
  publication-title: Nanoscale
  doi: 10.1039/c3nr03669c
– volume: 12
  start-page: 5632
  year: 2012
  end-page: 5636
  ident: CR59
  article-title: Crystal orientation tuning of LiFePO nanoplates for high rate lithium battery cathode materials
  publication-title: Nano Lett.
  doi: 10.1021/nl3027839
– volume: 44
  start-page: 11402
  year: 1991
  end-page: 11411
  ident: CR40
  article-title: Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.44.11402
– volume: 2
  start-page: 534
  year: 2021
  end-page: 547
  ident: CR3
  article-title: Nanozymes inspired by natural enzymes
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00074
– volume: 56
  start-page: 4869
  year: 2011
  end-page: 4875
  ident: CR60
  article-title: Kinetic analysis on LiFePO thin films by CV, GITT, and EIS
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.02.119
– volume: 15
  start-page: 15645
  year: 2021
  end-page: 15655
  ident: CR33
  article-title: Nanozyme catalytic turnover and self-limited reactions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c07520
– volume: 7
  start-page: 5412
  year: 2019
  end-page: 5422
  ident: CR37
  article-title: Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline α- or γ-iron oxide?
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/C9TB00989B
– ident: CR5
– ident: CR26
– volume: 10
  start-page: 12657
  year: 2020
  end-page: 12665
  ident: CR14
  article-title: Density functional theory-based method to predict the activities of nanomaterials as peroxidase mimics
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03426
– volume: 120
  start-page: 25578
  year: 2016
  end-page: 25587
  ident: CR38
  article-title: EELS study of differential diffusion of Fe and Co in magnetized silica nanocomposites
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b07264
– volume: 32
  start-page: 1905994
  year: 2020
  ident: CR8
  article-title: Single-atom catalysts in catalytic biomedicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905994
– volume: 305
  start-page: 127511
  year: 2020
  ident: CR18
  article-title: Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase
  publication-title: Sens. Actuators, B.
  doi: 10.1016/j.snb.2019.127511
– volume: 13
  start-page: 14013
  year: 2019
  end-page: 14023
  ident: CR30
  article-title: Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06134
– volume: 30
  start-page: 1273
  year: 2019
  end-page: 1296
  ident: CR29
  article-title: Catalytic mechanisms of nanozymes and their applications in biomedicine
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.9b00171
– volume: 5
  start-page: 9298
  year: 2015
  ident: CR44
  article-title: Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature
  publication-title: Sci. Rep.
  doi: 10.1038/srep09298
– volume: 17
  start-page: 2104083
  year: 2021
  ident: CR11
  article-title: Unveiling the actual catalytic sites in nanozyme-catalyzed oxidation of o-Phenylenediamine
  publication-title: Small
  doi: 10.1002/smll.202104083
– volume: 245
  start-page: 117988
  year: 2021
  ident: CR39
  article-title: Iron speciation in particulate matter (PM2.5) from urban Los Angeles using spectro-microscopy methods
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117988
– volume: 37
  start-page: 101106
  year: 2021
  ident: CR50
  article-title: Fe O @Pt nanozymes combining with CXCR antagonists to synergistically treat acute myeloid leukemia
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101106
– volume: 202
  start-page: 175
  year: 1964
  end-page: 176
  ident: CR48
  article-title: Mechanism in the first stage of oxidation of magnetites
  publication-title: Nature
  doi: 10.1038/202175a0
– volume: 6
  start-page: 4001
  year: 2012
  end-page: 4012
  ident: CR24
  article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity
  publication-title: ACS Nano
  doi: 10.1021/nn300291r
– volume: 80
  start-page: 2250
  year: 2008
  end-page: 2254
  ident: CR27
  article-title: Fe O magnetic nanoparticles as peroxidase mimetics and their applications in H O and glucose detection
  publication-title: Anal. Chem.
  doi: 10.1021/ac702203f
– volume: 5
  start-page: 780
  year: 2013
  end-page: 787
  ident: CR61
  article-title: Comparison of electrochemical performances of olivine NaFePO in sodium-ion batteries and olivine LiFePO in lithium-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C2NR32758A
– volume: 41
  start-page: 81
  year: 2020
  end-page: 119
  ident: CR7
  article-title: Structure and activity of nanozymes: inspirations for design of nanozymes
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.08.020
– volume: 133
  start-page: 35
  year: 2011
  end-page: 41
  ident: CR32
  article-title: Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104683w
– volume: 1
  start-page: 75
  year: 2021
  end-page: 89
  ident: CR4
  article-title: Nanozyme for tumor therapy: surface modification matters
  publication-title: Exploration
  doi: 10.1002/EXP.20210005
– volume: 12
  year: 2021
  ident: CR12
  article-title: Glucose-oxidase like catalytic mechanism of noble metal nanozymes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23737-1
– volume: 139
  start-page: 5412
  year: 2017
  end-page: 5419
  ident: CR21
  article-title: Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00601
– volume: 123
  start-page: 20617
  year: 2019
  end-page: 20627
  ident: CR23
  article-title: Free-radical formation by the peroxidase-like catalytic activity of MFe O (M = Fe, Ni, and Mn) nanoparticles
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b05371
– volume: 228
  start-page: 548
  year: 1970
  end-page: 549
  ident: CR49
  article-title: Mechanisms for the oxidation of Fe O
  publication-title: Nature
  doi: 10.1038/228548a0
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  ident: CR10
  article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 126
  start-page: 14583
  year: 2004
  end-page: 14599
  ident: CR52
  article-title: Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046808r
– volume: 117
  start-page: 2932
  year: 2005
  end-page: 2937
  ident: CR42
  article-title: One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200461665
– volume: 403
  start-page: 213092
  year: 2020
  ident: CR6
  article-title: Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213092
– volume: 331–333
  start-page: 1508
  year: 1995
  end-page: 1514
  ident: CR53
  article-title: Growth and characterization of nonstoichiometric magnetite Fe O thin films
  publication-title: Surf. Sci. s.
  doi: 10.1016/0039-6028(95)00347-9
– volume: 34
  start-page: 2107088
  year: 2022
  ident: CR16
  article-title: A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107088
– volume: 147
  start-page: 1033
  year: 1965
  ident: CR34
  article-title: Magnetite oxidation: a proposed mechanism
  publication-title: Science
  doi: 10.1126/science.147.3661.1033.a
– volume: 123
  start-page: 30318
  year: 2019
  end-page: 30334
  ident: CR15
  article-title: Unraveling the multi-enzyme-like activities of iron oxide nanozyme via a first-principles microkinetic study
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b07802
– volume: 107
  start-page: 7501
  year: 2003
  end-page: 7506
  ident: CR51
  article-title: Magnetite Fe O nanocrystals: spectroscopic observation of aqueous oxidation kinetics
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp027048e
– volume: 3
  start-page: 891
  year: 2004
  end-page: 895
  ident: CR43
  article-title: Ultra-large-scale syntheses of monodisperse nanocrystals
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1251
– volume: 41
  start-page: 101317
  year: 2021
  ident: CR13
  article-title: Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101317
– volume: 134
  start-page: e202112453
  year: 2022
  ident: CR20
  article-title: Cascaded nanozyme system with high reaction selectivity by substrate screening and channeling in a microfluidic device
  publication-title: Angew. Chem.
– volume: 8
  start-page: 111
  year: 2015
  end-page: 1138
  ident: CR57
  article-title: Olivine LiFePO : the remaining challenges for future energy storage
  publication-title: Energ. Environ. Sci.
– volume: 134
  start-page: e202112453
  year: 2022
  ident: 33098_CR20
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202112453
– volume: 15
  start-page: 15645
  year: 2021
  ident: 33098_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c07520
– volume: 5
  start-page: 9298
  year: 2015
  ident: 33098_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/srep09298
– volume: 52
  start-page: 2190
  year: 2019
  ident: 33098_CR9
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00140
– volume: 5
  start-page: 780
  year: 2013
  ident: 33098_CR61
  publication-title: Nanoscale
  doi: 10.1039/C2NR32758A
– volume: 11
  start-page: 4890
  year: 2011
  ident: 33098_CR58
  publication-title: Nano Lett.
  doi: 10.1021/nl202764f
– volume: 13
  start-page: 1
  year: 2021
  ident: 33098_CR2
  publication-title: Nanomicro Lett.
– volume: 17
  start-page: 2104083
  year: 2021
  ident: 33098_CR11
  publication-title: Small
  doi: 10.1002/smll.202104083
– volume: 139
  start-page: 5412
  year: 2017
  ident: 33098_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00601
– volume: 2
  start-page: 534
  year: 2021
  ident: 33098_CR3
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00074
– volume: 56
  start-page: 4869
  year: 2011
  ident: 33098_CR60
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.02.119
– volume: 12
  year: 2021
  ident: 33098_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23737-1
– volume: 10
  start-page: 12657
  year: 2020
  ident: 33098_CR14
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03426
– volume: 331–333
  start-page: 1508
  year: 1995
  ident: 33098_CR53
  publication-title: Surf. Sci. s.
  doi: 10.1016/0039-6028(95)00347-9
– ident: 33098_CR54
  doi: 10.1051/jphyscol:1971190
– volume: 202
  start-page: 175
  year: 1964
  ident: 33098_CR48
  publication-title: Nature
  doi: 10.1038/202175a0
– volume: 8
  start-page: 111
  year: 2015
  ident: 33098_CR57
  publication-title: Energ. Environ. Sci.
– volume: 34
  start-page: 2107088
  year: 2022
  ident: 33098_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107088
– volume: 5
  start-page: 7026
  year: 2013
  ident: 33098_CR45
  publication-title: Nanoscale
  doi: 10.1039/c3nr00931a
– volume: 123
  start-page: 20617
  year: 2019
  ident: 33098_CR23
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b05371
– volume: 13
  start-page: 1506
  year: 2018
  ident: 33098_CR36
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0001-1
– volume: 4
  start-page: 269
  year: 2011
  ident: 33098_CR55
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00029A
– volume: 30
  start-page: 1273
  year: 2019
  ident: 33098_CR29
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.9b00171
– volume: 2
  start-page: 577
  year: 2007
  ident: 33098_CR10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 5
  start-page: 5163
  year: 2012
  ident: 33098_CR56
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C1EE01263K
– volume: 32
  start-page: 1905994
  year: 2020
  ident: 33098_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905994
– volume: 17
  start-page: 526
  year: 2010
  ident: 33098_CR25
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2009.11.001
– volume: 120
  start-page: 25578
  year: 2016
  ident: 33098_CR38
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b07264
– volume: 11
  start-page: 18393
  year: 2019
  ident: 33098_CR22
  publication-title: Nanoscale
  doi: 10.1039/C9NR05799D
– volume: 1
  start-page: 75
  year: 2021
  ident: 33098_CR4
  publication-title: Exploration
  doi: 10.1002/EXP.20210005
– volume: 32
  start-page: 1905994
  year: 2020
  ident: 33098_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905994
– volume: 53
  start-page: 424
  year: 2017
  ident: 33098_CR31
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08542C
– ident: 33098_CR5
  doi: 10.1016/j.mattod.2021.10.032
– volume: 403
  start-page: 213092
  year: 2020
  ident: 33098_CR6
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213092
– volume: 117
  start-page: 2932
  year: 2005
  ident: 33098_CR42
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200461665
– volume: 14
  start-page: 3545
  year: 2021
  ident: 33098_CR62
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3560-3
– volume: 41
  start-page: 81
  year: 2020
  ident: 33098_CR7
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.08.020
– ident: 33098_CR35
– volume: 5
  start-page: 11179
  year: 2013
  ident: 33098_CR63
  publication-title: Nanoscale
  doi: 10.1039/c3nr03669c
– volume: 245
  start-page: 117988
  year: 2021
  ident: 33098_CR39
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117988
– volume: 57
  start-page: 14758
  year: 2018
  ident: 33098_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807676
– volume: 107
  start-page: 7501
  year: 2003
  ident: 33098_CR51
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp027048e
– ident: 33098_CR26
– volume: 80
  start-page: 2250
  year: 2008
  ident: 33098_CR27
  publication-title: Anal. Chem.
  doi: 10.1021/ac702203f
– volume: 228
  start-page: 548
  year: 1970
  ident: 33098_CR49
  publication-title: Nature
  doi: 10.1038/228548a0
– volume: 39
  start-page: 1953
  year: 1977
  ident: 33098_CR47
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(77)80523-X
– volume: 13
  start-page: 14013
  year: 2019
  ident: 33098_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06134
– volume: 245
  start-page: 15
  year: 2004
  ident: 33098_CR46
  publication-title: Colloids Surf., A.
  doi: 10.1016/j.colsurfa.2004.05.009
– volume: 7
  start-page: 5412
  year: 2019
  ident: 33098_CR37
  publication-title: J. Mater. Chem. B.
  doi: 10.1039/C9TB00989B
– volume: 6
  start-page: 4001
  year: 2012
  ident: 33098_CR24
  publication-title: ACS Nano
  doi: 10.1021/nn300291r
– volume: 40
  start-page: 101269
  year: 2021
  ident: 33098_CR1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101269
– volume: 126
  start-page: 273
  year: 2004
  ident: 33098_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0380852
– volume: 126
  start-page: 14583
  year: 2004
  ident: 33098_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja046808r
– volume: 44
  start-page: 11402
  year: 1991
  ident: 33098_CR40
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.44.11402
– volume: 37
  start-page: 101106
  year: 2021
  ident: 33098_CR50
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101106
– volume: 123
  start-page: 30318
  year: 2019
  ident: 33098_CR15
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b07802
– volume: 12
  start-page: 5632
  year: 2012
  ident: 33098_CR59
  publication-title: Nano Lett.
  doi: 10.1021/nl3027839
– volume: 3
  start-page: 891
  year: 2004
  ident: 33098_CR43
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1251
– volume: 41
  start-page: 101317
  year: 2021
  ident: 33098_CR13
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2021.101317
– volume: 133
  start-page: 35
  year: 2011
  ident: 33098_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104683w
– volume: 39
  start-page: 174
  year: 2021
  ident: 33098_CR17
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202000383
– volume: 305
  start-page: 127511
  year: 2020
  ident: 33098_CR18
  publication-title: Sens. Actuators, B.
  doi: 10.1016/j.snb.2019.127511
– volume: 147
  start-page: 1033
  year: 1965
  ident: 33098_CR34
  publication-title: Science
  doi: 10.1126/science.147.3661.1033.a
SSID ssj0000391844
Score 2.7231271
Snippet As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+...
As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface...
The mechanism of peroxidase-like Fe3O4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5365
SubjectTerms 140/133
140/146
147/135
147/137
147/143
639/638/92/173
639/925/357/354
639/925/357/995
639/925/357/997
Catalysis
Depletion
Electron transfer
Electrons
Engineering
Enzymes
Ferric ions
Ferric oxide
Ferrous ions
Humanities and Social Sciences
Ion migration
Ions
Iron oxides
Iron phosphates
Laboratories
Lithium
multidisciplinary
Nanoparticles
Oxidation
Peroxidase
Phase transitions
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXVF4itCAjcYOocezE8RFaVpwKB5B6s-J4DBGtt2p2EcuvZ8bJLk0l4MLVD8X2zHjGGfv7GHsZAvq1IOpcVhBy5YTLXVsT7q1osQi1KIxkE_r0tDk7Mx-vUX3RnbARHnhcuCN0UbWCBmPAIijTORMouVSKYEJlKt3R7ltoc-0wlfZgafDooqZXMoVsjgaV9oR0eV0SiOZm5okSYP8syrx5R_JGojT5n8U-uzcFjvzNOOD77BbEB-zOSCW5ecjWJ3CJIqCHUJywv3_0Hv1Tft5_A05vF4gigi8DX4D8oHhs4_Ln5gIGrEu30CNGopz-yfIBEho48Iv-y6gd1G3LloMdouf0NI6Tvj5inxfvPh2_zydKhbyrhF7lpWxF0L4wUMnSYTRTBqhbFJNztTalJ9aayijlGw1aBSJXpyNjaAIIXG8vH7O9uIzwhPGiC2iyums6qJVrRetrV5uS0ooavA8ZE9vltd2EN060F-c25b1lY0eRWBSJTSKxm4y92vW5HNE2_tr6LUlt15KQslMB6o-d9Mf-S38ydriVuZ3Md7AlHt3RcRtpMvZiV42GR9mUNsJyndpgsGt0UWVMz3RlNqB5Tey_Jghvoyj7pTP2eqtVvz_-5wk__R8TPmB3S7KCRINxyPZWV2t4xm5331f9cPU8mdEvn7wgjQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions
URI https://link.springer.com/article/10.1038/s41467-022-33098-y
https://www.proquest.com/docview/2713128939
https://www.proquest.com/docview/2714059705
https://pubmed.ncbi.nlm.nih.gov/PMC9467987
https://doaj.org/article/08264e87290f49cb9f007321f9f5957c
Volume 13
WOSCitedRecordID wos000853182100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQ48ChFBMrKSNwgah5OHJ8Qha7gwBIhkBYuVh52iWiTZbOLWH49M06yJZXohUsOsa04mvF4PDP-PoBnxuC-ZvzYDSNtXJ77uZtnMeHe-hm-Qi0yHdmEmM2S-VymfcCt7csqB5toDXXZFBQjPwrwNIW2VIby5eKHS6xRlF3tKTR2YI9QEgJbupduYyyEfp5w3t-V8cLkqOXWMtgS9pCgNDej_cjC9o98zcuVkpfSpXYXmt753_nfhdu9_8ledQpzD67peh9udIyUm3249Rc-4X1Yv9ELlCvdrmIEKP6rKnHTc8-q75rRhQjinWCNYVMdfuCszurm9-Zct9hmS9trdG8ZBXpZqy3EuGbn1WmncjRsoODBAXXJ6L4do0VwAJ-nJ59ev3V7nga3iHyxcoMw840oPamjMMjRRQqMjjOUfZ7HQgYlUeFEkvMyEVpwQ4ztdA41idG-iWQZPoDduqn1Q2BeYdAOiCIpdMzzzM_KOI9lQLlKocvSOOAP0lJFD2JOXBpnyibTw0R1ElYoYWUlrDYOPN-OWXQQHlf2PiYl2PYk-G37olmeqn41K_SbYq4TPJh4hssil4YynoFvJP5PJAoHDgclUL1NaNWFBjjwdNuMq5lSNFmtm7Xtgx60FF7kgBip3mhC45a6-mZxwSWnlJpw4MWgpBcf__cPP7p6ro_hZkDLxbJmHMLuarnWT-B68XNVtcsJ7Ii5sM9kAnvHJ7P048SGNSZ2JeIzjb5iS_ruffrlD-Q-O3k
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQg48CggAgWMBCeImocTxweEgLLqqu2yhyKVk8nDLivaZNnsAsuP4jcy4yRbthK99cA1thMn-Wbs8Tw-gGfG4Lpm_NgNI21cnvmZm6Ux1b31U7yEKDIN2YQYDpPDQzlag99dLgyFVXY60SrqosrpjHwrQGsKdakM5evJN5dYo8i72lFoNLDY1YsfaLLVrwbb-H-fB0H__cG7HbdlFXDzyBczNwhT34jCkzoKgwwX9MDoOMWZZlksZFAQcUskOS8SoQU3xC9OVpNJjPZNJIsQ73sJ1jmBvQfro8H-6NPyVIfqrSect9k5Xphs1dzqIhs0H1LxzsXKCmiJAlZ2t2djM884aO2617_5v32xW3Cj3WGzN41I3IY1XW7AlYZzc7EB1_-qwHgH5tt6gsil_DFGJdN_jgtc1t3j8VfNKOWDmDVYZVhfhx84K9Oy-rU40TW22eD9EjfwjI6yWa1tEXXNTsZHjVDRsI5kCAeUBaOMQkZifhc-XsgXuAe9sir1fWBeblDTiTzJdcyz1E-LOItlQN5YoYvCOOB36FB5W6ad2EKOlQ0XCBPVIEohopRFlFo48GI5ZtIUKTm391sC3bInFRi3F6rpkWr1lcKdYcx1gqaXZ7jMM2nIpxv4RuL7RCJ3YLMDnWq1Xq1OEefA02Uz6ityQqWlrua2D9oIUniRA2IF6isTWm0px19s5XPJyWkoHHjZCcXpw__9wg_On-sTuLpzsL-n9gbD3YdwLSBRtRwhm9CbTef6EVzOv8_G9fRxK-0MPl-0uPwB7WmRHw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAceBQqAgWMBCeIdpM4cXxACFhWVEXLHkCquJg87BK1TZbNLrD8NH4dM06yJZXorQeusZ04yTdjj-fxATwxBtc140VuEGrj8tRL3TSJqO6tl-AlRJFpyCbEZBLv78vpBvzucmEorLLTiVZR51VGZ-QDH60p1KUykAPThkVMR-OXs28uMUiRp7Wj02ggsqdXP9B8q1_sjvBfP_X98duPb965LcOAm4WeWLh-kHhG5EOpw8BPcXH3jY4SnHWaRkL6OZG4hJLzPBZacENc42RBmdhoz4QyD_C-F-CiQBuTwgmn4ef1-Q5VXo85b_N0hkE8qLnVSjZ8PqAynqveWmgpA3r73NNRmqdctXYFHN_4n7_dTbje7rvZq0ZQbsGGLrfgcsPEudqCa3_VZbwNy5GeIZ4pq4xRIfWfRY6LvXtUHGpGiSDEt8Eqw8Y6-MBZmZTVr9WxrrHNhvSXuK1ndMDNam1Lq2t2XBw0okbDOuohHFDmjPIMGQn_Hfh0Ll9gGzbLqtR3gQ0zg_pPZHGmI54mXpJHaSR98tEKnefGAa9Disra4u3EIXKkbBBBEKsGXQrRpSy61MqBZ-sxs6Z0yZm9XxMA1z2p7Li9UM0PVKvFFO4XI65jNMiGhssslYY8vb5nJL5PKDIHdjoAqlYX1uoEfQ48XjejFiPXVFLqamn7oOUgxTB0QPRg35tQv6Usvtp66JKTK1E48LwTkJOH__uF750910dwBWVEvd-d7N2Hqz5JrSUO2YHNxXypH8Cl7PuiqOcPrdgz-HLesvIHqLSYgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depletable+peroxidase-like+activity+of+Fe3O4+nanozymes+accompanied+with+separate+migration+of+electrons+and+iron+ions&rft.jtitle=Nature+communications&rft.au=Dong%2C+Haijiao&rft.au=Du%2C+Wei&rft.au=Dong%2C+Jian&rft.au=Che%2C+Renchao&rft.date=2022-09-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-33098-y&rft.externalDocID=10_1038_s41467_022_33098_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon