Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions
As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+ -induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 13; H. 1; S. 5365 - 11 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
12.09.2022
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As pioneering Fe
3
O
4
nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe
2+
-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe
2+
within Fe
3
O
4
can transfer electrons to the surface via the Fe
2+
-O-Fe
3+
chain, regenerating the surface Fe
2+
and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe
3+
from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe
3
O
4
nanozymes suffer the phase transformation to γ-Fe
2
O
3
with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes.
The mechanism of peroxidase-like Fe
3
O
4
nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity. |
|---|---|
| AbstractList | As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe2+-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe2+ within Fe3O4 can transfer electrons to the surface via the Fe2+-O-Fe3+ chain, regenerating the surface Fe2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe3O4 nanozymes suffer the phase transformation to γ-Fe2O3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes.As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe2+-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe2+ within Fe3O4 can transfer electrons to the surface via the Fe2+-O-Fe3+ chain, regenerating the surface Fe2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe3O4 nanozymes suffer the phase transformation to γ-Fe2O3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes. As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+ -induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe 2+ within Fe 3 O 4 can transfer electrons to the surface via the Fe 2+ -O-Fe 3+ chain, regenerating the surface Fe 2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe 3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe 3 O 4 nanozymes suffer the phase transformation to γ-Fe 2 O 3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes. As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe2+-induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe2+ within Fe3O4 can transfer electrons to the surface via the Fe2+-O-Fe3+ chain, regenerating the surface Fe2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe3O4 nanozymes suffer the phase transformation to γ-Fe2O3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes. The mechanism of peroxidase-like Fe3O4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity. The mechanism of peroxidase-like Fe3O4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity. As pioneering Fe 3 O 4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe 2+ -induced Fenton-like reactions accounting for their POD-like activity, few have focused on the internal atomic changes and their contribution to the catalytic reaction. Here we report that Fe 2+ within Fe 3 O 4 can transfer electrons to the surface via the Fe 2+ -O-Fe 3+ chain, regenerating the surface Fe 2+ and enabling a sustained POD-like catalytic reaction. This process usually occurs with the outward migration of excess oxidized Fe 3+ from the lattice, which is a rate-limiting step. After prolonged catalysis, Fe 3 O 4 nanozymes suffer the phase transformation to γ-Fe 2 O 3 with depletable POD-like activity. This self-depleting characteristic of nanozymes with internal atoms involved in electron transfer and ion migration is well validated on lithium iron phosphate nanoparticles. We reveal a neglected issue concerning the necessity of considering both surface and internal atoms when designing, modulating, and applying nanozymes. The mechanism of peroxidase-like Fe 3 O 4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface Fe(II) and the related phase transformation and depletion of activity. |
| ArticleNumber | 5365 |
| Author | Cheng, Wenlong Kong, Fei Che, Renchao Zhang, Yu Dong, Jian Dong, Haijiao Du, Wei Ma, Ming Gu, Ning |
| Author_xml | – sequence: 1 givenname: Haijiao orcidid: 0000-0001-8568-2757 surname: Dong fullname: Dong, Haijiao organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University – sequence: 2 givenname: Wei orcidid: 0000-0002-9962-6630 surname: Du fullname: Du, Wei organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University – sequence: 3 givenname: Jian surname: Dong fullname: Dong, Jian organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University – sequence: 4 givenname: Renchao orcidid: 0000-0002-6583-7114 surname: Che fullname: Che, Renchao organization: Laboratory of Advanced Materials, Fudan University, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Department of Materials Science, Fudan University – sequence: 5 givenname: Fei surname: Kong fullname: Kong, Fei organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University – sequence: 6 givenname: Wenlong orcidid: 0000-0002-2346-4970 surname: Cheng fullname: Cheng, Wenlong organization: Department of Chemical Engineering, Faculty of Engineering, Monash University, The Melbourne Centre for Nanofabrication – sequence: 7 givenname: Ming orcidid: 0000-0001-5324-4082 surname: Ma fullname: Ma, Ming email: maming@seu.edu.cn organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University – sequence: 8 givenname: Ning orcidid: 0000-0003-0047-337X surname: Gu fullname: Gu, Ning email: guning@seu.edu.cn organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University – sequence: 9 givenname: Yu orcidid: 0000-0002-0228-7979 surname: Zhang fullname: Zhang, Yu email: zhangyu@seu.edu.cn organization: State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University |
| BookMark | eNp9Uktv1DAQjlARLaV_gFMkLlwCfiW2L0ioUKhUqRc4W44z3npJ7GA7Lcuvx7upgPZQX2bk7-GR53tZHfngoapeY_QOIyreJ4ZZxxtESEMpkqLZPatOCGK4wZzQo__64-ospS0qh0osGHtRHdMOSV6wk2r5BPMIWfcj1DPE8MsNOkEzuh9Qa5Pdrcu7Otj6Aug1q7324fduglQwE6ZZewdDfefyTZ1g1lFnqCe3KdUFv5fBCCbH4IvAD7UrXV2Q9Kp6bvWY4Oy-nlbfLz5_O__aXF1_uTz_eNWYFvPcEKqx5QOS0FLSd7glFjrdgu37jksydJzyVjI2CA6cWUoQQR1mVljAtpUDPa0uV98h6K2ao5t03KmgnTpchLhROmZnRlBIkI6B4EQiy6TppUWIU4KtLE4tN8Xrw-o1L_0EgwGfox4fmD5EvLtRm3CrZNmTFLwYvL03iOHnAimrySUD46g9hCUpwjFDreSoLdQ3j6jbsERfvmrPopgISWVhkZVlYkgpgv07DEZqHxK1hkSVkKhDSNSuiMQjkXH5sK8ytBufltJVmso7fgPx31RPqP4Apo7Szg |
| CitedBy_id | crossref_primary_10_1039_D4AN01242A crossref_primary_10_1038_s41467_024_50123_4 crossref_primary_10_3390_catal13010178 crossref_primary_10_3390_molecules29010130 crossref_primary_10_1007_s00216_024_05679_x crossref_primary_10_1016_j_diamond_2023_109914 crossref_primary_10_1016_j_cej_2024_157897 crossref_primary_10_1134_S1070428024603716 crossref_primary_10_1016_j_cej_2024_153298 crossref_primary_10_1016_j_seppur_2024_131314 crossref_primary_10_1002_adma_202210848 crossref_primary_10_1016_j_cej_2025_161757 crossref_primary_10_1007_s11426_022_1544_x crossref_primary_10_1016_j_jhazmat_2024_136722 crossref_primary_10_1016_j_ccr_2024_215937 crossref_primary_10_1016_j_inoche_2025_114237 crossref_primary_10_1016_j_microc_2024_112320 crossref_primary_10_1007_s11426_022_1529_y crossref_primary_10_1007_s00216_023_04720_9 crossref_primary_10_1002_anie_202301232 crossref_primary_10_1016_j_apsusc_2023_157879 crossref_primary_10_1016_j_jconrel_2025_113755 crossref_primary_10_1186_s12974_025_03456_w crossref_primary_10_1002_smll_202309664 crossref_primary_10_1039_D5MH01108F crossref_primary_10_1016_j_apsusc_2024_159655 crossref_primary_10_1016_j_cej_2025_161080 crossref_primary_10_1016_j_jece_2024_113097 crossref_primary_10_1186_s40779_025_00611_5 crossref_primary_10_1016_j_foodchem_2023_136059 crossref_primary_10_1039_D3NR00048F crossref_primary_10_1002_smll_202411116 crossref_primary_10_1002_smll_202300736 crossref_primary_10_1016_j_cej_2024_152510 crossref_primary_10_1039_D3QM01202F crossref_primary_10_1002_adfm_202311398 crossref_primary_10_1016_j_cej_2024_153606 crossref_primary_10_3389_fbioe_2025_1548025 crossref_primary_10_1016_j_cej_2024_149233 crossref_primary_10_1016_j_ab_2023_115224 crossref_primary_10_1016_j_surfin_2025_106455 crossref_primary_10_1039_D5CC00180C crossref_primary_10_1039_D4NR04219K crossref_primary_10_1002_anie_202319108 crossref_primary_10_1016_j_microc_2024_112347 crossref_primary_10_1021_acsami_5c10567 crossref_primary_10_1007_s12598_025_03349_0 crossref_primary_10_1002_anie_202424070 crossref_primary_10_1016_j_ccr_2023_215519 crossref_primary_10_1021_jacs_4c15819 crossref_primary_10_1002_smll_202305974 crossref_primary_10_1039_D5CC03464G crossref_primary_10_1007_s12274_023_6283_9 crossref_primary_10_1016_j_bios_2024_116259 crossref_primary_10_1016_j_jcis_2023_11_067 crossref_primary_10_1186_s12951_024_02907_5 crossref_primary_10_1016_j_jece_2025_116323 crossref_primary_10_1016_j_bios_2023_115785 crossref_primary_10_1002_ange_202418925 crossref_primary_10_1016_j_nantod_2024_102236 crossref_primary_10_1038_s44222_024_00205_1 crossref_primary_10_1002_smll_202302331 crossref_primary_10_1016_j_foodres_2024_115596 crossref_primary_10_59761_RCR5088 crossref_primary_10_1038_s41467_023_43678_1 crossref_primary_10_1002_slct_202403034 crossref_primary_10_1007_s00216_024_05280_2 crossref_primary_10_1016_j_microc_2025_115111 crossref_primary_10_1016_j_bej_2023_109165 crossref_primary_10_1016_j_jcis_2025_138272 crossref_primary_10_1186_s40580_023_00390_6 crossref_primary_10_1016_j_microc_2024_111428 crossref_primary_10_1016_j_seppur_2025_133546 crossref_primary_10_1002_advs_202411939 crossref_primary_10_1002_adfm_202516559 crossref_primary_10_1039_D5NA00387C crossref_primary_10_1016_j_trac_2024_117734 crossref_primary_10_3390_nano15100765 crossref_primary_10_1007_s12274_024_6552_2 crossref_primary_10_1007_s12274_024_6685_3 crossref_primary_10_1007_s11756_025_01868_w crossref_primary_10_1016_j_snb_2025_137785 crossref_primary_10_1016_j_surfin_2025_107484 crossref_primary_10_1016_j_jcis_2025_138721 crossref_primary_10_1002_adhm_202401836 crossref_primary_10_1002_adma_202211041 crossref_primary_10_1016_j_cej_2024_151515 crossref_primary_10_1039_D5NR00880H crossref_primary_10_3390_catal15060549 crossref_primary_10_1016_j_cej_2025_160629 crossref_primary_10_1021_acsami_5c13728 crossref_primary_10_3390_biomimetics8020177 crossref_primary_10_3390_magnetochemistry9040110 crossref_primary_10_1016_j_microc_2025_114810 crossref_primary_10_1002_ange_202424070 crossref_primary_10_1002_cphc_202401144 crossref_primary_10_1016_j_microc_2024_111680 crossref_primary_10_1186_s12951_025_03558_w crossref_primary_10_1016_j_jphotochem_2024_115895 crossref_primary_10_3390_bios15070435 crossref_primary_10_1016_j_colsurfa_2023_131309 crossref_primary_10_1063_5_0200505 crossref_primary_10_1016_j_mtcomm_2025_111847 crossref_primary_10_1007_s12668_025_02008_z crossref_primary_10_1016_j_actbio_2024_03_011 crossref_primary_10_1002_adma_202211151 crossref_primary_10_1016_j_nantod_2024_102386 crossref_primary_10_1016_j_watres_2025_123653 crossref_primary_10_1016_j_ccr_2025_216850 crossref_primary_10_1016_j_jcis_2023_06_188 crossref_primary_10_3762_bjnano_15_125 crossref_primary_10_1002_anie_202504426 crossref_primary_10_1016_j_envres_2025_122714 crossref_primary_10_1186_s12645_024_00293_z crossref_primary_10_1002_smll_202405851 crossref_primary_10_1016_j_matdes_2025_113890 crossref_primary_10_3389_fchem_2022_1093073 crossref_primary_10_1002_advs_202413105 crossref_primary_10_1002_aoc_7698 crossref_primary_10_1016_j_jmmm_2025_172770 crossref_primary_10_1039_D3NR05427F crossref_primary_10_1016_j_revmat_2025_100088 crossref_primary_10_1016_j_carbon_2024_119474 crossref_primary_10_1002_cctc_202300544 crossref_primary_10_1016_j_matlet_2024_136480 crossref_primary_10_1002_wnan_1890 crossref_primary_10_1016_j_cej_2025_162590 crossref_primary_10_1002_ange_202504426 crossref_primary_10_1002_advs_202300601 crossref_primary_10_1016_j_procbio_2023_06_014 crossref_primary_10_1039_D4NR04527K crossref_primary_10_1002_advs_202504601 crossref_primary_10_1016_j_ccr_2025_217033 crossref_primary_10_1016_j_microc_2025_115329 crossref_primary_10_1007_s12613_024_3026_1 crossref_primary_10_1016_j_talanta_2025_127629 crossref_primary_10_1016_j_talanta_2024_127450 crossref_primary_10_1002_smll_202505278 crossref_primary_10_1039_D5MH01000D crossref_primary_10_1002_adhm_202500189 crossref_primary_10_1016_j_apcatb_2025_125761 crossref_primary_10_26599_NR_2025_94907239 crossref_primary_10_1021_acsanm_5c02305 crossref_primary_10_1016_j_microc_2025_113093 crossref_primary_10_1002_anie_202418925 crossref_primary_10_1016_j_cej_2024_150612 crossref_primary_10_1016_j_colsurfb_2025_115032 crossref_primary_10_1002_chem_202300454 crossref_primary_10_1039_D3NR02496B crossref_primary_10_1016_j_jece_2024_112727 crossref_primary_10_1016_j_colsurfb_2025_114739 crossref_primary_10_1016_j_cej_2023_146190 crossref_primary_10_1016_j_seppur_2023_125312 crossref_primary_10_1002_smll_202302640 crossref_primary_10_1016_j_cej_2024_148775 crossref_primary_10_1038_s41467_025_62063_8 crossref_primary_10_1016_j_apcatb_2025_125256 crossref_primary_10_1016_j_jcis_2024_07_172 crossref_primary_10_1016_j_bios_2024_116999 crossref_primary_10_1002_advs_202206244 crossref_primary_10_1016_j_ijbiomac_2023_125722 crossref_primary_10_3390_molecules29081848 crossref_primary_10_1021_acsabm_5c00495 crossref_primary_10_1021_acsanm_5c02319 crossref_primary_10_1016_j_apsusc_2024_161597 crossref_primary_10_1016_j_ceramint_2024_12_147 crossref_primary_10_1002_smll_202503879 crossref_primary_10_1002_ange_202319108 crossref_primary_10_1016_j_jhazmat_2024_135228 crossref_primary_10_1016_j_seppur_2024_127688 crossref_primary_10_1039_D3RA03246A crossref_primary_10_1016_j_jhazmat_2025_138361 crossref_primary_10_1002_bmm2_70013 crossref_primary_10_1016_j_jece_2025_117126 crossref_primary_10_6023_A24100321 crossref_primary_10_1016_j_trac_2022_116858 crossref_primary_10_1007_s00253_025_13589_w crossref_primary_10_1016_j_surfin_2024_105604 crossref_primary_10_1186_s12645_024_00295_x crossref_primary_10_1002_smll_202403354 crossref_primary_10_1002_adhm_202402066 crossref_primary_10_3390_nano15141090 crossref_primary_10_1002_anie_202512409 crossref_primary_10_1002_smll_202207142 crossref_primary_10_1002_adfm_202315587 crossref_primary_10_1002_ange_202302255 crossref_primary_10_1007_s11144_025_02856_6 crossref_primary_10_1016_j_ccr_2024_215797 crossref_primary_10_1002_smtd_202400610 crossref_primary_10_1002_smll_202204782 crossref_primary_10_1016_j_apsb_2023_12_017 crossref_primary_10_1038_s41467_024_50344_7 crossref_primary_10_1002_advs_202407148 crossref_primary_10_1002_adma_202502407 crossref_primary_10_1016_j_cej_2025_159940 crossref_primary_10_1016_j_cej_2025_166916 crossref_primary_10_1038_s41467_025_56179_0 crossref_primary_10_1002_adma_202401619 crossref_primary_10_1016_j_seppur_2024_126576 crossref_primary_10_1016_j_xcrp_2024_102074 crossref_primary_10_1021_acsapm_5c00977 crossref_primary_10_1016_j_jcis_2024_05_091 crossref_primary_10_1016_j_cclet_2025_111018 crossref_primary_10_1002_ange_202512409 crossref_primary_10_1002_anie_202302255 crossref_primary_10_3390_chemosensors11040233 crossref_primary_10_1016_j_biortech_2024_131533 crossref_primary_10_1016_j_plaphy_2025_109777 crossref_primary_10_1002_adfm_202401576 crossref_primary_10_1021_acsmeasuresciau_5c00014 crossref_primary_10_1007_s40820_023_01224_0 crossref_primary_10_1007_s10853_023_08389_4 crossref_primary_10_1002_ange_202403771 crossref_primary_10_1016_j_nxmate_2024_100209 crossref_primary_10_1021_acsami_5c07229 crossref_primary_10_1016_j_jpowsour_2024_235785 crossref_primary_10_1016_j_foodchem_2025_144387 crossref_primary_10_1038_s41467_024_50687_1 crossref_primary_10_1002_adma_202211210 crossref_primary_10_1016_j_microc_2024_111392 crossref_primary_10_1016_j_actbio_2025_03_003 crossref_primary_10_1002_advs_202402039 crossref_primary_10_1002_agt2_70150 crossref_primary_10_1007_s00216_024_05416_4 crossref_primary_10_1016_j_cej_2024_155020 crossref_primary_10_1016_j_colsurfb_2025_114548 crossref_primary_10_1016_j_nantod_2023_101755 crossref_primary_10_1063_5_0237766 crossref_primary_10_1016_j_cis_2024_103304 crossref_primary_10_1016_j_foodchem_2025_143189 crossref_primary_10_1002_ange_202301232 crossref_primary_10_1016_j_mtbio_2025_102135 crossref_primary_10_1016_j_apsusc_2023_158633 crossref_primary_10_1016_j_chemosphere_2025_144159 crossref_primary_10_1002_ange_202505907 crossref_primary_10_1016_j_ccr_2025_216575 crossref_primary_10_3389_fchem_2024_1349020 crossref_primary_10_1016_j_ccr_2025_216578 crossref_primary_10_1002_anie_202403771 crossref_primary_10_1002_adhm_202403868 crossref_primary_10_1002_cctc_202400356 crossref_primary_10_1016_j_actbio_2025_07_025 crossref_primary_10_1016_j_carbpol_2025_123918 crossref_primary_10_1016_j_actbio_2024_11_003 crossref_primary_10_1016_j_seppur_2024_127878 crossref_primary_10_1016_j_bios_2024_116594 crossref_primary_10_1016_j_magmed_2025_100002 crossref_primary_10_1016_j_fochx_2024_102051 crossref_primary_10_1002_anie_202505907 crossref_primary_10_1016_j_talanta_2023_124833 crossref_primary_10_1016_j_foodchem_2023_136957 crossref_primary_10_1002_adma_202411618 crossref_primary_10_1002_adma_202408560 crossref_primary_10_1039_D5SC04247J crossref_primary_10_1016_j_jtice_2023_105171 crossref_primary_10_1016_j_nantod_2023_102142 crossref_primary_10_1002_adfm_202422270 crossref_primary_10_1002_advs_202403935 |
| Cites_doi | 10.1016/j.colsurfa.2004.05.009 10.1039/C9NR05799D 10.1039/C0EE00029A 10.1021/acs.accounts.9b00140 10.1016/j.nantod.2021.101269 10.1007/s12274-021-3560-3 10.1002/anie.201807676 10.1002/adma.201905994 10.1039/C6CC08542C 10.1002/cjoc.202000383 10.1038/s41596-018-0001-1 10.1039/c3nr00931a 10.1039/C1EE01263K 10.1021/nl202764f 10.1016/j.ultsonch.2009.11.001 10.1016/0022-1902(77)80523-X 10.1021/ja0380852 10.1039/c3nr03669c 10.1021/nl3027839 10.1103/PhysRevB.44.11402 10.1021/accountsmr.1c00074 10.1016/j.electacta.2011.02.119 10.1021/acsnano.1c07520 10.1039/C9TB00989B 10.1021/acscatal.0c03426 10.1021/acs.jpcc.6b07264 10.1016/j.snb.2019.127511 10.1021/acsnano.9b06134 10.1021/acs.bioconjchem.9b00171 10.1038/srep09298 10.1002/smll.202104083 10.1016/j.atmosenv.2020.117988 10.1016/j.nantod.2021.101106 10.1038/202175a0 10.1021/nn300291r 10.1021/ac702203f 10.1039/C2NR32758A 10.1016/j.mattod.2020.08.020 10.1021/ja104683w 10.1002/EXP.20210005 10.1038/s41467-021-23737-1 10.1021/jacs.7b00601 10.1021/acs.jpcc.9b05371 10.1038/228548a0 10.1038/nnano.2007.260 10.1021/ja046808r 10.1002/ange.200461665 10.1016/j.ccr.2019.213092 10.1016/0039-6028(95)00347-9 10.1002/adma.202107088 10.1126/science.147.3661.1033.a 10.1021/acs.jpcc.9b07802 10.1021/jp027048e 10.1038/nmat1251 10.1016/j.nantod.2021.101317 10.1002/ange.202112453 10.1051/jphyscol:1971190 10.1016/j.mattod.2021.10.032 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-022-33098-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Engineering |
| EISSN | 2041-1723 |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_08264e87290f49cb9f007321f9f5957c PMC9467987 10_1038_s41467_022_33098_y |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61821002; 82072067 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 61821002; 82072067 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c517t-23a1f7d09e532b6152fe6a5efbb6792d67375944d87e74f32020614f8fe1f59d3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 258 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000853182100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:42:20 EDT 2025 Tue Nov 04 02:02:30 EST 2025 Thu Sep 04 19:59:48 EDT 2025 Tue Oct 07 07:15:36 EDT 2025 Sat Nov 29 02:11:19 EST 2025 Tue Nov 18 21:45:42 EST 2025 Fri Feb 21 02:38:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c517t-23a1f7d09e532b6152fe6a5efbb6792d67375944d87e74f32020614f8fe1f59d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9962-6630 0000-0001-8568-2757 0000-0002-6583-7114 0000-0002-2346-4970 0000-0002-0228-7979 0000-0003-0047-337X 0000-0001-5324-4082 |
| OpenAccessLink | https://www.proquest.com/docview/2713128939?pq-origsite=%requestingapplication% |
| PMID | 36097172 |
| PQID | 2713128939 |
| PQPubID | 546298 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_08264e87290f49cb9f007321f9f5957c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9467987 proquest_miscellaneous_2714059705 proquest_journals_2713128939 crossref_primary_10_1038_s41467_022_33098_y crossref_citationtrail_10_1038_s41467_022_33098_y springer_journals_10_1038_s41467_022_33098_y |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-12 |
| PublicationDateYYYYMMDD | 2022-09-12 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Kang, Kim, Kim, Hyeon (CR6) 2020; 403 Wang, Sun (CR56) 2012; 5 Wei (CR1) 2021; 40 Tang, He, Liu, Yan, Fan (CR4) 2021; 1 Song, Zink (CR38) 2016; 120 Zhu, Xu, Liu, Luo, Wang (CR61) 2013; 5 Sun (CR41) 2004; 126 Jiang, Liang (CR17) 2021; 39 CR35 Sidhu, Gilkes, Posner (CR47) 1977; 39 Guo, Guo (CR15) 2019; 123 Wei, Wang (CR27) 2008; 80 Kong (CR50) 2021; 37 Wang, Sun (CR57) 2015; 8 Wang (CR59) 2012; 12 Tang, Yu, Sun, Li, Huang (CR60) 2011; 56 Gumpelmayer (CR28) 2018; 57 Masud (CR37) 2019; 7 Chen (CR18) 2020; 305 Fan (CR31) 2017; 53 CR5 Feitknecht, Gallagher (CR49) 1970; 228 Zandieh, Liu (CR33) 2021; 15 Zhang (CR44) 2015; 5 Mehrmohammadi (CR63) 2013; 5 Colombo, Gazzarrini, Lanzavecchia, Sironi (CR34) 1965; 147 Zhang (CR13) 2021; 41 Xiang, Feng, Chen (CR19) 2020; 32 Colombo, Fagherazzi, Gazzarrini, Lanzavecchia, Sironi (CR48) 1964; 202 Pattammattel (CR39) 2021; 245 Bai, Cogswell, Bazant (CR58) 2011; 11 Zhang, Yan, Fan (CR3) 2021; 2 Wang (CR25) 2010; 17 Zhang, Zhang, Liu, Liu (CR21) 2017; 139 Dong, Fan, Zhang, Gu, Zhang (CR29) 2019; 30 Wang, Zhang, Yan, Fan (CR7) 2020; 41 Jiang (CR36) 2018; 13 Colliex, Manoubi, Ortiz (CR40) 1991; 44 Xu (CR16) 2022; 34 Liu, Zhang, Wang, Zhang, Cui (CR2) 2021; 13 Wang (CR62) 2021; 14 CR54 Redl (CR52) 2004; 126 Gao (CR10) 2007; 2 Zhou (CR20) 2022; 134 Voogt, Hibma, Zhang, Hoefman, Niesen (CR53) 1995; 331–333 Wu (CR30) 2019; 13 Cheng (CR11) 2021; 17 Park (CR43) 2004; 3 Liang, Yan (CR9) 2019; 52 Raineri (CR22) 2019; 11 Chen (CR12) 2021; 12 Gao (CR45) 2013; 5 CR26 Park (CR42) 2005; 117 Yuan (CR55) 2011; 4 Sun, Ma, Zhang, Gu (CR46) 2004; 245 Shen, Wang, Gao, Zhao (CR14) 2020; 10 Voinov, Pagán, Morrison, Smirnova, Smirnov (CR32) 2011; 133 Tang, Myers, Bosnick, Brus (CR51) 2003; 107 Chen (CR24) 2012; 6 Xiang, Feng, Chen (CR8) 2020; 32 Moreno Maldonado (CR23) 2019; 123 Z Zhang (33098_CR21) 2017; 139 MA Voinov (33098_CR32) 2011; 133 J Wang (33098_CR57) 2015; 8 S Sun (33098_CR41) 2004; 126 J Wang (33098_CR56) 2012; 5 Q Liu (33098_CR2) 2021; 13 M Zandieh (33098_CR33) 2021; 15 J Tang (33098_CR51) 2003; 107 J Gao (33098_CR45) 2013; 5 N Wang (33098_CR25) 2010; 17 AC Moreno Maldonado (33098_CR23) 2019; 123 R Zhang (33098_CR13) 2021; 41 L Zhang (33098_CR44) 2015; 5 H Wu (33098_CR30) 2019; 13 L Yuan (33098_CR55) 2011; 4 T Kang (33098_CR6) 2020; 403 M Raineri (33098_CR22) 2019; 11 Y Zhu (33098_CR61) 2013; 5 M Liang (33098_CR9) 2019; 52 A Pattammattel (33098_CR39) 2021; 245 H Xiang (33098_CR8) 2020; 32 H Song (33098_CR38) 2016; 120 Q Zhou (33098_CR20) 2022; 134 B Jiang (33098_CR17) 2021; 39 U Colombo (33098_CR34) 1965; 147 Z Chen (33098_CR24) 2012; 6 F Kong (33098_CR50) 2021; 37 C Wang (33098_CR62) 2021; 14 33098_CR54 H Xiang (33098_CR19) 2020; 32 PS Sidhu (33098_CR47) 1977; 39 P Bai (33098_CR58) 2011; 11 K Tang (33098_CR60) 2011; 56 G Tang (33098_CR4) 2021; 1 FC Voogt (33098_CR53) 1995; 331–333 S Guo (33098_CR15) 2019; 123 H Wei (33098_CR27) 2008; 80 X Shen (33098_CR14) 2020; 10 33098_CR35 M Gumpelmayer (33098_CR28) 2018; 57 L Gao (33098_CR10) 2007; 2 Q Chen (33098_CR18) 2020; 305 L Wang (33098_CR59) 2012; 12 H Dong (33098_CR29) 2019; 30 MK Masud (33098_CR37) 2019; 7 Y Sun (33098_CR46) 2004; 245 K Fan (33098_CR31) 2017; 53 B Xu (33098_CR16) 2022; 34 U Colombo (33098_CR48) 1964; 202 M Mehrmohammadi (33098_CR63) 2013; 5 FX Redl (33098_CR52) 2004; 126 J Park (33098_CR43) 2004; 3 H Wei (33098_CR1) 2021; 40 33098_CR26 Z Wang (33098_CR7) 2020; 41 R Zhang (33098_CR3) 2021; 2 L Cheng (33098_CR11) 2021; 17 J Chen (33098_CR12) 2021; 12 C Colliex (33098_CR40) 1991; 44 33098_CR5 B Jiang (33098_CR36) 2018; 13 W Feitknecht (33098_CR49) 1970; 228 J Park (33098_CR42) 2005; 117 |
| References_xml | – volume: 245 start-page: 15 year: 2004 end-page: 19 ident: CR46 article-title: Synthesis of nanometer-size maghemite particles from magnetite publication-title: Colloids Surf., A. doi: 10.1016/j.colsurfa.2004.05.009 – volume: 11 start-page: 18393 year: 2019 end-page: 18406 ident: CR22 article-title: Effects of biological buffer solutions on the peroxidase-like catalytic activity of Fe O nanoparticles publication-title: Nanoscale doi: 10.1039/C9NR05799D – volume: 4 start-page: 269 year: 2011 end-page: 284 ident: CR55 article-title: Development and challenges of LiFePO cathode material for lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00029A – volume: 52 start-page: 2190 year: 2019 end-page: 2200 ident: CR9 article-title: Nanozymes: from new concepts, mechanisms, and standards to applications publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00140 – volume: 40 start-page: 101269 year: 2021 ident: CR1 article-title: Nanozymes: a clear definition with fuzzy edges publication-title: Nano Today doi: 10.1016/j.nantod.2021.101269 – volume: 14 start-page: 3545 year: 2021 end-page: 3551 ident: CR62 article-title: Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance publication-title: Nano Res. doi: 10.1007/s12274-021-3560-3 – volume: 57 start-page: 14758 year: 2018 end-page: 14763 ident: CR28 article-title: Magnetite Fe O has no intrinsic peroxidase activity, and is probably not involved in alzheimer’s oxidative stress publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807676 – volume: 32 start-page: 1905994 year: 2020 ident: CR19 article-title: Single-atom catalysts in catalytic biomedicine publication-title: Adv. Mater. doi: 10.1002/adma.201905994 – volume: 53 start-page: 424 year: 2017 end-page: 427 ident: CR31 article-title: Optimization of Fe O nanozyme activity via single amino acid modification mimicking an enzyme active site publication-title: Chem. Commun. doi: 10.1039/C6CC08542C – volume: 39 start-page: 174 year: 2021 end-page: 180 ident: CR17 article-title: Advances in single-atom nanozymes research publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000383 – ident: CR35 – volume: 13 start-page: 1 year: 2021 end-page: 53 ident: CR2 article-title: A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications publication-title: Nanomicro Lett. – ident: CR54 – volume: 13 start-page: 1506 year: 2018 end-page: 1520 ident: CR36 article-title: Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0001-1 – volume: 5 start-page: 7026 year: 2013 ident: CR45 article-title: One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe O colloidal nanocrystal clusters publication-title: Nanoscale doi: 10.1039/c3nr00931a – volume: 5 start-page: 5163 year: 2012 end-page: 5185 ident: CR56 article-title: Understanding and recent development of carbon coating on LiFePO cathode materials for lithium-ion batteries publication-title: Energ. Environ. Sci. doi: 10.1039/C1EE01263K – volume: 11 start-page: 4890 year: 2011 end-page: 4896 ident: CR58 article-title: Suppression of phase separation in LiFePO nanoparticles during battery discharge publication-title: Nano Lett. doi: 10.1021/nl202764f – volume: 17 start-page: 526 year: 2010 end-page: 533 ident: CR25 article-title: Sono-assisted preparation of highly-efficient peroxidase-like Fe O magnetic nanoparticles for catalytic removal of organic pollutants with H O publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2009.11.001 – volume: 39 start-page: 1953 year: 1977 end-page: 1958 ident: CR47 article-title: Mechanism of the low temperature oxidation of synthetic magnetites publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(77)80523-X – volume: 126 start-page: 273 year: 2004 end-page: 279 ident: CR41 article-title: Monodisperse MFe O (M = Fe, Co, Mn) nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0380852 – volume: 5 start-page: 11179 year: 2013 ident: CR63 article-title: In vivo pulsed magneto-motive ultrasound imaging using high-performance magnetoactive contrast nanoagents publication-title: Nanoscale doi: 10.1039/c3nr03669c – volume: 12 start-page: 5632 year: 2012 end-page: 5636 ident: CR59 article-title: Crystal orientation tuning of LiFePO nanoplates for high rate lithium battery cathode materials publication-title: Nano Lett. doi: 10.1021/nl3027839 – volume: 44 start-page: 11402 year: 1991 end-page: 11411 ident: CR40 article-title: Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.44.11402 – volume: 2 start-page: 534 year: 2021 end-page: 547 ident: CR3 article-title: Nanozymes inspired by natural enzymes publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00074 – volume: 56 start-page: 4869 year: 2011 end-page: 4875 ident: CR60 article-title: Kinetic analysis on LiFePO thin films by CV, GITT, and EIS publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.02.119 – volume: 15 start-page: 15645 year: 2021 end-page: 15655 ident: CR33 article-title: Nanozyme catalytic turnover and self-limited reactions publication-title: ACS Nano doi: 10.1021/acsnano.1c07520 – volume: 7 start-page: 5412 year: 2019 end-page: 5422 ident: CR37 article-title: Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline α- or γ-iron oxide? publication-title: J. Mater. Chem. B. doi: 10.1039/C9TB00989B – ident: CR5 – ident: CR26 – volume: 10 start-page: 12657 year: 2020 end-page: 12665 ident: CR14 article-title: Density functional theory-based method to predict the activities of nanomaterials as peroxidase mimics publication-title: ACS Catal. doi: 10.1021/acscatal.0c03426 – volume: 120 start-page: 25578 year: 2016 end-page: 25587 ident: CR38 article-title: EELS study of differential diffusion of Fe and Co in magnetized silica nanocomposites publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b07264 – volume: 32 start-page: 1905994 year: 2020 ident: CR8 article-title: Single-atom catalysts in catalytic biomedicine publication-title: Adv. Mater. doi: 10.1002/adma.201905994 – volume: 305 start-page: 127511 year: 2020 ident: CR18 article-title: Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase publication-title: Sens. Actuators, B. doi: 10.1016/j.snb.2019.127511 – volume: 13 start-page: 14013 year: 2019 end-page: 14023 ident: CR30 article-title: Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species publication-title: ACS Nano doi: 10.1021/acsnano.9b06134 – volume: 30 start-page: 1273 year: 2019 end-page: 1296 ident: CR29 article-title: Catalytic mechanisms of nanozymes and their applications in biomedicine publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.9b00171 – volume: 5 start-page: 9298 year: 2015 ident: CR44 article-title: Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature publication-title: Sci. Rep. doi: 10.1038/srep09298 – volume: 17 start-page: 2104083 year: 2021 ident: CR11 article-title: Unveiling the actual catalytic sites in nanozyme-catalyzed oxidation of o-Phenylenediamine publication-title: Small doi: 10.1002/smll.202104083 – volume: 245 start-page: 117988 year: 2021 ident: CR39 article-title: Iron speciation in particulate matter (PM2.5) from urban Los Angeles using spectro-microscopy methods publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117988 – volume: 37 start-page: 101106 year: 2021 ident: CR50 article-title: Fe O @Pt nanozymes combining with CXCR antagonists to synergistically treat acute myeloid leukemia publication-title: Nano Today doi: 10.1016/j.nantod.2021.101106 – volume: 202 start-page: 175 year: 1964 end-page: 176 ident: CR48 article-title: Mechanism in the first stage of oxidation of magnetites publication-title: Nature doi: 10.1038/202175a0 – volume: 6 start-page: 4001 year: 2012 end-page: 4012 ident: CR24 article-title: Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity publication-title: ACS Nano doi: 10.1021/nn300291r – volume: 80 start-page: 2250 year: 2008 end-page: 2254 ident: CR27 article-title: Fe O magnetic nanoparticles as peroxidase mimetics and their applications in H O and glucose detection publication-title: Anal. Chem. doi: 10.1021/ac702203f – volume: 5 start-page: 780 year: 2013 end-page: 787 ident: CR61 article-title: Comparison of electrochemical performances of olivine NaFePO in sodium-ion batteries and olivine LiFePO in lithium-ion batteries publication-title: Nanoscale doi: 10.1039/C2NR32758A – volume: 41 start-page: 81 year: 2020 end-page: 119 ident: CR7 article-title: Structure and activity of nanozymes: inspirations for design of nanozymes publication-title: Mater. Today doi: 10.1016/j.mattod.2020.08.020 – volume: 133 start-page: 35 year: 2011 end-page: 41 ident: CR32 article-title: Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104683w – volume: 1 start-page: 75 year: 2021 end-page: 89 ident: CR4 article-title: Nanozyme for tumor therapy: surface modification matters publication-title: Exploration doi: 10.1002/EXP.20210005 – volume: 12 year: 2021 ident: CR12 article-title: Glucose-oxidase like catalytic mechanism of noble metal nanozymes publication-title: Nat. Commun. doi: 10.1038/s41467-021-23737-1 – volume: 139 start-page: 5412 year: 2017 end-page: 5419 ident: CR21 article-title: Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00601 – volume: 123 start-page: 20617 year: 2019 end-page: 20627 ident: CR23 article-title: Free-radical formation by the peroxidase-like catalytic activity of MFe O (M = Fe, Ni, and Mn) nanoparticles publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b05371 – volume: 228 start-page: 548 year: 1970 end-page: 549 ident: CR49 article-title: Mechanisms for the oxidation of Fe O publication-title: Nature doi: 10.1038/228548a0 – volume: 2 start-page: 577 year: 2007 end-page: 583 ident: CR10 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 126 start-page: 14583 year: 2004 end-page: 14599 ident: CR52 article-title: Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046808r – volume: 117 start-page: 2932 year: 2005 end-page: 2937 ident: CR42 article-title: One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles publication-title: Angew. Chem. doi: 10.1002/ange.200461665 – volume: 403 start-page: 213092 year: 2020 ident: CR6 article-title: Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213092 – volume: 331–333 start-page: 1508 year: 1995 end-page: 1514 ident: CR53 article-title: Growth and characterization of nonstoichiometric magnetite Fe O thin films publication-title: Surf. Sci. s. doi: 10.1016/0039-6028(95)00347-9 – volume: 34 start-page: 2107088 year: 2022 ident: CR16 article-title: A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy publication-title: Adv. Mater. doi: 10.1002/adma.202107088 – volume: 147 start-page: 1033 year: 1965 ident: CR34 article-title: Magnetite oxidation: a proposed mechanism publication-title: Science doi: 10.1126/science.147.3661.1033.a – volume: 123 start-page: 30318 year: 2019 end-page: 30334 ident: CR15 article-title: Unraveling the multi-enzyme-like activities of iron oxide nanozyme via a first-principles microkinetic study publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b07802 – volume: 107 start-page: 7501 year: 2003 end-page: 7506 ident: CR51 article-title: Magnetite Fe O nanocrystals: spectroscopic observation of aqueous oxidation kinetics publication-title: J. Phys. Chem. B. doi: 10.1021/jp027048e – volume: 3 start-page: 891 year: 2004 end-page: 895 ident: CR43 article-title: Ultra-large-scale syntheses of monodisperse nanocrystals publication-title: Nat. Mater. doi: 10.1038/nmat1251 – volume: 41 start-page: 101317 year: 2021 ident: CR13 article-title: Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy publication-title: Nano Today doi: 10.1016/j.nantod.2021.101317 – volume: 134 start-page: e202112453 year: 2022 ident: CR20 article-title: Cascaded nanozyme system with high reaction selectivity by substrate screening and channeling in a microfluidic device publication-title: Angew. Chem. – volume: 8 start-page: 111 year: 2015 end-page: 1138 ident: CR57 article-title: Olivine LiFePO : the remaining challenges for future energy storage publication-title: Energ. Environ. Sci. – volume: 134 start-page: e202112453 year: 2022 ident: 33098_CR20 publication-title: Angew. Chem. doi: 10.1002/ange.202112453 – volume: 15 start-page: 15645 year: 2021 ident: 33098_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.1c07520 – volume: 5 start-page: 9298 year: 2015 ident: 33098_CR44 publication-title: Sci. Rep. doi: 10.1038/srep09298 – volume: 52 start-page: 2190 year: 2019 ident: 33098_CR9 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00140 – volume: 5 start-page: 780 year: 2013 ident: 33098_CR61 publication-title: Nanoscale doi: 10.1039/C2NR32758A – volume: 11 start-page: 4890 year: 2011 ident: 33098_CR58 publication-title: Nano Lett. doi: 10.1021/nl202764f – volume: 13 start-page: 1 year: 2021 ident: 33098_CR2 publication-title: Nanomicro Lett. – volume: 17 start-page: 2104083 year: 2021 ident: 33098_CR11 publication-title: Small doi: 10.1002/smll.202104083 – volume: 139 start-page: 5412 year: 2017 ident: 33098_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00601 – volume: 2 start-page: 534 year: 2021 ident: 33098_CR3 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00074 – volume: 56 start-page: 4869 year: 2011 ident: 33098_CR60 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.02.119 – volume: 12 year: 2021 ident: 33098_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23737-1 – volume: 10 start-page: 12657 year: 2020 ident: 33098_CR14 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03426 – volume: 331–333 start-page: 1508 year: 1995 ident: 33098_CR53 publication-title: Surf. Sci. s. doi: 10.1016/0039-6028(95)00347-9 – ident: 33098_CR54 doi: 10.1051/jphyscol:1971190 – volume: 202 start-page: 175 year: 1964 ident: 33098_CR48 publication-title: Nature doi: 10.1038/202175a0 – volume: 8 start-page: 111 year: 2015 ident: 33098_CR57 publication-title: Energ. Environ. Sci. – volume: 34 start-page: 2107088 year: 2022 ident: 33098_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.202107088 – volume: 5 start-page: 7026 year: 2013 ident: 33098_CR45 publication-title: Nanoscale doi: 10.1039/c3nr00931a – volume: 123 start-page: 20617 year: 2019 ident: 33098_CR23 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b05371 – volume: 13 start-page: 1506 year: 2018 ident: 33098_CR36 publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0001-1 – volume: 4 start-page: 269 year: 2011 ident: 33098_CR55 publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00029A – volume: 30 start-page: 1273 year: 2019 ident: 33098_CR29 publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.9b00171 – volume: 2 start-page: 577 year: 2007 ident: 33098_CR10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 5 start-page: 5163 year: 2012 ident: 33098_CR56 publication-title: Energ. Environ. Sci. doi: 10.1039/C1EE01263K – volume: 32 start-page: 1905994 year: 2020 ident: 33098_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201905994 – volume: 17 start-page: 526 year: 2010 ident: 33098_CR25 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2009.11.001 – volume: 120 start-page: 25578 year: 2016 ident: 33098_CR38 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b07264 – volume: 11 start-page: 18393 year: 2019 ident: 33098_CR22 publication-title: Nanoscale doi: 10.1039/C9NR05799D – volume: 1 start-page: 75 year: 2021 ident: 33098_CR4 publication-title: Exploration doi: 10.1002/EXP.20210005 – volume: 32 start-page: 1905994 year: 2020 ident: 33098_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201905994 – volume: 53 start-page: 424 year: 2017 ident: 33098_CR31 publication-title: Chem. Commun. doi: 10.1039/C6CC08542C – ident: 33098_CR5 doi: 10.1016/j.mattod.2021.10.032 – volume: 403 start-page: 213092 year: 2020 ident: 33098_CR6 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213092 – volume: 117 start-page: 2932 year: 2005 ident: 33098_CR42 publication-title: Angew. Chem. doi: 10.1002/ange.200461665 – volume: 14 start-page: 3545 year: 2021 ident: 33098_CR62 publication-title: Nano Res. doi: 10.1007/s12274-021-3560-3 – volume: 41 start-page: 81 year: 2020 ident: 33098_CR7 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.08.020 – ident: 33098_CR35 – volume: 5 start-page: 11179 year: 2013 ident: 33098_CR63 publication-title: Nanoscale doi: 10.1039/c3nr03669c – volume: 245 start-page: 117988 year: 2021 ident: 33098_CR39 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117988 – volume: 57 start-page: 14758 year: 2018 ident: 33098_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807676 – volume: 107 start-page: 7501 year: 2003 ident: 33098_CR51 publication-title: J. Phys. Chem. B. doi: 10.1021/jp027048e – ident: 33098_CR26 – volume: 80 start-page: 2250 year: 2008 ident: 33098_CR27 publication-title: Anal. Chem. doi: 10.1021/ac702203f – volume: 228 start-page: 548 year: 1970 ident: 33098_CR49 publication-title: Nature doi: 10.1038/228548a0 – volume: 39 start-page: 1953 year: 1977 ident: 33098_CR47 publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(77)80523-X – volume: 13 start-page: 14013 year: 2019 ident: 33098_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.9b06134 – volume: 245 start-page: 15 year: 2004 ident: 33098_CR46 publication-title: Colloids Surf., A. doi: 10.1016/j.colsurfa.2004.05.009 – volume: 7 start-page: 5412 year: 2019 ident: 33098_CR37 publication-title: J. Mater. Chem. B. doi: 10.1039/C9TB00989B – volume: 6 start-page: 4001 year: 2012 ident: 33098_CR24 publication-title: ACS Nano doi: 10.1021/nn300291r – volume: 40 start-page: 101269 year: 2021 ident: 33098_CR1 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101269 – volume: 126 start-page: 273 year: 2004 ident: 33098_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0380852 – volume: 126 start-page: 14583 year: 2004 ident: 33098_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046808r – volume: 44 start-page: 11402 year: 1991 ident: 33098_CR40 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.44.11402 – volume: 37 start-page: 101106 year: 2021 ident: 33098_CR50 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101106 – volume: 123 start-page: 30318 year: 2019 ident: 33098_CR15 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b07802 – volume: 12 start-page: 5632 year: 2012 ident: 33098_CR59 publication-title: Nano Lett. doi: 10.1021/nl3027839 – volume: 3 start-page: 891 year: 2004 ident: 33098_CR43 publication-title: Nat. Mater. doi: 10.1038/nmat1251 – volume: 41 start-page: 101317 year: 2021 ident: 33098_CR13 publication-title: Nano Today doi: 10.1016/j.nantod.2021.101317 – volume: 133 start-page: 35 year: 2011 ident: 33098_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104683w – volume: 39 start-page: 174 year: 2021 ident: 33098_CR17 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000383 – volume: 305 start-page: 127511 year: 2020 ident: 33098_CR18 publication-title: Sens. Actuators, B. doi: 10.1016/j.snb.2019.127511 – volume: 147 start-page: 1033 year: 1965 ident: 33098_CR34 publication-title: Science doi: 10.1126/science.147.3661.1033.a |
| SSID | ssj0000391844 |
| Score | 2.7231271 |
| Snippet | As pioneering Fe
3
O
4
nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface Fe
2+... As pioneering Fe3O4 nanozymes, their explicit peroxidase (POD)-like catalytic mechanism remains elusive. Although many studies have proposed surface... The mechanism of peroxidase-like Fe3O4 nanozymes remains elusive. Here, the authors show the electron transfer mechanism of Fe(II) ions to regenerate surface... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5365 |
| SubjectTerms | 140/133 140/146 147/135 147/137 147/143 639/638/92/173 639/925/357/354 639/925/357/995 639/925/357/997 Catalysis Depletion Electron transfer Electrons Engineering Enzymes Ferric ions Ferric oxide Ferrous ions Humanities and Social Sciences Ion migration Ions Iron oxides Iron phosphates Laboratories Lithium multidisciplinary Nanoparticles Oxidation Peroxidase Phase transitions Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXVF4itCAjcYOocezE8RFaVpwKB5B6s-J4DBGtt2p2EcuvZ8bJLk0l4MLVD8X2zHjGGfv7GHsZAvq1IOpcVhBy5YTLXVsT7q1osQi1KIxkE_r0tDk7Mx-vUX3RnbARHnhcuCN0UbWCBmPAIijTORMouVSKYEJlKt3R7ltoc-0wlfZgafDooqZXMoVsjgaV9oR0eV0SiOZm5okSYP8syrx5R_JGojT5n8U-uzcFjvzNOOD77BbEB-zOSCW5ecjWJ3CJIqCHUJywv3_0Hv1Tft5_A05vF4gigi8DX4D8oHhs4_Ln5gIGrEu30CNGopz-yfIBEho48Iv-y6gd1G3LloMdouf0NI6Tvj5inxfvPh2_zydKhbyrhF7lpWxF0L4wUMnSYTRTBqhbFJNztTalJ9aayijlGw1aBSJXpyNjaAIIXG8vH7O9uIzwhPGiC2iyums6qJVrRetrV5uS0ooavA8ZE9vltd2EN060F-c25b1lY0eRWBSJTSKxm4y92vW5HNE2_tr6LUlt15KQslMB6o-d9Mf-S38ydriVuZ3Md7AlHt3RcRtpMvZiV42GR9mUNsJyndpgsGt0UWVMz3RlNqB5Tey_Jghvoyj7pTP2eqtVvz_-5wk__R8TPmB3S7KCRINxyPZWV2t4xm5331f9cPU8mdEvn7wgjQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions |
| URI | https://link.springer.com/article/10.1038/s41467-022-33098-y https://www.proquest.com/docview/2713128939 https://www.proquest.com/docview/2714059705 https://pubmed.ncbi.nlm.nih.gov/PMC9467987 https://doaj.org/article/08264e87290f49cb9f007321f9f5957c |
| Volume | 13 |
| WOSCitedRecordID | wos000853182100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQ48ChFBMrKSNwgah5OHJ8Qha7gwBIhkBYuVh52iWiTZbOLWH49M06yJZXohUsOsa04mvF4PDP-PoBnxuC-ZvzYDSNtXJ77uZtnMeHe-hm-Qi0yHdmEmM2S-VymfcCt7csqB5toDXXZFBQjPwrwNIW2VIby5eKHS6xRlF3tKTR2YI9QEgJbupduYyyEfp5w3t-V8cLkqOXWMtgS9pCgNDej_cjC9o98zcuVkpfSpXYXmt753_nfhdu9_8ledQpzD67peh9udIyUm3249Rc-4X1Yv9ELlCvdrmIEKP6rKnHTc8-q75rRhQjinWCNYVMdfuCszurm9-Zct9hmS9trdG8ZBXpZqy3EuGbn1WmncjRsoODBAXXJ6L4do0VwAJ-nJ59ev3V7nga3iHyxcoMw840oPamjMMjRRQqMjjOUfZ7HQgYlUeFEkvMyEVpwQ4ztdA41idG-iWQZPoDduqn1Q2BeYdAOiCIpdMzzzM_KOI9lQLlKocvSOOAP0lJFD2JOXBpnyibTw0R1ElYoYWUlrDYOPN-OWXQQHlf2PiYl2PYk-G37olmeqn41K_SbYq4TPJh4hssil4YynoFvJP5PJAoHDgclUL1NaNWFBjjwdNuMq5lSNFmtm7Xtgx60FF7kgBip3mhC45a6-mZxwSWnlJpw4MWgpBcf__cPP7p6ro_hZkDLxbJmHMLuarnWT-B68XNVtcsJ7Ii5sM9kAnvHJ7P048SGNSZ2JeIzjb5iS_ruffrlD-Q-O3k |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQg48CggAgWMBCeImocTxweEgLLqqu2yhyKVk8nDLivaZNnsAsuP4jcy4yRbthK99cA1thMn-Wbs8Tw-gGfG4Lpm_NgNI21cnvmZm6Ux1b31U7yEKDIN2YQYDpPDQzlag99dLgyFVXY60SrqosrpjHwrQGsKdakM5evJN5dYo8i72lFoNLDY1YsfaLLVrwbb-H-fB0H__cG7HbdlFXDzyBczNwhT34jCkzoKgwwX9MDoOMWZZlksZFAQcUskOS8SoQU3xC9OVpNJjPZNJIsQ73sJ1jmBvQfro8H-6NPyVIfqrSect9k5Xphs1dzqIhs0H1LxzsXKCmiJAlZ2t2djM884aO2617_5v32xW3Cj3WGzN41I3IY1XW7AlYZzc7EB1_-qwHgH5tt6gsil_DFGJdN_jgtc1t3j8VfNKOWDmDVYZVhfhx84K9Oy-rU40TW22eD9EjfwjI6yWa1tEXXNTsZHjVDRsI5kCAeUBaOMQkZifhc-XsgXuAe9sir1fWBeblDTiTzJdcyz1E-LOItlQN5YoYvCOOB36FB5W6ad2EKOlQ0XCBPVIEohopRFlFo48GI5ZtIUKTm391sC3bInFRi3F6rpkWr1lcKdYcx1gqaXZ7jMM2nIpxv4RuL7RCJ3YLMDnWq1Xq1OEefA02Uz6ityQqWlrua2D9oIUniRA2IF6isTWm0px19s5XPJyWkoHHjZCcXpw__9wg_On-sTuLpzsL-n9gbD3YdwLSBRtRwhm9CbTef6EVzOv8_G9fRxK-0MPl-0uPwB7WmRHw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAceBQqAgWMBCeIdpM4cXxACFhWVEXLHkCquJg87BK1TZbNLrD8NH4dM06yJZXorQeusZ04yTdjj-fxATwxBtc140VuEGrj8tRL3TSJqO6tl-AlRJFpyCbEZBLv78vpBvzucmEorLLTiVZR51VGZ-QDH60p1KUykAPThkVMR-OXs28uMUiRp7Wj02ggsqdXP9B8q1_sjvBfP_X98duPb965LcOAm4WeWLh-kHhG5EOpw8BPcXH3jY4SnHWaRkL6OZG4hJLzPBZacENc42RBmdhoz4QyD_C-F-CiQBuTwgmn4ef1-Q5VXo85b_N0hkE8qLnVSjZ8PqAynqveWmgpA3r73NNRmqdctXYFHN_4n7_dTbje7rvZq0ZQbsGGLrfgcsPEudqCa3_VZbwNy5GeIZ4pq4xRIfWfRY6LvXtUHGpGiSDEt8Eqw8Y6-MBZmZTVr9WxrrHNhvSXuK1ndMDNam1Lq2t2XBw0okbDOuohHFDmjPIMGQn_Hfh0Ll9gGzbLqtR3gQ0zg_pPZHGmI54mXpJHaSR98tEKnefGAa9Disra4u3EIXKkbBBBEKsGXQrRpSy61MqBZ-sxs6Z0yZm9XxMA1z2p7Li9UM0PVKvFFO4XI65jNMiGhssslYY8vb5nJL5PKDIHdjoAqlYX1uoEfQ48XjejFiPXVFLqamn7oOUgxTB0QPRg35tQv6Usvtp66JKTK1E48LwTkJOH__uF750910dwBWVEvd-d7N2Hqz5JrSUO2YHNxXypH8Cl7PuiqOcPrdgz-HLesvIHqLSYgg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Depletable+peroxidase-like+activity+of+Fe3O4+nanozymes+accompanied+with+separate+migration+of+electrons+and+iron+ions&rft.jtitle=Nature+communications&rft.au=Dong%2C+Haijiao&rft.au=Du%2C+Wei&rft.au=Dong%2C+Jian&rft.au=Che%2C+Renchao&rft.date=2022-09-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-33098-y&rft.externalDocID=10_1038_s41467_022_33098_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |